Advertisement

Standard Operating Procedures and Protocols for the Preparation and Analysis of Plasma Samples Using the iTRAQ Methodology

  • Leanne B. Ohlund
  • Darryl B. Hardie
  • Monica H. Elliott
  • Alexander G. Camenzind
  • Derek S. Smith
  • Jennifer D. Reid
  • Gabriela V. Cohen Freue
  • Axel P. Bergman
  • Mayu Sasaki
  • Lisa Robertson
  • Robert F. Balshaw
  • Raymond T. Ng
  • Alice Mui
  • Bruce M. McManus
  • Paul A. Keown
  • W. Robert McMaster
  • Carol E. Parker
  • Christoph H. BorchersEmail author
Chapter

Abstract

The Applied Biosystems iTRAQ technique is based on derivatization of peptide samples with mass-balanced tags. The samples are then combined, and quantitation is based on reporter ion abundances in the MS/MS spectrum. The iTRAQ technique, with its capability for the analysis of either 4 or 8 samples in a single LC-MS/MS analysis, is one of the most powerful techniques available today for “shotgun” quantitative proteomics. However, it is not an easy technique, and involves multiple – and critical – digestion, separation, and derivatization steps. Our laboratory has spent several years developing over 40 standard operating procedures (SOPs) for the generation of reproducible iTRAQ data. These protocols are designed for generating and analyzing iTRAQ data on the Applied Biosystems 4800 MALDI-TOF/TOF instrument and the Applied Biosystems QSTAR ESI-MS/MS, which are two of the most commonly-used instruments for iTRAQ analysis. We have also included sections on the Applied Biosystems ProteinPilot software which is used for analyzing the data and obtaining protein expression ratios. Standard operating procedures are obviously designed to be used with these specific instruments. For laboratories with other instruments, we have tried to include sufficient annotation and descriptions of the procedures so that these protocols can be adapted for use on other equipment. Likewise, many of these protocols are not specific to iTRAQ, and can be used for sample preparation and analysis for other assays as well. For more complete and detailed protocols, the reader is referred to the on-line supplementary information on our website at http://www.proteincentre.com/itraq-book-chapter-supplemental-information.

Keywords

iTRAQ LC-ESI-MS/MS LC-MALDI Protein quantification SCX 

Notes

Acknowledgements

The authors would like to thank the organizations for funding work relevant to these methods including the PROOF Centre of Excellence, Genome Canada, Novartis, IBM, Genome BC, University of British Columbia VP Research, St. Paul’s Hospital Foundation, BC Transplant, and the James Hogg iCAPTURE Centre. We would also like to thank Drs. Steven Parnell and Oscar Alzate for critical reading of this manuscript.

