Skip to main content

Sample Preparation for Drug Metabolism Studies

  • Chapter
  • First Online:
Sample Preparation in Biological Mass Spectrometry
  • 3380 Accesses

Abstract

Determination of metabolic stability and metabolite profiles of the new chemical entities (NCEs) plays a key role in the drug discovery and development process. At an early stage of drug discovery, information on the metabolic fate of the NCEs can direct medicinal chemists to synthesize metabolically more stable analogs by blocking sites of metabolism, and potentially creating NCEs with superior pharmacology and safety profiles. In the development stage, the focus is shifted to characterization of human metabolites, which enables the judicious selection of animal species used for safety evaluation and ensure that the selected animal species are exposed to all major metabolites formed in humans. The traditional method for metabolite characterization, HPLC-MS, requires extensive sample preparation prior to analysis. A correctly selected processing method results in cleaner samples, less background, and easier data interpretation. This chapter covers various aspects of sample preparation for studying metabolism of the drug candidates. An overview of the sample preparation approaches for both in vitro and in vivo studies including metabolic stability studies and screening for reactive metabolites is presented. Aspects of planning and conducting biotransformation in vivo studies starting from a sample collection, pooling, extracting drug-derived material are discussed. In addition, recommendations on how to investigate sample stability and to prevent degradation of metabolites are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baillie, T.A., Cayen, M.N., Fouda, H., Gerson, R.J., Green, J.D., Grossman, S.J., Klunk, L.J., LeBlanc, B., Perkins, D.G., and Shipley, L.A. (2002). Drug metabolites in safety testing. Toxicol Appl Pharmacol 182, 188–196.

    Article  CAS  Google Scholar 

  • Berry, L.M., Wollenberg, L., and Zhao, Z. (2009). Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab Lett 3, 70–77.

    Article  CAS  Google Scholar 

  • Brandon, E.F.A., Raap, C.D., Meijerman, I., Beijnen, J.H., and Schellens, J.H.M. (2003). An update on in vitro test methods in human hepatic drug biotransformation research: Pros and cons. Toxicol Appl Pharmacol 189, 233–246.

    Article  CAS  Google Scholar 

  • Chitneni, S.K., Serdons, K., Evens, N., Fonge, H., Celen, S., Deroose, C.M., Debyser, Z., Mortelmans, L., Verbruggen, A.M., and Bormans, G.M. (2008). Efficient purification and metabolite analysis of radiotracers using high-performance liquid chromatography and on-line solid-phase extraction. J Chromatogr, A 1189, 323–331.

    Article  CAS  Google Scholar 

  • Dalvie, D.K., and O’Donnell, J.P. (1998). Characterization of polar urinary metabolites by ion-spray tandem mass spectrometry following dansylation. Rapid Commun Mass Spectrom 12, 419–422.

    Article  CAS  Google Scholar 

  • Dumasia, M.C., Morelli, I., and Teale, P. (2004). Detection of eltenac in the horse: identification of phase I metabolites in urine by capillary gas chromatography-mass spectrometry and the determination of excretion profile by liquid chromatography-mass spectrometry. Chromatographia 59, S115–S121.

    Article  CAS  Google Scholar 

  • Gao, L., Cheng, X., Zhang, J., and Burns, D.J. (2007). A generic fast solid-phase extraction high-performance liquid chromatography/mass spectrometry method for high-throughput drug discovery. Rapid Commun Mass Spectrom 21, 3497–3504.

    Article  CAS  Google Scholar 

  • Gelhaus, S.L., and Blair, I.A. (2009). LC-MS analysis in drug metabolism studies. Drugs Pharm Sci 186, 355–372.

    CAS  Google Scholar 

  • Goldszer, F., Tindell, G.L., Walle, U.K., and Walle, T. (1981). Chemical trapping of labile aldehyde intermediates in the metabolism of propranolol and oxprenolol. Res Commun Chem Pathol Pharmacol 34, 193–205.

    CAS  Google Scholar 

  • Hamilton, R.A., Garnett, W.R., and Kline, B.J. (1981). Determination of mean valproic acid serum level by assay of a single pooled sample. Clin Pharmacol Ther 29, 408–413.

    Article  CAS  Google Scholar 

  • Herman, J.L. (2002). Generic method for on-line extraction of drug substances in the presence of biological matrices using turbulent flow chromatography. Rapid Commun Mass Spectrom 16, 421–426.

