MALDI Imaging Mass Spectrometry for Investigating the Brain

  • Isabelle Fournier
  • Céline Mériaux
  • Maxence Wisztorski
  • Randeep Rakwal
  • Michel SalzetEmail author


Dynamic properties of the nervous system can now be investigated through mass spectrometry technologies. Generally, the application of these powerful techniques requires the destruction of the specimen under study/examination, but recent technological advances have made it possible to directly analyze tissue sections and perform 2-D or 3-D molecular ions mapping. We review the increasing application of matrix-assisted laser desorption/ionization (MALDI) imaging to the analysis of molecular distributions of proteins and peptides in nervous tissues of both invertebrates and vertebrates, focusing in particular on recent studies of neurodegenerative diseases, and early efforts to implement assays of neuronal development.


Invertebrates MALDI imaging Neurodegenerative diseases Peptides Vertebrates 



Supported by grants from Centre National de la Recherche Scientifique (CNRS), Ministère de L’Education Nationale, de L’Enseignement Supérieur et de la Recherche, Agence Nationale de la Recherche (ANR to IF) and Genoscope (to MS).


  1. Altelaar, A.F., Luxembourg, S.L., McDonnell, L.A., Piersma, S.R., and Heeren, R.M. (2007). Imaging mass spectrometry at cellular length scales. Nat Protoc 2, 1185–1196.CrossRefGoogle Scholar
  2. Altelaar, A.F., van Minnen, J., Jimenez, C.R., Heeren, R.M., and Piersma, S.R. (2005). Direct molecular imaging of Lymnaea stagnalis nervous tissue at subcellular spatial resolution by mass spectrometry. Anal Chem 77, 735–741.CrossRefGoogle Scholar
  3. Amare, A., and Sweedler, J.V. (2007). Neuropeptide precursors in Tribolium castaneum. Peptides 28, 1282–1291.CrossRefGoogle Scholar
  4. Arafah, K., Wisztorski, M., Croix, D., Fournier, I., and Salzet, M. (2009). Dye Assisted Laser Desorption Ionisation (DALDI): Introduction to a New Field of Investigation in Lipid Mass Spectrometry Imaging. 18th International Mass Spectrometry Conference (Bremen), Poster PMM-180.Google Scholar
  5. Barzilai, A., Zilkha-Falb, R., Daily, D., Stern, N., Offen, D., Ziv, I., Melamed, E., and Shirvan, A. (2000). The molecular mechanism of dopamine-induced apoptosis: Identification and characterization of genes that mediate dopamine toxicity. J Neural Transm Suppl 60, 59–76.Google Scholar
  6. Beal, M.F., and Hantraye, P. (2001). Novel therapies in the search for a cure for Huntington’s disease. Proc Natl Acad Sci USA 98, 3–4.CrossRefGoogle Scholar
  7. Beckstead, J.H. (1994). A simple technique for preservation of fixation-sensitive antigens in paraffin-embedded tissues. J Histochem Cytochem 42, 1127–1134.CrossRefGoogle Scholar
  8. Brock, R., and Jovin, T.M. (2003). Quantitative image analysis of cellular protein translocation induced by magnetic microspheres: Application to the EGF receptor. Cytometry A 52, 1–11.CrossRefGoogle Scholar
  9. Bruand, J., Sistla, S., Mériaux, C., Dorrestein, P.C., Gaasterland, T., Ghassemian,M., Wisztorski, M., Fournier, I., Salzet, M., Macagno, E., and Bafna, V. (2011). Automated querying and identification of novel peptides using MALDI mass spectrometric imaging. J Proteome Res 10(4), 1915–1928. Epub 2011 Mar 15. PubMed PMID:21332220.Google Scholar
  10. Caprioli, R.M., Farmer, T.B., and Gile, J. (1997). Molecular imaging of biological samples: Localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69, 4751–4760.CrossRefGoogle Scholar
  11. Chaurand, P., Stoeckli, M., and Caprioli, R.M. (1999). Direct profiling of proteins in biological tissue sections by MALDI mass spectrometry. Anal Chem 71, 5263–5270.CrossRefGoogle Scholar
  12. Chaurand, P., Schwartz, S.A., Billheimer, D., Xu, B.J., Crecelius, A., and Caprioli, R.M. (2004). Integrating histology and imaging mass spectrometry. Anal Chem 76, 1145–1155.CrossRefGoogle Scholar