References

  1. Aguilar-Mahecha, A., Buchanan, M., Kuzyk, M.A., Borchers, C.H., and Basik, M. (2011). Comparison of blood collection tubes and processing protocols for plasma proteomics studies. Manuscript in preparation.Google Scholar
  2. Alves, S., Fournier, F., Afonso, C., Wind, F., and Tabet, J.-C. (2006). Gas-phase ionization/desolvation processes and their effect on protein charge state distribution under matrix-assisted laser desorption/ionization conditions. Eur J Mass Spectrom 12, 369–383.CrossRefGoogle Scholar
  3. Anderson, N.L., and Anderson, N.G. (2002). The human plasma proteome: History, character, and diagnostic prospects. Mol Cell Proteomics 1, 845–867.CrossRefGoogle Scholar
  4. Applied_Biosystems (2004a). Analyst QS/BioAnalyst Tutorial.Google Scholar
  5. Applied_Biosystems (2004b). iTRAQ™ Reagents Amine-Modifying Labeling Reagents for Multiplexed Relative and Absolute Protein Quantification Chemistry Reference Guide Part Number 4351918, Rev. A.Google Scholar
  6. Applied_Biosystems (2004c). iTRAQ™ Reagents Amine-Modifying Labeling Reagents for Multiplexed Relative and Absolute Protein Quantitation Protocol, Rev. C. http://wwwabsciexcom/LITERATURE/cms_041463pdf.
  7. Applied_Biosystems (2007). iTRAQ™ Reagents-8plex Amine-Modifying Labeling Reagents for Multiplexed Relative and Absolute Protein Quantitation Protocol Guide Part Number 4375249, Rev. B.Google Scholar
  8. Applied_Biosystems/MDS_SCIEX (2001a). Analyst QS Getting Started Manual Part Number 1001933 B August 2001.Google Scholar
  9. Applied_Biosystems/MDS_SCIEX (2001b). API QSTAR Pulsar I Hardware Manual, Part Number 1001553 B April 2001.Google Scholar
  10. Applied_Biosystems/MDS_SCIEX (2005). 4800 MALDI TOF/TOF Analyzer Getting Started Guide Part Number 4352078 Rev. C April 2005.Google Scholar
  11. Chang, W.C., Huang, L.C.L., Wang, Y.-S., Peng, W.-P., Chang, H.C., Hsu, N.Y., Yang, W.B., and Chen, C.H. (2007). Matrix-assisted laser desorption/ionization (MALDI) mechanism revisited. Anal Chim Acta 582, 1–9.CrossRefGoogle Scholar
  12. DeSouza, L.V., Grigull, J., Ghanny, S., Dube, V., Romaschin, A.D., Colgan, T.J., and Siu, K.W.M. (2007). Endometrial carcinoma biomarker discovery and verification using differentially tagged clinical samples with multidimensional liquid chromatography and tandem mass spectrometry. Mol Cell Proteomics 6, 1170–1182.CrossRefGoogle Scholar
  13. DeSouza, L.V., Romaschin, A.D., Colgan, T.J., and Siu, K.W.M. (2009). Absolute quantification of potential cancer markers in clinical tissue homogenates using multiple reaction monitoring on a hybrid triple quadrupole/linear ion trap tandem mass spectrometer. Anal Chem 81, 3462–3470.CrossRefGoogle Scholar
  14. Dionex/LC_Packings (2001a). Famos Autosampler for Capillary- and Nano HPLC User’s Manual. Part Number 160557.Google Scholar
  15. Dionex/LC_Packings (2001b). Switchos Advanced Microcolumn Switching Device User’s Manual. Part Number 162013.Google Scholar
  16. Dionex/LC_Packings (2002). Micro Fraction Collector User’s Manual. Part Number 161403.Google Scholar
  17. Dionex/LC_Packings (2003). UltiMate Capillary and Nano HPLC System User’s Manual. Part Number 160534.Google Scholar
  18. Eksigent (2004). Eksigent NanoLC User Manual is from 2004.Google Scholar
  19. Eksigent (2005). Eksigent Nano1D Software User Guide.Google Scholar
  20. Elliott, M., Smith, D., Kuzyk, M., Parker, C.E., and Borchers, C.H. (2009). Recent trends in quantitative proteomics. J Mass Spectrom 44, 1637–1660.Google Scholar
  21. Gan, C.S., Chong, P.K., Pham, T.K., and Wright, P.C. (2007). Technical, experimental, and biological variations in isobaric tags for relative and absolute quantitation (iTRAQ). J Proteome Res 6, 821–827.CrossRefGoogle Scholar
  22. GE_Healthcare (2002). Äkta Prime User’s Manual; catalogue number: 18-1135-24, Edition AE.Google Scholar
