Advertisement

UV MALDI for DNA Analysis and the Developments in Sample Preparation Methods

  • Igor P. SmirnovEmail author
Chapter

Abstract

Matrix Assisted Laser Desorption-Ionization Mass Spectrometry (MALDI MS) is a powerful technique for the analysis of short DNA fragments and products of their enzymatic conversions, with majority of it’s practical applications being developed in fields of organic chemistry of oligonucleotides and typing of genetic polymorphisms. While capable of providing unique structural information and demonstrating high speed of data acquisition, results of MALDI analysis strongly depends on the quality and the type of sample preparation method used and the MALDI matrices applied for laser desorption-ionization. This review is focused mainly on these two areas followed by brief description of the most recent developments in the DNA genotyping by MALDI MS.

Keywords

Oligonucleotides DNA MALDI matrices Sample preparation Genotyping 

References

  1. Armstrong, D.W., Zhang, L.-K., He, L., and Gross, M.L. (2001). Ionic liquids as matrixes for matrix-assisted laser desorption/ionization mass spectrometry. Anal Chem 73, 3679–3686.CrossRefGoogle Scholar
  2. Asara, J.M., and Allison, J. (1999). Enhanced detection of oligonucleotides in UV MALDI MS using the tetraamine spermine as a matrix additive. Anal Chem 71, 2866–2870.CrossRefGoogle Scholar
  3. Ashcroft, A.E. (2003). Protein and peptide identification: The role of mass spectrometry in proteomics. Nat Prod Rep 20, 202–215.CrossRefGoogle Scholar
  4. Bai, X., Kim, S., Li, Z., Turro, N.J., and Ju, J. (2004). Design and synthesis of a photocleavable biotinylated nucleotide for DNA analysis by mass spectrometry. Nucleic Acids Res 32, 535–541.CrossRefGoogle Scholar
  5. Bai, J., Liu, Y.-H., Cain, T.C., and Lubman, D.M. (1994a). Matrix-assisted laser desorption/ionization using an active perfluorosulfonated ionomer film substrate. Anal Chem 66, 3423–3430.CrossRefGoogle Scholar
  6. Bai, J., Liu, Y.-H., Lubman, D.M., and Siemieniak, D. (1994b). Matrix-assisted laser-desorption ionization mass-spectrometry of restriction enzyme-digested plasmid DNA using an active nafion substrate. Rapid Commun Mass Spectrom 8, 687–691.CrossRefGoogle Scholar
  7. Banoub, J.H., Newton, R.P., Esmans, E., Ewing, D.F., and Mackenzie, G. (2005). Recent developments in mass spectrometry for the characterization of nucleosides, nucleotides, oligonucleotides, and nucleic acids. Chem Rev 105, 1869–1915.CrossRefGoogle Scholar
  8. Bauer, O., Guerasimova, A., Sauer, S., Thamm, S., Steinfath, M., Herwig, R., Janitz, M., Lehrach, H., and Radelof, U. (2004). Multiplexed hybridizations of positively charge-tagged peptide nucleic acids detected by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18, 1821–1829.CrossRefGoogle Scholar
  9. Beavis, R.C., Chait, B.T., and Fales, H.M. (1989). Cinnamic acid derivatives as matrices for ultraviolet laser desorption mass spectrometry of proteins. Rapid Commun Mass Spectrom 3, 432–435.CrossRefGoogle Scholar
  10. Berhane, B.T., and Limbach, P.A. (2003a). Functional microfabricated sample targets for matrix-assisted laser desorption/ionization mass spectrometry analysis of ribonucleic acids. Anal Chem 75, 1997–2003.CrossRefGoogle Scholar
  11. Berhane, B.T., and Limbach, P.A. (2003b). Stable isotope labeling for matrix-assisted laser desorption/ionization mass spectrometry and post-source decay analysis of ribonucleic acids. J Mass Spectrom 38, 872–878.CrossRefGoogle Scholar
  12. Berlin, K., and Gut, I.G. (1999). Analysis of negatively “charge tagged” DNA by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 13, 1739–1743.CrossRefGoogle Scholar
  13. Birikh, K.R., Bernard, P.L., Shmanai, V.V., Malakhov, A.D., Shchepinov, M.S., and Korshun, V.A. (2009). SNP detection using trityl mass tags. Methods Mol Biol 578, 345–361.CrossRefGoogle Scholar
  14. Birikh, K.R., Korshun, V.A., Bernad, P.L., Malakhov, A.D., Milner, N., Khan, S., Southern, E.M., and Shchepinov, M.S. (2008). Novel mass tags for single nucleotide polymorphism detection. Anal Chem 80, 2342–2350.CrossRefGoogle Scholar
  15. Bourin, S., McStay, D., Lin, P.K.T., Duncan, G., and Lomax, J. (1997a). The Application of Matrix Assisted Laser Desorption Time of Flight Mass Spectrometry to the Study of DNA/Terbium Interactions. Sensors and Their Applications VIII. Proceedings of the Conference on Sensors and Their Applications, 8th, Glasgow, Sept 7–10, 1997, pp. 15–20.Google Scholar
  16. Bourin, S., McStay, D., Lin, P.K.T., Duncan, G., and Lomax, J. (1997b). Study of DNA/Europium ion interaction by matrix assisted laser desorption time of flight mass spectrometry. Proc SPIE- Int Soc Opt Eng 2985, 112–119.Google Scholar
  17. Butler, J., Jiangbaucom, P., Huang, M., Belgrader, P., and Girard, J. (1996). Peptide nucleic-acid characterization by MALDI-TOF mass-spectrometry. Anal Chem 68, 3283–3287.CrossRefGoogle Scholar
  18. Capaldi, D.C., and Scozzari, A.N. (2008). Manufacturing and analytical processes for 2'-O-(2-methoxy-ethyl)-modified oligonucleotides. Antisense Drug Technol (2nd Ed), 38, 401–434.Google Scholar
  19. Carda-Broch, S., Berthod, A., and Armstrong, D.W. (2003). Ionic matrices for matrix-assisted laser desorption/ionization time-of-flight detection of DNA oligomers. Rapid Commun Mass Spectrom 17, 553–560.CrossRefGoogle Scholar