  13. Chaurand, P., Schriver, K.E., and Caprioli, R.M. (2007). Instrument design and characterization for high resolution MALDI-MS imaging of tissue sections. J Mass Spectrom 42, 476–489.CrossRefGoogle Scholar
  14. Coons, A.H., Creech, H.J., and Jones, R.N. (1941). Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol 47, 200–202.Google Scholar
  15. Curran, R.C., and Gregory, J. (1980). Effects of fixation and processing on immunohistochemical demonstration of immunoglobulin in paraffin sections of tonsil and bone marrow. J Clin Pathol 33, 1047–1057.CrossRefGoogle Scholar
  16. Dani, F.R., Francese, S., Mastrobuoni, G., Felicioli, A., Caputo, B., Simard, F., Pieraccini, G., Moneti, G., Coluzzi, M., della Torre, A., and Turillazzi, S. (2008). Exploring proteins in Anopheles gambiae male and female antennae through MALDI mass spectrometry profiling. PLoS One 3, e2822.CrossRefGoogle Scholar
  17. DeKeyser, S.S., Kutz-Naber, K.K., Schmidt, J.J., Barrett-Wilt, G.A., and Li, L. (2007). Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues. J Proteome Res 6, 1782–1791.CrossRefGoogle Scholar
  18. De Lange, R.P., and van Minnen, J. (1998). Localization of the neuropeptide APGWamide in gastropod molluscs by in situ hybridization and immunocytochemistry. Gen Comp Endocrinol 109, 166–174.CrossRefGoogle Scholar
  19. Dreisewerd, K. (2003). The desorption process in MALDI. Chem Rev 103, 395–426.CrossRefGoogle Scholar
  20. Dreisewerd, K., Kingstonb, R., Geraertsa, W.P.M., and Lia, K.W. (1997). Direct mass spectrometric peptide profiling and sequencing of nervous tissues to identify peptides involved in male copulatory behavior in Lymnaea stagnalis. Int J Mass Spectrom 169, 291–299.CrossRefGoogle Scholar
  21. Dreisewerd, K., Schurenberg, M., Karas, M., and Hillenkamp, F. (1995). Influence of the laser intensity and spot size on the desorption of molecules and ions in matrix-assisted laser desorption/ionization with a uniform beam profile. Int J Mass Spectrom Ion Processes 141, 127–148.CrossRefGoogle Scholar
  22. Fournier, I., Day, R., and Salzet, M. (2003). Direct analysis of neuropeptides by in situ MALDI-TOF mass spectrometry in the rat brain. Neuro Endocrinol Lett 24, 9–14.Google Scholar
  23. Francese, S., Lambardi, D., Mastrobuoni, G., la Marca, G., Moneti, G., and Turillazzi, S. (2009). Detection of honeybee venom in envenomed tissues by direct MALDI MSI. J Am Soc Mass Spectrom 20, 112–123.CrossRefGoogle Scholar
  24. Franck, J., Longuespee, R., Wisztorski, M., Van Remoortere, A., Van Zeijl, R., Deelder, A., Mcdonnell, L., Salzet, M., and Fournier, I. (2010). MALDI mass spectrometry imaging of proteins exceeding 30 000 Da. Med Sci Monit 16, BR293–299.Google Scholar
  25. Furuya, T., Ikemoto, K., Kawauchi, S., Oga, A., Tsunoda, S., Hirano, T., and Sasaki, K. (2004). A novel technology allowing immunohistochemical staining of a tissue section with 50 different antibodies in a single experiment. J Histochem Cytochem 52, 205–210.CrossRefGoogle Scholar
  26. Gabe, M. (1964). Histochemistry of secretion products. Biol Med (Paris) 53, 641–674.Google Scholar
  27. Gabe, M. (1969). Histological data on the endocrine pancreas of Protopterus annectens Owen. Arch Anat Microsc Morphol Exp 58, 21–40.Google Scholar
  28. Gabe, M. (1972). Relation between the abundance of glycol radicals and some tinctorial affinities of the product of hypothalamic neurosecretion. C R Acad Sci Hebd Seances Acad Sci D 274, 549–551.Google Scholar
  29. Gabe, M., and Saint Girons, H. (1967). Histological data on the tegument and cephalic epidermoid glands of Lepidosauria. Acta Anat (Basel) 67, 571–594.CrossRefGoogle Scholar