    Article  CAS  Google Scholar 

  • Herman, J.L. (2005). The use of turbulent flow chromatography and the isocratic focusing effect to achieve on-line cleanup and concentration of neat biological samples for low-level metabolite analysis. Rapid Commun Mass Spectrom 19, 696–700.

    Article  CAS  Google Scholar 

  • Herman, J.L., and di Bussolo, J.M. (2009). Turbulent-flow LC-MS: Applications for accelerating pharmacokinetic profiling and metabolite identification. Mass Spectrom Drug Metab Pharmacokinet, 311–340.

    Google Scholar 

  • Hop, C.E.C.A., and Prakash, C. (2005). Metabolite identification by LC-MS: Applications in drug discovery and development. Prog Pharm Biomed Anal 6, 123–158.

    Article  CAS  Google Scholar 

  • Hop, C.E.C.A., Wang, Z., Chen, Q., and Kwei, G. (1998). Plasma-Pooling Methods To Increase Throughput for in Vivo Pharmacokinetic Screening. J Pharm Sci 87, 901–903.

    Article  CAS  Google Scholar 

  • Idowu, O.R., Peggins, J.O., Brewer, T.G., and Kelley, C. (1995). Metabolism of a candidate 8-aminoquinoline antimalarial agent, WR 238605, by rat liver microsomes. Drug Metab Dispos 23, 1–17.

    CAS  Google Scholar 

  • Jerdi Mallorie, C., Daali, Y., Oestreicher Mitsuko, K., Cherkaoui, S., and Dayer, P. (2004). A simplified analytical method for a phenotyping cocktail of major CYP450 biotransformation routes. J Pharm Biomed Anal 35, 1203–1212.

    Article  Google Scholar 

  • Johnson, K., Shah, A., Jaw-Tsai, S., Baxter, J., and Prakash, C. (2003). Metabolism, pharmacokinetics, and excretion of a highly selective N-methyl-D-aspartate receptor antagonist, traxoprodil, in human cytochrome P450 2D6 extensive and poor metabolizers. Drug Metab Dispos 31, 76–87.

    Article  CAS  Google Scholar 

  • Jonsson, G., Stokke Tone, U., Cavcic, A., Jorgensen Kare, B., and Beyer, J. (2008). Characterization of alkylphenol metabolites in fish bile by enzymatic treatment and HPLC-fluorescence analysis. Chemosphere 71, 1392–1400.

    Article  CAS  Google Scholar 

  • Kamel, A., and Prakash, C. (2006). High performance liquid chromatography/atmospheric pressure ionization/tandem mass spectrometry (HPLC/API/MS/MS) in drug metabolism and toxicology. Curr Drug Metab 7, 837–852.

    Article  CAS  Google Scholar 

  • Kondo, T., Yoshida, K., Yoshimura, Y., Motohashi, M., and Tanayama, S. (1996). Characterization of conjugated metabolites of a new angiotensin II receptor antagonist, candesartan cilexetil, in rats by liquid chromatograph/electrospray tandem mass spectrometry following chemical derivatization. J Mass Spectrom 31, 873–878.

    Article  CAS  Google Scholar 

  • Kuuranne, T., Kotiaho, T., Pedersen-Bjergaard, S., Rasmussen, K.E., Leinonen, A., Westwood, S., and Kostiainen, R. (2003). Feasibility of a liquid-phase microextraction sample clean-up and liquid chromatographic/mass spectrometric screening method for selected anabolic steroid glucuronides in biological samples. J Mass Spectrom 38, 16–26.

    Article  CAS  Google Scholar 

  • Lim, H.K., Chan, K.W., Sisenwine, S., and Scatina, J.A. (2001). Simultaneous Screen for Microsomal Stability and Metabolite Profile by Direct Injection Turbulent-Laminar Flow LC-LC and Automated Tandem Mass Spectrometry. Anal Chem 73, 2140–2146.

    Article  CAS  Google Scholar 

  • Liu, D.Q., and Hop, C.E.C.A. (2005). Strategies for characterization of drug metabolites using liquid chromatography-tandem mass spectrometry in conjunction with chemical derivatization and on-line H/D exchange approaches. J Pharm Biomed Anal 37, 1–18.