  20. Chan, T.W.D., Fung, Y.M.E., and Li, Y.C.L. (2002). A study of fast and metastable dissociations of adenine-thymine binary-base oligonucleotides by using positive-ion MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 13, 1052–1064.CrossRefGoogle Scholar
  21. Chen, W.-Y., and Chen, Y.-C. (2003). Reducing the alkali cation adductions of oligonucleotides using sol-gel-assisted laser desorption/ionization mass spectrometry. Anal Chem 75, 4223–4228.CrossRefGoogle Scholar
  22. Chen, W.-Y., and Chen, Y.-C. (2007). MALDI MS analysis of oligonucleotides: desalting by functional magnetite beads using microwave-assisted extraction. Anal Chem 79, 8061–8066.CrossRefGoogle Scholar
  23. Cheng, S.-w., and Chan, T.W.D. (1996). Use of ammonium halides as co-matrices for matrix-assisted laser desorption/ionization studies of oligonucleotides. Rapid Commun Mass Spectrom 10, 907–910.CrossRefGoogle Scholar
  24. Chiu, N.H.L., Tang, K., Yip, P., Braun, A., Koster, H., and Cantor, C.R. (2000). Mass spectrometry of single-stranded restriction fragments captured by an undigested complementary sequence. Nucleic Acids Res 28, e31, ii–iv.CrossRefGoogle Scholar
  25. Christian, N.P., Reilly, J.P., Mokler, V.R., Wincott, F.E., and Ellington, A.D. (2001). Elucidation of the initial step of oligonucleotide fragmentation in matrix-assisted laser desorption/ionization using modified nucleic acids. J Am Soc Mass Spectrom 12, 744–753.CrossRefGoogle Scholar
  26. Cohen, L.H., and Gusev, A.I. (2002). Small molecule analysis by MALDI mass spectrometry. Anal Bioanal Chem 373, 571–586.CrossRefGoogle Scholar
  27. Dai, Y., Whittal, R.M., and Li, L. (1999). Two-layer sample preparation: A method for MALDI-MS analysis of complex peptide and protein mixtures. Anal Chem 71, 1087–1091.CrossRefGoogle Scholar
  28. Davis, D.L., O’Brien, E.P., and Bentzley, C.M. (2000). Analysis of the degradation of oligonucleotide strands during the freezing/thawing processes using MALDI-MS. Anal Chem 72, 5092–5096.CrossRefGoogle Scholar
  29. Dell, A., and Morris, H.R. (2001). Glycoprotein structure determination by mass spectrometry. Science 291, 2351–2356.CrossRefGoogle Scholar
  30. Distler, A.M., and Allison, J. (2001a). 5-methoxysalicylic acid and spermine: A new matrix for the matrix-assisted laser desorption/ionization mass spectrometry analysis of oligonucleotides. J Am Soc Mass Spectrom 12, 456–462.CrossRefGoogle Scholar
  31. Distler, A.M., and Allison, J. (2001b). Improved MALDI-MS analysis of oligonucleotides through the use of fucose as a matrix additive. Anal Chem 73, 5000–5003.CrossRefGoogle Scholar
  32. Edwards, J.R., Itagaki, Y., and Ju, J. (2001). DNA sequencing using biotinylated dideoxynucleotides and mass spectrometry. Nucleic Acids Res 29, e104/101–e104/106.Google Scholar
  33. Erb, W.J., and Owens, K.G. (2008). Development of a dual-spray electrospray deposition system for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 22, 1168–1174.CrossRefGoogle Scholar
  34. Fitzgerald, M.C., Parr, G.R., and Smith, L.M. (1993). Basic matrices for the matrix-assisted laser-desorption ionization mass-spectrometry of proteins and oligonucleotides. Anal Chem 65, 3204–3211.CrossRefGoogle Scholar
  35. Fu, Y., Xu, S., Pan, C., Ye, M., Zou, H., and Guo, B. (2006). A matrix of 3,4-diaminobenzophenone for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Nuceic Acids Res 34, e94.CrossRefGoogle Scholar
  36. Garcia, B.A., Heaney, P.J., and Tang, K. (2002). Improvement of the MALDI-TOF analysis of DNA with thin-layer matrix preparation. Anal Chem 74, 2083–2091.CrossRefGoogle Scholar
  37. Gilar, M., Belenky, A., and Wang, B.H. (2001). High-throughput biopolymer desalting by solid-phase extraction prior to mass spectrometric analysis. J Chromatogr A 921, 3–13.CrossRefGoogle Scholar
  38. Gobom, J., Nordhoff, E., Mirgorodskaya, E., Ekman, R., and Roepstorff, P. (1999). Sample purification and preparation technique based on nano-scale reversed-phase columns for the sensitive analysis of complex peptide mixtures by matrix-assisted laser desorption/ionization mass spectrometry. J Mass Spectrom 34, 105–116.CrossRefGoogle Scholar
  39. Gobom, J., Schuerenberg, M., Mueller, M., Theiss, D., Lehrach, H., and Nordhoff, E. (2001). alpha -Cyano-4-hydroxycinnamic acid affinity sample preparation. A protocol for MALDI-MS peptide analysis in proteomics. Anal Chem 73, 434–438.CrossRefGoogle Scholar
  40. Greig, M., and Griffey, R.H. (1995). Utility of organic bases for improved electrospray mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 9, 97–102.CrossRefGoogle Scholar
  41. Griesser, H.J., Kingshott, P., McArthur, S.L., McLean, K.M., Kinsel, G.R., and Timmons, R.B. (2004). Surface-MALDI mass spectrometry in biomaterials research. Biomaterials 25, 4861–4875.CrossRefGoogle Scholar
  42. Gusev, A.I., Wilkinson, W.R., Proctor, A., and Hercules, D.M. (1995). Improvement of signal reproducibility and matrix/comatrix effects in MALDI analysis. Anal Chem 67, 1034–1041.CrossRefGoogle Scholar
  43. Gut, I.G. (2004). DNA analysis of MALDI-TOF mass spectrometry. Hum Mutat 23, 437–441.CrossRefGoogle Scholar
  44. Gut, I.G., Jeffery, W.A., Pappin, D.J.C., and Beck, S. (1997). Analysis of DNA by “charge tagging” and matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 11, 43–50.CrossRefGoogle Scholar
  45. Haff, L.A., and Smirnov, I.P. (1997). Single-nucleotide polymorphism identification assays using a thermostable DNA polymerase and delayed extraction MALDI-TOF mass spectrometry. Genome Res 7, 378–388.Google Scholar
