Advertisement

MALDI MS-Based Biomarker Profiling of Blood Samples

  • Ali Tiss
  • Celia J. Smith
  • Rainer CramerEmail author
Chapter

Abstract

Differential MS analysis of blood samples from diseased and control subjects is increasingly being employed in the hunt for biomarkers that can detect disease at an early stage. For diagnostic tests, in particular for population screening, robust protocols are required that can offer high-throughput analysis, ideally at high mass spectrometric sensitivity. To achieve this, blood samples need to be collected, prepared and analyzed in a standardized manner that minimizes potential bias. Simple purification methods combined with MALDI MS profiling have so far been championed for providing the best approach. In this chapter, we describe an adapted and validated protocol based on a simple and fast solid-phase extraction technique using ZipTips®. This protocol facilitates the purification of potential blood biomarkers in a few steps for mass spectral biomarker pattern diagnostics using MALDI. It is suitable for use in an automated high-throughput and potentially clinical environment and has the advantage of only requiring a few microlitres of blood plasma or serum. The presented protocol has been tested over several years in our laboratory and found to be more reproducible and suitable for plasma and serum profiling than similar methodologies based on magnetic bead purification.

Keywords

Biomarkers MALDI Mass spectrometry Plasma/serum profiling ZipTip® technology 

Abbreviations

ACN

Acetonitrile

CHCA

α-Cyano-4-Hydroxycinnamic Acid

LMW

Low Molecular Weight

MALDI

Matrix-Assisted Laser Desorption/Ionization

PCS

Polypeptide Calibrant Standard

QC

Quality Control

SST

System Suitability Test

TFA

Trifluoroacetic Acid

TOF

Time-Of-Flight

References

  1. Check, E. (2004). Proteomics and cancer: Running before we can walk? Nature 429, 496–497.Google Scholar
  2. Coombes, K.R., Morris, J.S., Hu, J., Edmonson, S.R., and Baggerly, K.A. (2005). Serum proteomics profiling–a young technology begins to mature. Nat Biotechnol 23, 291–292.CrossRefGoogle Scholar
  3. de Noo, M.E., Deelder, A., van der Werff, M., Ozalp, A., Mertens, B., and Tollenaar, R. (2006). MALDI-TOF serum protein profiling for the detection of breast cancer. Onkologie 29, 501–506.CrossRefGoogle Scholar
  4. Diamandis, E.P. (2004). Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: Opportunities and potential limitations. Mol Cell Proteomics 3, 367–378.CrossRefGoogle Scholar
  5. Diamandis, E.P. (2006). Validation of breast cancer biomarkers identified by mass spectrometry. Clin Chem 52, 771–772; author reply 772.CrossRefGoogle Scholar
  6. Omenn, G.S. (2006). Strategies for plasma proteomic profiling of cancers. Proteomics 6, 5662–5673.CrossRefGoogle Scholar
  7. Omenn, G.S., States, D.J., Adamski, M., Blackwell, T.W., Menon, R., Hermjakob, H., Apweiler, R., Haab, B.B., Simpson, R.J., Eddes, J.S., et al. (2005). Overview of the HUPO plasma proteome project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245.CrossRefGoogle Scholar
  8. Petricoin, E.F., Ardekani, A.M., Hitt, B.A., Levine, P.J., Fusaro, V.A., Steinberg, S.M., Mills, G.B., Simone, C., Fishman, D.A., Kohn, E.C., et al. (2002). Use of proteomic patterns in serum to identify ovarian cancer. Lancet 359, 572–577.CrossRefGoogle Scholar
  9. Rosenblatt, K.P., Bryant-Greenwood, P., Killian, J.K., Mehta, A., Geho, D., Espina, V., Petricoin, E.E., and Liotta, L.A. (2004). Serum proteomics in cancer diagnosis and management. Annu RevMed 55, 97–112.CrossRefGoogle Scholar
  10. Tiss, A., Smith, C., Camuzeaux, S., Kabir, M., Gayther, S., Menon, U., Waterfield, M., Timms, J., Jacobs, I., and Cramer, R. (2007). Serum peptide profiling using MALDI mass spectrometry: Avoiding the pitfalls of coated magnetic beads using well-established ziptip technology. Proteomics 7, 77–89.CrossRefGoogle Scholar
  11. Villanueva, J., Philip, J., Chaparro, C.A., Li, Y., Toledo-Crow, R., DeNoyer, L., Fleisher, M., Robbins, R.J., and Tempst, P. (2005). Correcting common errors in identifying cancer-specific serum peptide signatures. J Proteome Res 4, 1060–1072.CrossRefGoogle Scholar
  12. Villanueva, J., Philip, J., Entenberg, D., Chaparro, C.A., Tanwar, M.K., Holland, E.C., and Tempst, P. (2004). Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry. Anal Chem 76, 1560–1570.CrossRefGoogle Scholar
  13. Villanueva, J., Shaffer, D.R., Philip, J., Chaparro, C.A., Erdjument-Bromage, H., Olshen, A.B., Fleisher, M., Lilja, H., Brogi, E., Boyd, J., et al. (2006). Differential exoprotease activities confer tumor-specific serum peptidome patterns. J Clin Invest 116, 271–284.CrossRefGoogle Scholar
  14. West-Norager, M., Kelstrup, C.D., Schou, C., Hogdall, E.V., Hogdall, C.K., and Heegaard, N.H. (2007). Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics. J Chromatogr B Anal Technol Biomed Life Sci 847, 30–37.CrossRefGoogle Scholar
  15. Ye, B., Gagnon, A., and Mok, S.C. (2007). Recent technical strategies to identify diagnostic biomarkers for ovarian cancer. Expert Rev Proteomic 4, 121–131.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.The BioCentre, University of ReadingReadingUK
  2. 2.Department of ChemistryUniversity of ReadingReadingUK
  3. 3.Department of ChemistryUniversity of ReadingReadingUK

Personalised recommendations