    Article  Google Scholar 

  • Lombardi, P. (1990). A rapid, safe and convenient procedure for the preparation and use of diazomethane. Chemistry & Industry

    Google Scholar 

  • Lunn, G., Hellwig, L., and Cecchini, A. (1998). Handbook of Derivatization Reactions of HPLC (New York, NY, Wiley).

    Google Scholar 

  • Ma, S., Chowdhury, S.K., and Alton, K.B. (2006). Application of mass spectrometry for metabolite identification. Curr Drug Metab 7, 503–523.

    Article  CAS  Google Scholar 

  • Malcolm, S.L., and Marten, T.R. (1976). Determination of debrisoquin and its 4-hydroxy metabolite in plasma by gas chromatography/mass spectrometry. Anal Chem 48, 807–809.

    Article  CAS  Google Scholar 

  • Prakash, C., and Cui, D. (1997). Metabolism and excretion of a new antianxiety drug candidate, CP-93,393, in cynomolgus monkeys. Identification of the novel pyrimidine ring cleaved metabolites. Drug Metab Dispos 25, 1395–1406.

    CAS  Google Scholar 

  • Prakash, C., Shaffer, C.L., and Nedderman, A. (2007). Analytical strategies for identifying drug metabolites. Mass Spectrom Rev 26, 340–369.

    Article  CAS  Google Scholar 

  • Prakash, C., Sharma, R., Gleave, M., and Nedderman, A. (2008). In vitro screening techniques for reactive metabolites for minimizing bioactivation potential in drug discovery. Curr Drug Metab 9, 952–964.

    Article  CAS  Google Scholar 

  • Prasad, B., and Singh, S. (2009). In vitro and in vivo investigation of metabolic fate of rifampicin using an optimized sample preparation approach and modern tools of liquid chromatography-mass spectrometry. J Pharm Biomed Anal 50, 475–490.

    Article  CAS  Google Scholar 

  • Quirke, J.M.E., Adams, C.L., and Van Berkel, G.J. (1994). Chemical derivatization for electrospray ionization mass spectrometry. 1. Alkyl halides, alcohols, phenols, thiols, and amines. Anal Chem 66, 1302–1315.

    Article  CAS  Google Scholar 

  • Schaefer, W.H., Goalwin, A., Dixon, F., Hwang, B., Killmer, L., and Kuo, G. (1992). Structural determination of glucuronide conjugates and a carbamoyl glucuronide conjugate of carvedilol: use of acetylation reactions as an aid to determine positions of glucuronidation. Biol Mass Spectrom 21, 179–188.

    Article  CAS  Google Scholar 

  • Schuegerl, K. (2005). Extraction of primary and secondary metabolites. Adv Biochem Eng/Biotechnol 92, 1–48.

    CAS  Google Scholar 

  • Shin, H.-S., Park, B.-B., Choi, S.N., Oh, J.J., Hong, C.P., and Ryu, H. (1998). Identification of new urinary metabolites of famprofazone in humans. J Anal Toxicol 22, 55–60.

    CAS  Google Scholar 

  • Sparidans, R.W., Lagas, J.S., Schinkel, A.H., Schellens, J.H.M., and Beijnen, J.H. (2008). Liquid chromatography-tandem mass spectrometric assay for diclofenac and three primary metabolites in mouse plasma. J Chromatogr, B: Anal Technol Biomed Life Sci 872, 77–82.

    Article  CAS  Google Scholar 

  • Stoob, K., Singer, H.P., Goetz, C.W., Ruff, M., and Mueller, S.R. (2005). Fully automated online solid phase extraction coupled directly to liquid chromatography-tandem mass spectrometry. J Chromatogr A 1097, 138–147.

    Article  CAS  Google Scholar 

  • Watanabe, Y., Nakajima, M., Ohashi, N., Kume, T., and Yokoi, T. (2003). Glucuronidation of etoposide in human liver microsomes is specifically catalyzed by UDP-glucuronosyltransferase 1A1. Drug Metab Dispos 31, 589–595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia Penner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Penner, N., Das, B., Woodward, C., Prakash, C. (2011). Sample Preparation for Drug Metabolism Studies. In: Ivanov, A., Lazarev, A. (eds) Sample Preparation in Biological Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0828-0_43

Download citation

Publish with us

Policies and ethics