  46. Hahner, S., Olejnik, J., Ludemann, H.-C., Krzymanska-Olejnik, E., Hillenkamp, F., and Rothschild, K.J. (1999). Matrix-assisted laser desorption/ionization mass spectrometry of DNA using photocleavable biotin. Biomol Eng 16, 127–133.CrossRefGoogle Scholar
  47. Hammond, N., Koumi, P., Langley, G.J., Lowe, A., and Brown, T. (2007). Rapid mass spectrometric identification of human genomic polymorphisms using multiplexed photocleavable mass-tagged probes and solid phase capture. Org Biomol Chem 5, 1878–1885.CrossRefGoogle Scholar
  48. Hanton, S.D., Hyder, I.Z., Stets, J.R., Owens, K.G., Blair, W.R., Guttman, C.M., and Giuseppetti, A.A. (2004). Investigations of electrospray sample deposition for polymer MALDI mass spectrometry. J Am Soc Mass Spectrom 15, 168–179.CrossRefGoogle Scholar
  49. Harvey, D.J. (2001). Identification of protein-bound carbohydrates by mass spectrometry. Proteomics 1, 311–328.CrossRefGoogle Scholar
  50. Hathaway, G.M. (1994). Characterization of modified and normal deoxyoligonucleotides by MALDI, time-of-flight mass spectrometry. Biotechniques 17, 150–155.Google Scholar
  51. Hattan, S.J., and Vestal, M.L. (2008). Novel three-dimensional MALDI plate for interfacing high-capacity LC separations with MALDI-TOF. Anal Chem 80, 9115–9123.CrossRefGoogle Scholar
  52. Hensel, R.R., King, R.C., and Owens, K.G. (1997). Electrospray sample preparation for improved quantitation in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 11, 1785–1793.CrossRefGoogle Scholar
  53. Herzer, N., Eckardt, R., Hoeppener, S., and Schubert, U.S. (2009). Sample target substrates with reduced spot size for MALDI-TOF mass spectrometry based on patterned self-assembled monolayers. Adv Func Mater 19, 2777–2781.CrossRefGoogle Scholar
  54. Hettich, R., and Buchanan, M. (1991). Structural characterization of normal and modified oligonucleotides by matrix-assisted laser desorption Fourier-transform mass-spectrometry. J Am Soc Mass Spectrom 2, 402–412.CrossRefGoogle Scholar
  55. Hillenkamp, F., Waefler, E., Jecklin, M.C., and Zenobi, R. (2009). Positive and negative analyte ion yield in matrix-assisted laser desorption/ionization revisited. Int J Mass Spectrom 285, 114–119.CrossRefGoogle Scholar
  56. Honda, A., Sonobe, H., Ogata, A., and Suzuki, K. (2005). Improved method of the MALDI-TOF analysis of DNA with nanodot sample target plate. Chem Commun, 5340–5342.Google Scholar
  57. Hong, S.P., Shin, S.-K., Lee, E.H., Kim, E.O., Ji, S.I., Chung, H.J., Park, S.N., Yoo, W., Folk, W.R., and Kim, S.-O. (2008). High-resolution human papillomavirus genotyping by MALDI-TOF mass spectrometry. Nat Protoc 3, 1476–1484, S1476/1471.CrossRefGoogle Scholar
  58. Horneffer, V., Glueckmann, M., Krueger, R., Karas, M., Strupat, K., and Hillenkamp, F. (2006). Matrix-analyte-interaction in MALDI-MS: Pellet and nano-electrospray preparations. Int J Mass Spectrom 249/250, 426–432.CrossRefGoogle Scholar
  59. Hung, K.C., Ding, H., and Guo, B. (1999). Use of poly(tetrafluoroethylene)s as a sample support for the MALDI-TOF analysis of DNA and proteins. Anal Chem 71, 518–521.CrossRefGoogle Scholar
  60. Hung, K.C., Rashidzadeh, H., Wang, Y., and Guo, B. (1998). Use of Paraffin wax film in MALDI-TOF analysis of DNA. Anal Chem 70, 3088–3093.CrossRefGoogle Scholar
  61. Hunter, J.M., Lin, H., and Becker, C.H. (1997). Cryogenic frozen solution matrixes for analysis of DNA by time-of-flight mass spectrometry. Anal Chem 68, 3608–3612.CrossRefGoogle Scholar
  62. Ivanov, A.R. (2006). Polymeric monolithic capillary columns in proteomics. In Separation Methods in Proteomics, G.B. Smejkal, and A. Lazarev, eds. (New York, NY, Taylor & Francis-CRC), pp. 419–443.Google Scholar
  63. Johnson, T., Bergquist, J., Ekman, R., Nordhoff, E., Schurenberg, M., Kloppel, K.D., Muller, M., Lehrach, H., and Gobom, J. (2001). A CE-MALDI interface based on the use of prestructured sample supports. Anal Chem 73, 1670–1675.CrossRefGoogle Scholar
  64. Jones, J.J., Batoy, S.M.A.B., Wilkins, C.L., Liyanage, R., and Lay, J.O. (2005). Ionic liquid matrix-induced metastable decay of peptides and oligonucleotides and stabilization of phospholipids in MALDI FTMS analyses. J Am Soc Mass Spectrom 16, 2000–2008.CrossRefGoogle Scholar
  65. Josic, D., and Clifton, J.G. (2007). Use of monolithic supports in proteomics technology. J Chromatogr, A 1144, 2–13.CrossRefGoogle Scholar
  66. Jurinke, C., van den Boom, D., Collazo, V., Luechow, A., Jacob, A., and Koester, H. (1997). Recovery of nucleic acids from immobilized biotin-streptavidin complexes using ammonium hydroxide and applications in MALDI-TOF mass spectrometry. Anal Chem 69, 904–910.CrossRefGoogle Scholar
  67. Jurinke, C., vandenBoom, D., and Koster, H. (1998). Asymmetric polymerase chain reaction improves streptavidin-biotin based purification of polymerase chain reaction products prior to matrix-assisted laser desorption/ionization time-of-flight mass spectrometric analysis. Rapid Commun Mass Spectrom 12, 50–52.CrossRefGoogle Scholar
  68. Karas, M., Gluckmann, M., and Schafer, J. (2000). Ionization in matrix-assisted laser desorption/ionization: Singly charged molecular ions are the lucky survivors. J Mass Spectrom 35, 1–12.CrossRefGoogle Scholar
  69. Karas, M., and Hillenkamp, F. (1988). Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons. Anal Chem 60, 2299–2301.CrossRefGoogle Scholar