  30. Hofer, S., Dircksen, H., Tollback, P., and Homberg, U. (2005). Novel insect orcokinins: Characterization and neuronal distribution in the brains of selected dicondylian insects. J Comp Neurol 490, 57–71.CrossRefGoogle Scholar
  31. Holle, A., Haase, A., Kayser, M., and Hohndorf, J. (2006). Optimizing UV laser focus profiles for improved MALDI performance. J Mass Spectrom 41, 705–716.CrossRefGoogle Scholar
  32. Hsieh, Y., Casale, R., Fukuda, E., Chen, J., Knemeyer, I., Wingate, J., Morrison, R., and Korfmacher, W. (2006). Matrix-assisted laser desorption/ionization imaging mass spectrometry for direct measurement of clozapine in rat brain tissue. Rapid Commun Mass Spectrom 20, 965–972.CrossRefGoogle Scholar
  33. Hummon, A.B., Amare, A., and Sweedler, J.V. (2006a). Discovering new invertebrate neuropeptides using mass spectrometry. Mass Spectrom Rev 25, 77–98.CrossRefGoogle Scholar
  34. Hummon, A.B., Richmond, T.A., Verleyen, P., Baggerman, G., Huybrechts, J., Ewing, M.A., Vierstraete, E., Rodriguez-Zas, S.L., Schoofs, L., Robinson, G.E., and Sweedler, J.V. (2006b). From the genome to the proteome: Uncovering peptides in the Apis brain. Science 314, 647–649.CrossRefGoogle Scholar
  35. Ino, H. (2004). Application of antigen retrieval by heating for double-label fluorescent immunohistochemistry with identical species-derived primary antibodies. J Histochem Cytochem 52, 1209–1217.CrossRefGoogle Scholar
  36. Jardin-Mathe, O., Bonnel, D., Franck, J., Wisztorski, M., Macagno, E., Fournier, I., and Salzet, M. (2008). MITICS (MALDI imaging team imaging computing system): A new open source mass spectrometry imaging software. J Proteomics 71, 332–345.CrossRefGoogle Scholar
  37. Jimenez, C.R., and Burlingame, A.L. (1998). Ultramicroanalysis of peptide profiles in biological samples using MALDI mass spectrometry. Exp Nephrol 6, 421–428.CrossRefGoogle Scholar
  38. Jimenez, C.R., Li, K.W., Dreisewerd, K., Spijker, S., Kingston, R., Bateman, R.H., Burlingame, A.L., Smit, A.B., van Minnen, J., and Geraerts, W.P. (1998). Direct mass spectrometric peptide profiling and sequencing of single neurons reveals differential peptide patterns in a small neuronal network. Biochemistry 37, 2070–2076.CrossRefGoogle Scholar
  39. Jimenez, C.R., van Veelen, P.A., Li, K.W., Wildering, W.C., Geraerts, W.P., Tjaden, U.R., and van der Greef, J. (1994). Neuropeptide expression and processing as revealed by direct matrix-assisted laser desorption ionization mass spectrometry of single neurons. J Neurochem 62, 404–407.CrossRefGoogle Scholar
  40. Jovin, T.M. (2003). Quantum dots finally come of age. Nat Biotechnol 21, 32–33.CrossRefGoogle Scholar
  41. Jurchen, J.C., Rubakhin, S.S., and Sweedler, J.V. (2005). MALDI-MS imaging of features smaller than the size of the laser beam. J Am Soc Mass Spectrom 16, 1654–1659.CrossRefGoogle Scholar
  42. Laboux, O., Dion, N., Arana-Chavez, V., Ste-Marie, L.G., and Nanci, A. (2004). Microwave irradiation of ethanol-fixed bone improves preservation, reduces processing time, and allows both light and electron microscopy on the same sample. J Histochem Cytochem 52, 1267–1275.Google Scholar
  43. Langstrom, B., Andren, P.E., Lindhe, O., Svedberg, M., and Hall, H. (2007). In vitro imaging techniques in neurodegenerative diseases. Mol Imaging Biol 9, 161–175.CrossRefGoogle Scholar
  44. Lemaire, R., Wisztorski, M., Desmons, A., Tabet, J.C., Day, R., Salzet, M., and Fournier, I. (2006a). MALDI-MS direct tissue analysis of proteins: Improving signal sensitivity using organic treatments. Anal Chem 78, 7145–153.CrossRefGoogle Scholar
  45. Lemaire, R., Desmons, A., Ducroy, P., Tabet, J.C., Salzet, M., and Fournier, I. (2006b). Direct Analysis and MALDI Imaging on Formalin Fixed Paraffin Embedded Tissue (FFPE): Application to Parkinson Disease. Proceedings of 54rd ASMS Conference on Mass Spectrometry (Seattle, WA).Google Scholar