  70. Karas, M., and Krueger, R. (2003). Ion formation in MALDI: The cluster ionization mechanism. Chem Rev 103, 427–439.CrossRefGoogle Scholar
  71. Kepper, P., Richard, R.T., Dahl, A., Lehrach, H., and Sauer, S. (2006). Matrix-assisted laser desorption/ionization mass spectrometric analysis of DNA on microarrays. Clin Chem 52, 1303–1310.CrossRefGoogle Scholar
  72. Kim, S., Edwards John, R., Deng, L., Chung, W., and Ju, J. (2002). Solid phase capturable dideoxynucleotides for multiplex genotyping using mass spectrometry. Nuceic Acids Res 30, e85.CrossRefGoogle Scholar
  73. Kim, Y., Hurst, G.B., Doktycz, M.J., and Buchanan, M.V. (2001). Improving spot homogeneity by using polymer substrates in matrix-assisted laser desorption/ionization mass spectrometry of oligonucleotides. Anal Chem 73, 2617–2624.CrossRefGoogle Scholar
  74. Kim, S., Ulz, M.E., Nguyen, T., Li, C.-M., Sato, T., Tycko, B., and Ju, J. (2004). Thirtyfold multiplex genotyping of the p53 gene using solid phase capturable dideoxynucleotides and mass spectrometry. Genomics 83, 924–931.CrossRefGoogle Scholar
  75. Kinet, C., Gabelica, V., Balbeur, D., and De Pauw, E. (2009). Electron detachment dissociation (EDD) pathways in oligonucleotides. Int J Mass Spectrom 283, 206–213.CrossRefGoogle Scholar
  76. Kirpekar, F., Berkenkamp, S., and Hillenkamp, F. (1999). Detection of double-stranded DNA by IR-and UV-MALDI mass spectrometry. Anal Chem 71, 2334–2339.CrossRefGoogle Scholar
  77. Koenig, S. (2008). Target coatings and desorption surfaces in biomolecular MALDI-MS. Proteomics 8, 706–714.CrossRefGoogle Scholar
  78. Kong, Y., Zhu, Y., and Zhang, J.-Y. (2001). Ionization mechanism of oligonucleotides in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 15, 57–64.CrossRefGoogle Scholar
  79. Koomen, J.M., Russell, W.K., Hettick, J.M., and Russell, D.H. (2000). Improvement of resolution, mass accuracy, and reproducibility in reflectedmode DE-MALDI-TOF analysis of DNA using cast evaporation-overlayer sample preparations. Anal Chem 72, 3860–3866.CrossRefGoogle Scholar
  80. Koster, C., Castoro, J.A., and Wilkins, C.L. (1992). High-resolution matrix-assisted laser desorption ionization of biomolecules by Fourier-transform mass-spectrometry. J Am Chem Soc 114, 7572–7574.CrossRefGoogle Scholar
  81. Kuhn-Holsken, E., Lenz, C., Sander, B., Luhrmann, R., and Urlaub, H. (2005). Complete MALDI-ToF MS analysis of cross-linked peptide-RNA oligonucleotides derived from nonlabeled UV-irradiated ribonucleoprotein particles. RNA 11, 1915–1930.CrossRefGoogle Scholar
  82. Langley, G.J., Herniman, J.M., Davies, N.L., and Brown, T. (1999). Simplified sample preparation for the analysis of oligonucleotides by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 13, 1717–1723.CrossRefGoogle Scholar
  83. Lavanant, H., and Lange, C. (2002). Sodium-tolerant matrix for matrix-assisted laser desorption/ionization mass spectrometry and post-source decay of oligonucleotides. Rapid Commun Mass Spectrom 16, 1928–1933.CrossRefGoogle Scholar
  84. Lecchi, P., Le, H., and Pannell, L. (1995). 6-Aza-a-thiothymine – a matrix for MALDI spectra of oligonucleotides. Nucleic Acids Res 23, 1276–1277.CrossRefGoogle Scholar
  85. Li, Y.C.L., Cheng, S.-W., and Chan, T.W.D. (1998). Evaluation of ammonium salts as co-matrices for matrix-assisted laser desorption-ionization mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 12, 993–998.CrossRefGoogle Scholar
  86. Li, Y.L., and Gross, M.L. (2004). Ionic-liquid matrices for quantitative analysis by MALDI-TOF mass spectrometry. J Am Soc Mass Spectrom 15, 1833–1837.CrossRefGoogle Scholar
  87. Lin, H., Hunter, J.M., and Becker, C.H. (1999). Laser desorption of DNA oligomers larger than one kilobase from cooled 4-nitrophenol. Rapid Commun Mass Spectrom 13, 2335–2340.CrossRefGoogle Scholar
  88. Lin, Y.-S., and Chen, Y.-C. (2002). Laser desorption/ionization time-of-flight mass spectrometry on sol-gel-derived 2,5-dihydroxybenzoic acid film. Anal Chem 74, 5793–5798.CrossRefGoogle Scholar
  89. Liu, C., Wu, Q., Harms, A., and Smith, R. (1996). On line microdialysis sample cleanup for electrospray-ionization mass-spectrometry of nucleic-acid samples. Anal Chem 68, 3295–3299.CrossRefGoogle Scholar
  90. Liu, Y.H., Bai, J., Liang, X., Lubman, D.M., and Venta, P.J. (1995a). Use of a nitrocellulose film substrate in matrix-assisted laser desorption/ionization mass spectrometry for DNA mapping and screening. Anal Chem 67, 3482–3490.CrossRefGoogle Scholar
  91. Liu, Y.-H., Bai, J., Zhu, Y., Liang, X., Siemieniak, D., Venta, P.J., and Lubman, D.M. (1995b). Rapid screening of genetic polymorphisms using buccal cell-DNA with detection by matrix-assisted laser-desorption ionization mass-spectrometry. Rapid Commun Mass Spectrom 9, 735–743.CrossRefGoogle Scholar
  92. Liu, Y., Sun, X., and Guo, B. (2003). Matrix-assisted laser desorption/ionization time-of-flight analysis of low-concentration oligonucleotides and mini-sequencing products. Rapid Commun Mass Spectrom 17, 2354–2360.CrossRefGoogle Scholar
  93. Mauger, F., Bauer, K., Calloway, C.D., Semhoun, J., Nishimoto, T., Myers, T.W., Gelfand, D.H., and Gut, I.G. (2007). DNA sequencing by MALDI-TOF MS using alkali cleavage of RNA/DNA chimeras. Nucleic Acids Res 35, e62/61–e62/11.Google Scholar
  94. Mauger, F., Jaunay, O., Chamblain, V., Reichert, F., Bauer, K., Gut, I.G., and Gelfand, D.H. (2006). SNP genotyping using alkali cleavage of RNA/DNA chimeras and MALDI time-of-flight mass spectrometry. Nucleic Acids Res 34, e18/11–e18/18.Google Scholar
  95. Mengel-Jorgensen, J., Sanchez, J.J., Borsting, C., Kirpekar, F., and Morling, N. (2004). MALDI-TOF mass spectrometric detection of multiplex single base extended primers. A study of 17 Y-chromosome single-nucleotide polymorphisms. Anal Chem 76, 6039–6045.CrossRefGoogle Scholar
  96. Mengel-Jorgensen, J., Sanchez, J.J., Borsting, C., Kirpekar, F., and Morling, N. (2005). Typing of multiple single-nucleotide polymorphisms using ribonuclease cleavage of DNA/RNA chimeric single-base extension primers and detection by MALDI-TOF mass spectrometry. Anal Chem 77, 5229–5235.CrossRefGoogle Scholar
  97. Misra, A., Hong, J.-Y., and Kim, S. (2007). Multiplex genotyping of cytochrome P450 single-nucleotide polymorphisms by use of MALDI-TOF mass spectrometry. Clin Chem 53, 933–939.CrossRefGoogle Scholar
  98. Misra, A., and Kim, S. (2009). Microbead device for isolating biotinylated oligonucleotides for use in mass spectrometric analysis. Anal Biochem 384, 96–100.CrossRefGoogle Scholar
  99. Mock, K.K., Sutton, C.W., and Cottrell, J.S. (1992). Sample immobilization protocols for matrix-assisted laser-desorption mass spectrometry. Rapid Commun Mass Spectrom 6, 233–238.CrossRefGoogle Scholar
  100. Molin, L., Cristoni, S., Crotti, S., Bernardi, L.R., Seraglia, R., and Traldi, P. (2008). Sieve-based device for MALDI sample preparation. I. Influence of sample deposition conditions in oligonucleotide analysis to achieve significant increases in both sensitivity and resolution. J Mass Spectrom 43, 1512–1520.CrossRefGoogle Scholar
  101. Muddiman, D.C., Cheng, X., Udseth, H.R., and Smith, R.D. (1996). Charge-state reduction with improved signal intensity of oligonucleotides in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom 7, 697–706.Google Scholar
  102. Nordhoff, E. (1996). Matrix-assisted laser desorption/ionization mass spectrometry as a new method for the characterization of nucleic acids. TrAC, Trends Anal Chem 15, 240–250.Google Scholar
  103. Nordhoff, E., Ingendoh, A., Cramer, R., Overberg, A., Stahl, B., Karas, M., Hillenkamp, F., and Crain, P. (1992). Matrix-assisted laser desorption ionization mass-spectrometry of nucleic-acids with wavelengths in the ultraviolet and infrared. Rapid Commun Mass Spectrom 6, 771–776.CrossRefGoogle Scholar
  104. Nordhoff, E., Lehrach, H., and Gobom, J. (2007). Exploring the limits and losses in MALDI sample preparation of attomole amounts of peptide mixtures. Int J Mass Spectrom 268, 139–146.CrossRefGoogle Scholar
  105. Nordhoff, E., Schurenberg, M., Thiele, G., Lubbert, C., Kloeppel, K.-D., Theiss, D., Lehrach, H., and Gobom, J. (2003). Sample preparation protocols for MALDI-MS of peptides and oligonucleotides using prestructured sample supports. Int J Mass Spectrom 226, 163–180.CrossRefGoogle Scholar
  106. Oberacher, H. (2008). On the use of different mass spectrometric techniques for characterization of sequence variability in genomic DNA. Anal Bioanal Chem 391, 135–149.CrossRefGoogle Scholar
  107. Ohara, K., Smietana, M., and Vasseur, J.-J. (2006). Characterization of specific noncovalent complexes between guanidinium derivatives and single-stranded DNA by MALDI. J Am Soc Mass Spectrom 17, 283–291.CrossRefGoogle Scholar
  108. Olejnik, J., Hahner, S., Ludemann, H., KrzymanskaOlejnik, E., Hillenkamp, F., and Rothschild, K. (1998). Photorelease and MALDI analysis of oligonucleotides bound to solid surfaces through photocleavable biotin. ASMS 97, Abstract, A296.Google Scholar
  109. Olejnik, J., Krzymanska-Olejnik, E., and Rothschild, K.J. (1996). Photocleavable biotin phosphoramidite for 5'-end-labeling, affinity purification and phosphorylation of synthetic oligonucleotides. Nucleic Acids Res 24, 361–366.CrossRefGoogle Scholar
  110. Olejnik, J., Ludemann, H.-C., Krzymanska-Olejnik, E., Berkenkamp, S., Hillenkamp, F., and Rothschild, K.J. (1999). Photocleavable peptide-DNA conjugates: Synthesis and applications to DNA analysis using MALDI-MS. Nucleic Acids Res 27, 4626–4631.CrossRefGoogle Scholar
  111. Owen, S.J., Meier, F.S., Brombacher, S., and Volmer, D.A. (2003). Increasing sensitivity and decreasing spot size using an inexpensive, removable hydrophobic coating for matrix-assisted laser desorption/ionisation plates. Rapid Commun Mass Spectrom 17, 2439–2449.CrossRefGoogle Scholar
  112. Perkel, J. (2008). SNP genotyping: Six technologies that keyed a revolution. Nat Methods 5, 447–453.CrossRefGoogle Scholar
  113. Perlman, D.H., Huang, H., Dauly, C., Costello, C.E., and McComb, M.E. (2007). Coupling of protein HPLC to MALDI-TOF MS using an on-target device for fraction collection, concentration, digestion, desalting, and matrix/analyte cocrystallization. Anal Chem 79, 2058–2066.CrossRefGoogle Scholar
  114. Pieles, U., Zurcher, W., Schar, M., and Moser, H.E. (1993). Matrix-assisted laser-desorption ionization time-of-flight mass-spectrometry – a powerful tool for the mass and sequence-analysis of natural and modified oligonucleotides. Nuceic Acids Res 21, 3191–3196.CrossRefGoogle Scholar
  115. Popovic, Z., Matkovic-Calogovic, D., Popovic, J., Vickovic, I., Vinkovic, M., and Vikic-Topic, D. (2007). Coordination modes of 3-hydroxypicolinic acid: Synthesis and structural characterization of polymeric mercury(II) complexes. Polyhedron 26, 1045–1052.CrossRefGoogle Scholar
  116. Pusch, W., and Kostrzewa, M. (2005). Application of MALDI-TOF mass spectrometry in screening and diagnostic research. Curr Pharm Des 11, 2577–2591.CrossRefGoogle Scholar