  46. Lemaire, R., Tabet, J.C., Ducoroy, P., Hendra, J.B., Salzet, M., and Fournier, I. (2006c). Solid ionic matrixes for direct tissue analysis and MALDI imaging. Anal Chem 78, 809–819.CrossRefGoogle Scholar
  47. Li, L., Garden, R.W., and Sweedler, J.V. (2000a). Single-cell MALDI: A new tool for direct peptide profiling. Trends Biotechnol 18, 151–160.CrossRefGoogle Scholar
  48. Li, K.W., Hoek, R.M., Smith, F., Jimenez, C.R., van der Schors, R.C., van Veelen, P.A., Chen, S., van der Greef, J., Parish, D.C., Benjamin, P.R., and Geraerts, W.P.M. (1994a). Direct peptide profiling by mass spectrometry of single identified neurons reveals complex neuropeptide-processing pattern. J Biol Chem 269, 30288–30292.Google Scholar
  49. Li, K.W., Jimenez, C.R., Van Veelen, P.A., and Geraerts, W.P. (1994c). Processing and targeting of a molluscan egg-laying peptide prohormone as revealed by mass spectrometric peptide fingerprinting and peptide sequencing. Endocrinology 134, 1812–1819.CrossRefGoogle Scholar
  50. Li, L., Romanova, E.V., Rubakhin, S.S., Alexeeva, V., Weiss, K.R., Vilim, F.S., and Sweedler, J.V. (2000b). Peptide profiling of cells with multiple gene products: Combining immunochemistry and MALDI mass spectrometry with on-plate microextraction. Anal Chem 72, 3867–3874.CrossRefGoogle Scholar
  51. Li, K.W., van Golen, F.A., van Minnen, J., van Veelen, P.A., van der Greef, J., and Geraerts, W.P. (1994b). Structural identification, neuronal synthesis, and role in male copulation of myomodulin-A of Lymnaea: A study involving direct peptide profiling of nervous tissue by mass spectrometry. Brain Res Mol Brain Res 25, 355–358.CrossRefGoogle Scholar
  52. McDonnell, L.A., Piersma, S.R., Maarten Altelaar, A.F., Mize, T.H., Luxembourg, S.L., Verhaert, P.D., van Minnen, J., and Heeren, R.M. (2005). Subcellular imaging mass spectrometry of brain tissue. J Mass Spectrom 40, 160–168.CrossRefGoogle Scholar
  53. Meriaux, C., Franck, J., Wisztorski, M., Salzet, M., and Fournier, I. (2010). Liquid ionic matrixes for MALDI mass spectrometry imaging of lipids. J Proteomics 73(6), 1204–1218. Epub 2010 Feb 24. PubMed PMID:20188221.CrossRefGoogle Scholar
  54. O’Brien, E., Dedova, I., Duffy, L., Cordwell, S., Karl, T., and Matsumoto, I. (2006). Effects of chronic risperidone treatment on the striatal protein profiles in rats. Brain Res 1113, 24–32.CrossRefGoogle Scholar
  55. Petit, J., and Sahli, F. (1975). Cytochemical and electron-microscopic study of the paraoesophageal bodies and related nerves in Schizophyllum sabulosum (L.), Diplopoda Julidae. Cell Tissue Res 162, 367–375.CrossRefGoogle Scholar
  56. Pierson, J., Norris, J.L., Aerni, H.R., Svenningsson, P., Caprioli, R.M., and Andren, P.E. (2004). Molecular profiling of experimental Parkinson’s disease: Direct analysis of peptides and proteins on brain tissue sections by MALDI mass spectrometry. J Proteome Res 3, 289–295.CrossRefGoogle Scholar
  57. Pierson, J., Svenningsson, P., Caprioli, R.M., and Andren, P.E. (2005). Increased levels of ubiquitin in the 6-OHDA-lesioned striatum of rats. J Proteome Res 4, 223–226.CrossRefGoogle Scholar
  58. Salzet, M., Bulet, P., Wattez, C., Verger-Bocquet, M., and Malecha, J. (1995). Structural characterization of a diuretic peptide from the central nervous system of the leech Erpobdella octoculata. Angiotensin II amide. J Biol Chem 270, 1575–1582.CrossRefGoogle Scholar
  59. Schikorski, D., Cuvillier-Hot, V., Leippe, M., Boidin-Wichlacz, C., Slomianny, C., Macagno, E., Salzet, M., and Tasiemski, A. (2008). Microbial challenge promotes the regenerative process of the injured central nervous system of the medicinal leech by inducing the synthesis of antimicrobial peptides in neurons and microglia. J Immunol 181, 1083–1095.Google Scholar