  117. Pusch, W., Wurmbach, J.-H., Thiele, H., and Kostrzewa, M. (2002). MALDI-TOF mass spectrometry-based SNP genotyping. Pharmacogenomics 3, 537–548.CrossRefGoogle Scholar
  118. Ragas, J.A., Simmons, T.A., and Limbach, P.A. (2000). A comparative study on methods of optimal sample preparation for the analysis of oligonucleotides by matrix-assisted laser desorption/ionization mass spectrometry. Analyst 125, 575–581.CrossRefGoogle Scholar
  119. Rechthaler, J., Rizzi, A., and Allmaier, G. (2007). A one-way hydrophobic surface foil as sample support for MALDI and off-line CZE/MALDI mass spectrometry: An alternative for low and high molecular mass compounds. Int J Mass Spectrom 268, 131–138.CrossRefGoogle Scholar
  120. Sauer, S. (2006). Analysis of DNA variation by MALDI mass spectrometry: Recent developments and perspectives. Recent Dev Nucleic Acids Res 2, 1–14.Google Scholar
  121. Sauer, S. (2007). The essence of DNA sample preparation for MALDI mass spectrometry. J Biochem Biophys Methods 70, 311–318.CrossRefGoogle Scholar
  122. Sauer, S. (2009). DNA polymorphisms: Tools for detection. Wiley Encyclopedia Chem Biol 1, 552–563.Google Scholar
  123. Sauer, S., Gelfand David, H., Boussicault, F., Bauer, K., Reichert, F., and Gut Ivo, G. (2002). Facile method for automated genotyping of single nucleotide polymorphisms by mass spectrometry. Nucleic Acids Res 30, e22.CrossRefGoogle Scholar
  124. Sauer, S., and Gut, I.G. (2003). Extension of the GOOD assay for genotyping single nucleotide polymorphisms by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 17, 1265–1272.CrossRefGoogle Scholar
  125. Sauer, S., Kepper, P., Smyra, A., Dahl, A., Ferse, F.-T., Lehrach, H., and Reinhardt, R. (2004). Automated solid-phase extraction for purification of single nucleotide polymorphism genotyping products prior to matrix-assisted laser desorption/ionisation time-of-flight mass spectrometric analysis. J Chromatogr A 1049, 9–16.Google Scholar
  126. Sauer, S., Lechner, D., Berlin, K., Lehrach, H., Escary, J.-L., Fox, N., and Gut, I.G. (2000a). A novel procedure for efficient genotyping of single nucleotide polymorphisms. Nucleic Acids Res 28, e13, ii–viii.Google Scholar
  127. Sauer, S., Lechner, D., Berlin, K., Plancon, C., Heuermann, A., Lehrach, H., and Gut, I.G. (2000b). Full flexibility genotyping of single nucleotide polymorphisms by the GOOD assay. Nuceic Acids Res 28, e100/101–e100/106.Google Scholar
  128. Sauer, S., Lehrach, H., and Reinhardt, R. (2003). MALDI mass spectrometry analysis of single nucleotide polymorphisms by photocleavage and charge-tagging. Nuceic Acids Res 31, e63/61–e63/10.Google Scholar
  129. Sauer, S., Reinhardt, R., Lehrach, H., and Gut, I.G. (2006). Single-nucleotide polymorphisms: Analysis by mass spectrometry. Nat Protoc 1, 1761–1771.CrossRefGoogle Scholar
  130. Schieltz, D., Chou, C., Luo, C., Thomas, R., and Williams, P. (1992). Mass-spectrometry of DNA mixtures by laser ablation from frozen aqueous-solution. Rapid Commun Mass Spectrom 6, 631–636.CrossRefGoogle Scholar
  131. Schiller, J., Suss, R., Fuchs, B., Muller, M., Zschornig, O., and Arnold, K. (2007). MALDI-TOF MS in lipidomics. Front Biosci 12, 2568–2579.CrossRefGoogle Scholar
  132. Schuerenberg, M., Luebbert, C., Eickhoff, H., Kalkum, M., Lehrach, H., and Nordhoff, E. (2000). Prestructured MALDI-MS Sample Supports. Anal Chem 72, 3436–3442.CrossRefGoogle Scholar
  133. Schulz, E., Karas, M., Rosu, F., and Gabelica, V. (2006). Influence of the matrix on analyte fragmentation in atmospheric pressure MALDI. J Am Soc Mass Spectrom 17, 1005–1013.CrossRefGoogle Scholar
  134. Shahgholi, M., Garcia, B.A., Chiu, N.H.L., Heaney, P.J., and Tang, K. (2001). Sugar additives for MALDI matrices improve signal allowing the smallest nucleotide change (A:T) in a DNA sequence to be resolved. Nucleic Acids Res 29, e91/91–e91/10.Google Scholar
  135. Shaler, T.A., Wickham, J.N., Sannes, K.A., Wu, K.J., and Becker, C.H. (1996). Effect of impurities on the matrix-assisted laser-desorption mass-spectra of single-stranded oligodeoxynucleotides. Anal Chem 68, 576–579.CrossRefGoogle Scholar
  136. Simmons, T.A., and Limbach, P.A. (1997). The use of a co-matrix for improved analysis of oligonucleotides by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 11, 567–572.CrossRefGoogle Scholar
  137. Simmons, T.A., and Limbach, P.A. (1998). Influence of co-matrix proton affinity on oligonucleotide ion stability inmatrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Am Soc Mass Spectrom 9, 668–675.CrossRefGoogle Scholar
  138. Smirnov, I.P., Hall, L.R., Ross, P.L., and Haff, L.A. (2001). Application of DNA-binding polymers for preparation of DNA for analysis by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 15, 1427–1432.CrossRefGoogle Scholar
  139. Song, F. (2003). Quinaldic acid as a new matrix for matrix-assisted laser desorption/ionization of nucleic acids. Rapid Commun Mass Spectrom 17, 1802–1807.CrossRefGoogle Scholar
  140. Stemmler, E.A., Buchanan, M.V., Hurst, G.B., and Hettich, R.L. (1994). The structural characterization of polycyclic aromatic hydrocarbon dihydrodiol epoxide DNA adducts using matrix-assisted laser desorption/ionization Fourier transform mass spectrometry. Anal Chem 66, 1274–1285.CrossRefGoogle Scholar
  141. Stemmler, E.A., Buchanan, M.V., Hurst, G.B., and Hettich, R.L. (1995). Analysis of modified oligonucleotides by matrix-assisted laser desorption/ionization Fourier-transform mass-spectrometry. Anal Chem 67, 2924–2930.CrossRefGoogle Scholar
  142. Storm, N., Darnhofer-Patel, B., van den Boom, D., and Rodi, C.P. (2003). MALDI-TOF mass spectrometry-based SNP genotyping. Methods Mol Biol 212, 241–262.Google Scholar
  143. Strupat, K., Karas, M., and Hillenkamp, F. (1991). 2,5-Dihydroxybenzoic acid: A new matrix for laser desorption – ionization mass spectrometry. Int J Mass Spectrom Ion Proc 111, 89–102.CrossRefGoogle Scholar
  144. Sun, C., Zheng, X., and Jin, L. (2003). Supramolecular formation via hydrogen bonding in the Zn(II), Mn(II) and Cu(II) complexes with 3-hydroxypicolinic acid. J Mol Struct 646, 201–210.CrossRefGoogle Scholar
  145. Tang, K. (2007). Chip-based genotyping by mass spectrometry. Integr Biochips DNA Anal, 117–127.Google Scholar
  146. Tang, K., Fu, D., Julien, D., Braun, A., Cantor, C., and Koster, H. (1999). Chip-based genotyping by mass spectrometry. Proc Natl Acad Sci U S A 96, 10016–10020.CrossRefGoogle Scholar
  147. Tang, K., Taranenko, N.I., Allman, S.L., Chang, L.Y., and Chen, C.H. (1994a). Detection of 500-nucleotide DNA by laser-desorption mass-spectrometry. Rapid Commun Mass Spectrom 8, 727–730.CrossRefGoogle Scholar
  148. Tang, K., Taranenko, N.I., Allman, S.L., Chen, C.H., Chang, L.Y., and Jacobson, K.B. (1994b). Picolinic-acid as a matrix for laser mass-spectrometry of nucleic-acids and proteins. Rapid Commun Mass Spectrom 8, 673–677.CrossRefGoogle Scholar
  149. Taranenko, N.I., Tang, K., Allman, S.L., Ch’ang, L.Y., and Chen, C.H. (1994). 3-Aminopicolinic aid as a matrix for laser-desorption mass-spectrometry of biopolymers. Rapid Commun Mass Spectrom 8, 1001–1006.CrossRefGoogle Scholar
  150. Tarzi, O.I., Nonami, H., and Erra-Balsells, R. (2009). The effect of temperature on the stability of compounds used as UV-MALDI-MS matrix: 2,5-dihydroxybenzoic acid, 2,4,6-trihydroxyacetophenone, alpha -cyano-4-hydroxycinnamic acid, 3,5-dimethoxy-4-hydroxycinnamic acid, nor-harmane and harmane. J Mass Spectrom 44, 260–277.CrossRefGoogle Scholar
  151. Terrier, P., Tortajada, J., Zin, G., and Buchmann, W. (2007). Noncovalent Complexes Between DNA and Basic Polypeptides or Polyamines by MALDI-TOF. J Am Soc Mass Spectrom 18, 1977–1989.CrossRefGoogle Scholar
  152. Tholey, A. (2009). Ionic liquids and mass spectrometry. In Ionic Liquids in Chemical Analysis, M. Koel, ed. (New York, NY, Taylor & Francis-CRC), pp. 371–395.Google Scholar
  153. Thongnoppakhun, W., Jiemsup, S., Yongkiettrakul, S., Kanjanakorn, C., Limwongse, C., Wilairat, P., Vanasant, A., Rungroj, N., and Yenchitsomanus, P.-t. (2009). Simple, efficient, and cost-effective multiplex genotyping with matrix assisted laser desorption/ionization time-of-flight mass spectrometry of hemoglobin beta gene mutations. J Mol Diagn 11, 334–346.CrossRefGoogle Scholar
  154. Tost, J. (2008). Methods for the genome-wide and gene-specific analysis of DNA methylation levels and patterns. In Epigenetics, J. Tost, ed. (Norfolk, Caister Academic), pp. 63–103.Google Scholar
  155. Tost, J., and Gut, I.G. (2002). Genotyping single nucleotide polymorphisms by mass spectrometry. Mass Spectrom Rev 21, 388–418.CrossRefGoogle Scholar
  156. Tost, J., and Gut, I.G. (2004). Genotyping single nucleotide polymorphisms by MALDI mass spectrometry. Adv Mass Spectrom 16, 123–143.Google Scholar
  157. Tost, J., and Gut, I.G. (2005). Genotyping single nucleotide polymorphisms by MALDI mass spectrometry in clinical applications. Clin Biochem 38, 335–350.CrossRefGoogle Scholar
  158. Tost, J., and Gut, I.G. (2006). DNA analysis by mass spectrometry – past, present and future. J Mass Spectrom 41, 981–995.CrossRefGoogle Scholar
  159. Tost, J., Kucharzak, R., Lechner, D., and Gut, I.G. (2004). The GOOD assay: a purification-free assay for genotyping by MALDI mass spectrometry. In PCR Technology: Current Innovations, T. Weissensteiner, H.G. Griffin, and A. Griffin, eds. (New York, NY, CRC Press), pp. 121–130.Google Scholar
  160. Tu, T., and Gross, M.L. (2009). Miniaturizing sample spots for matrix-assisted laser desorption/ionization mass spectrometry. TrAC, Trends Anal Chem 28, 833–841.CrossRefGoogle Scholar
  161. Ustinov, A.V., Shmanai, V.V., Patel, K., Stepanova, I.A., Prokhorenko, I.A., Astakhova, I.V., Malakhov, A.D., Skorobogatyi, M.V., Bernad, P.L., Khan, S., et al. (2008). Reactive trityl derivatives: Stabilised carbocation mass-tags for life sciences applications. Org Biomol Chem 6, 4593–4608.CrossRefGoogle Scholar
  162. van den Boom, D., and Berkenkamp, S. (2007). MALDI-MS of Nucleic Acids and Practical Implementations in Genomics and Genetics. In MALDI MS: A Practical Guide to Instrumentation, Methods and Applications, F. Hillenkamp, and J. Peter-Katalinic, eds. (Weinheim, Wiley-VCH), pp. 131–179.Google Scholar
  163. van den Boom, D., and Hillenkamp, F. (2005). Analysis of nucleic acids by mass spectrometry. In Analytical Techniques in DNA Sequencing, B.K. Nunnally, ed. (New York, NY, Taylor & Francis-CRC), pp. 85–105.Google Scholar
  164. Vandell, V.E., and Limbach, P.A. (1999). Polyamine co-matrices for matrix-assisted laser desorption/ionization mass spectrometry of oligonucleotides. Rapid Commun Mass Spectrom 13, 2014–2021.CrossRefGoogle Scholar
  165. Vorm, O., Roepstorff, P., and Mann, M. (1994). Improved resolution and very high sensitivity in MALDI TOF of matrix surfaces made by fast evaporation. Anal Chem 66, 3281–3287.CrossRefGoogle Scholar