  60. Spengler, B. (1994). Ion Imaging and Confocal Microscopy with a New Scanning UV- Laser Microprobe. 42nd Annual Conference on Mass Spectrometry and Allied Topics (Chicago, IL).Google Scholar
  61. Spengler, B., and Hubert, M. (2002). Scanning microprobe matrix-assisted laser desorption ionization (SMALDI) mass spectrometry: Instrumentation for sub-micrometer resolved LDI and MALDI surface analysis. J Am Soc Mass Spectrom 13, 735–748.CrossRefGoogle Scholar
  62. Stauber, J., Lemaire, R., Franck, J., Bonnel, D., Croix, D., Day, R., Wisztorski, M., Fournier, I., and Salzet, M. (2008). MALDI imaging of formalin-fixed paraffin-embedded tissues: Application to model animals of Parkinson disease for biomarker hunting. J Proteome Res 7, 969–978.CrossRefGoogle Scholar
  63. Steinbach, P. (1977). Granular cells in the connective tissue of Helix pomatia L. (gastropoda, pulmonata). Histochemistry, ultrastructure, and results of polyacrylamide electrophoretic investigations. Cell Tissue Res 181, 91–103.CrossRefGoogle Scholar
  64. Stoeckli, M., Farmer, T.B., and Caprioli, R.M. (1999). Automated mass spectrometry imaging with a matrix-assisted laser desorption ionization time-of-flight instrument. J Am Soc Mass Spectrom 10, 67–71.CrossRefGoogle Scholar
  65. Stoeckli, M., Chaurand, P., Hallahan, D.E., and Caprioli, R.M. (2001). Imaging mass spectrometry: A new technology for the analysis of protein expression in mammalian tissues. Nat Med 7, 493–496.CrossRefGoogle Scholar
  66. Stoeckli, M., Knochenmuss, R., McCombie, G., Mueller, D., Rohner, T., Staab, D., and Wiederhold, K.H. (2006). MALDI MS imaging of amyloid. Methods Enzymol 412, 94–106.CrossRefGoogle Scholar
  67. Stoeckli, M., Staab, D., Staufenbiel, M., Wiederhold, K.H., and Signor, L. (2002). Molecular imaging of amyloid beta peptides in mouse brain sections using mass spectrometry. Anal Biochem 311, 33–39.CrossRefGoogle Scholar
  68. Sugiura, Y., Shimma, S., Konishi, Y., Yamada, M.K., and Setou, M. (2008). Imaging mass spectrometry technology and application on ganglioside study; visualization of age-dependent accumulation of C20-ganglioside molecular species in the mouse hippocampus. PLoS One 3, e3232.CrossRefGoogle Scholar
  69. Wisztorski, M., Brunet, L., Dreiserwer, K., Hillenkamp, F., Berkenkamp, S., Salzet, M., and Fournier, I. (2006). Effect of Metals Coating for UV MALDI-a-TOF Mass Spectrometry Imaging (MALDI MSI) and Direct Tissue Analysis in UV/IR MALDI-o-TOF Mass Spectrometry. Proceedings of 54rd ASMS conference on Mass Spectrometry (Seattle, WA).Google Scholar
  70. Wisztorski, M., Croix, D., Macagno, E., Fournier, I., and Salzet, M. (2008). Molecular MALDI imaging: An emerging technology for neuroscience studies. Dev Neurobiol 68, 845–858.CrossRefGoogle Scholar
  71. Wisztorski, M., Thomy, V. Verplanck, N., Stauber, J., Camart, J.C., Salzet, M., and Fournier, I. (2007). Use of Masks in MALDI-MSI: An Easy Tool for Increasing Spatial Resolution of Images by Decreasing Irradiated Area. Proceedings of 55rd ASMS conference on Mass Spectrometry (Indianapolis, IN).Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Isabelle Fournier
    • 1
  • Céline Mériaux
    • 2
  • Maxence Wisztorski
    • 1
  • Randeep Rakwal
    • 3
    • 4
    • 5
  • Michel Salzet
    • 1
    Email author
  1. 1.MALDI Imaging Team, Laboratoire de Spectrométrie de Masse Biologique Fondamentale et Appliquée (FABMS), EA 4550Université Nord de FranceVilleneuve d’Ascq CedexFrance
  2. 2.CNRS, MALDI Imaging Team, Laboratoire de Neuroimmunologie et Neurochimie EvolutivesUniversité Nord de FranceVilleneuve d’Ascq CedexFrance
  3. 3.Laboratory of Neuroscience, Department of BiologyToho UniversityFunabashi, ChibaJapan
  4. 4.Research Laboratory for Biotechnology and Biochemistry (RLABB)KathmanduNepal
  5. 5.School of Medicine, Showa UniversityTokyoJapan

Personalised recommendations