  166. Wachter, A., Mengel-From, J., Bшrsting, C., and Morling, N. (2008). A 50 SNP-multiplex mass spectrometry assay for human identification. Forensic Sci Int Genet Suppl Ser 1, 487–489.CrossRefGoogle Scholar
  167. Wang, J., Chen, R., Ma, M., and Li, L. (2008). MALDI MS sample preparation by using paraffin wax film: Systematic study and application for peptide analysis. Anal Chem 80, 491–500.CrossRefGoogle Scholar
  168. Wei, H., Nolkrantz, K., Powell, D.H., Woods, J.H., Ko, M.C., and Kennedy, R.T. (2004). Electrospray sample deposition for matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure MALDI mass spectrometry with attomole detection limits. Rapid Commun Mass Spectrom 18, 1193–1200.CrossRefGoogle Scholar
  169. Wei, Y., Mei, Y., Xu, Z., Wang, C., Guo, Y., Du, Y., and Zhang, W. (2009). A novel MALDI matrix for analyzing peptides and proteins: Paraffin wax immobilized matrix. Chinese J Chem 27, 105–110.CrossRefGoogle Scholar
  170. Weng, M.-F., and Chen, Y.-C. (2004). Using sol-gel/crown ether hybrid materials as desalting substrates for matrix-assisted laser desorption/ionization analysis of oligonucleotides. Rapid Commun Mass Spectrom 18, 1421–1428.CrossRefGoogle Scholar
  171. Wenzel, T., Elssner, T., Fahr, K., Bimmler, J., Richter, S., Thomas, I., and Kostrzewa, M. (2003). Genosnip: SNP genotyping by MALDI-TOF MS using photocleavable oligonucleotides. Nucleosides Nucleotides Nucleic Acids 22, 1579–1581.CrossRefGoogle Scholar
  172. Williams, T., and Fenselau, C. (1998). p-nitroaniline/glycerol: A binary liquid matrix for matrix-assisted laser desorption/ionization analysis. Eur Mass Spectrom 4, 379–383.CrossRefGoogle Scholar
  173. Wu, K.J., Shaler, T.A., and Becker, C.H. (1994). Time-of-flight mass-spectrometry of underivatized single-stranded-DNA oligomers by matrix-assisted laser-desorption. Anal Chem 66, 1637–1645.CrossRefGoogle Scholar
  174. Wu, K.J., Steding, A., and Becker, C.H. (1993). Matrix-assisted laser desorption time-of-flight mass-spectrometry of oligonucleotides using 3-hydroxypicolinic acid as an ultraviolet-sensitive matrix. Rapid Commun Mass Spectrom 7, 142–146.CrossRefGoogle Scholar
  175. Xu, S., Ye, M., Xu, D., Li, X., Pan, C., and Zou, H. (2006). Matrix with high salt tolerance for the analysis of peptide and protein samples by desorption/ionization time-of-flight mass spectrometry. Anal Chem 78, 2593–2599.CrossRefGoogle Scholar
  176. Xu, Y., Bruening, M.L., and Watson, J.T. (2003). Non-specific, on-probe cleanup methods for MALDI-MS samples. Mass Spectrom Rev 22, 429–440.CrossRefGoogle Scholar
  177. Yuan, X., and Desiderio, D.M. (2002). Protein identification with Teflon as matrix-assisted laser desorption/ionization sample support. J Mass Spectrom 37, 512–524.CrossRefGoogle Scholar
  178. Zagorevskii, D.V., Aldersley, M.F., and Ferris, J.P. (2006). MALDI analysis of oligonucleotides directly from montmorillonite. J Am Soc Mass Spectrom 17, 1265–1270.CrossRefGoogle Scholar
  179. Zehl, M., and Allmaier, G. (2003). Investigation of sample preparation and instrumental parameters in the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of noncovalent peptide/peptide complexes. Rapid Commun Mass Spectrom 17, 1931–1940.CrossRefGoogle Scholar
  180. Zhang, L., and Gross, M. (2000). Matrix-assisted laser desorption/ionization mass spectrometry methods for oligodeoxynucleotides: Improvements in matrix, detection limits, quantification, and sequencing. J Am Soc Mass Spectrom 11, 854–865.CrossRefGoogle Scholar
  181. Zhang, L.-K., and Gross, M.L. (2002). Location of abasic sites in oligodeoxynucleotides by tandem mass spectrometry and by a chemical cleavage initiated by an unusual reaction of the ODN with MALDI matrix. J Am Soc Mass Spectrom 13, 1418–1426.CrossRefGoogle Scholar
  182. Zhang, Z., Zhou, L., Zhao, S., Deng, H., and Deng, Q. (2006). 3-Hydroxycoumarin as a new matrix for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of DNA. J Am Soc Mass Spectrom 17, 1665–1668.CrossRefGoogle Scholar
  183. Zhou, L., Deng, H., Deng, Q., and Zhao, S. (2004). A mixed matrix of 3-hydroxypicolinic acid and pyrazinecarboxylic acid for matrix-assisted laser desorption/ionization time-of-flight mass spectrometry of oligodeoxynucleotides. Rapid Commun Mass Spectrom 18, 787–794.CrossRefGoogle Scholar
  184. Zhu, Y.F., Chung, C.N., Taranenko, N.I., Allman, S.L., Martin, S.A., Haff, L., and Chen, C.H. (1996a). The study of 2,3,4-trihydroxyacetophenone and 2,4,6-trihydroxyacetophenoneas matrices for DNA detection in matrix-assisted laser-desorption ionization time-of-flight mass-spectrometry. Rapid Commun Mass Spectrom 10, 383–388.CrossRefGoogle Scholar
  185. Zhu, Y.F., Taranenko, N.I., Allman, S.L., Martin, S.A., Haff, L., and Chen, C.H. (1996b). The effect of ammonium salt and matrix in the detection of DNA by matrix-assisted laser desorption/ionization time-of-flight mass-spectrometry. Rapid Commun Mass Spectrom 10, 1591–1596.CrossRefGoogle Scholar
  186. Zhu, Y.F., Taranenko, N.I., Allman, S.L., Taranenko, N.V., Martin, S.A., Haff, L.A., and Chen, C.H. (1997). Oligonucleotide sequencing by fragmentation in matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 11, 897–903.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Institute of Physical-Chemical MedicineMoscowRussian Federation
  2. 2.A.N. Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussian Federation

Personalised recommendations