  23. Hardie, D., Jakubowski, P., Jackson, A., and Ohlund, L. (2006). Investigation of LC-MALDI Matrix Spotting for Improved TOF/TOF Analysis by Combined Spotting and Acquisition Strategies. Presented at the 54th ASMS Conference on Mass Spectrometry and Allied Topics, Seattle, WA, May 28–June 1, 2006.Google Scholar
  24. Kuzyk, M.A., Ohlund, L.B., Elliott, M.H., Smith, D., Qian, H., Delaney, A., Hunter, C.L., and Borchers, C.H. (2009). A comparison of MS/MS-based, stable-isotope-labeled, quantitation performance on ESI-quadrupole TOF and MALDI-TOF/TOF mass spectrometers. Proteomics 9, 3328–3340.CrossRefGoogle Scholar
  25. Omenn, G.S., States, D.J., Adamski, M., Blackwell, T.W., Menon, R., Hermjakob, H., Apweiler, R., Haab, B.B., Simpson, R.J., Eddes, J.S., et al. (2005). Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245.CrossRefGoogle Scholar
  26. Ow, S.Y., Salim, M., Noirel, J., Evans, C., Rehman, I., and Wright, P.C. (2009). iTRAQ underestimation in simple and complex mixtures: “The Good, the Bad and the Ugly”. J Proteome Res 8, 5347–5355.CrossRefGoogle Scholar
  27. Parker, C.E., Warren, M.R., Loiselle, D.R., Dicheva, N.N., Scarlett, C.O., and Borchers, C.H. (2005). Identification of components of protein complexes. Methods Mol Biol 301, 117–151.Google Scholar
  28. Proc, J.L., Kuzyk, M.A., Hardie, D.B., Yang, J., Smith, D.S., Jackson, A.M., Parker, C.E., and Borchers, C.H. (2010). A quantitative study of the effects of chaotropic agents, surfactants, and solvents on the digestion efficiency of human plasma proteins by trypsin. J Proteome Res 9, 5422–5437.Google Scholar
  29. Proxeon_Biosystems (2002). Nano-Electrospray Installation and Operations Manual.Google Scholar
  30. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.CrossRefGoogle Scholar
  31. Sigma-Aldrich (2005). BCA Protein Assay Kit Technical Bulletin. http://wwwsigmaaldrichcom/etc/medialib/docs/Sigma/Bulletin/qpbcabulPar0001Filetmp/qpbcabulpdf.
  32. Simpson, R.J., Bernhard, O.K., Greening, D.W., and Moritz, R.L. (2008). Proteomics-driven cancer biomarker discovery: Looking to the future. Curr Opin Chem Biol 12, 72–77.CrossRefGoogle Scholar
  33. Wiese, S., Reidegeld, K.A., Meyer, H.E., and Warscheid, B. (2007). Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 7, 340–350.CrossRefGoogle Scholar
  34. Wolters, D.A., Washburn, M.P., and Yates, J.R., III (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 73, 5683–5690.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Leanne B. Ohlund
    • 1
  • Darryl B. Hardie
    • 1
  • Monica H. Elliott
    • 1
  • Alexander G. Camenzind
    • 12
  • Derek S. Smith
    • 1
  • Jennifer D. Reid
    • 1
  • Gabriela V. Cohen Freue
    • 2
    • 3
  • Axel P. Bergman
    • 4
  • Mayu Sasaki
    • 13
  • Lisa Robertson
    • 3
  • Robert F. Balshaw
    • 3
    • 14
  • Raymond T. Ng
    • 3
    • 6
  • Alice Mui
    • 7
  • Bruce M. McManus
    • 3
    • 8
    • 15
    • 9
  • Paul A. Keown
    • 5
  • W. Robert McMaster
    • 16
    • 10
  • Carol E. Parker
    • 1
  • Christoph H. Borchers
    • 11
    • 17
    Email author
  1. 1.University of Victoria-Genome BC Proteomics CentreVictoriaCanada
  2. 2.Department of StatisticsUniversity of British Columbia (UBC)VancouverCanada
  3. 3.NCE CECR Centre of Excellence for the Prevention of Organ FailureVancouverCanada
  4. 4.Immunity and Infection Research Centre, Vancouver Coastal Health Research InstituteVancouverCanada
  5. 5.Division of NephrologyUniversity of British Columbia (UBC)VancouverCanada
  6. 6.Department of Computer ScienceUniversity of British Columbia (UBC)VancouverCanada
  7. 7.Department of SurgeryUniversity of British Columbia (UBC)VancouverCanada
  8. 8.The James Hogg iCAPTURE Research Centre, University of British Columbia and Providence Health CareVancouverCanada
  9. 9.Department of Pathology and Laboratory MedicineUniversity of British Columbia (UBC)VancouverCanada
  10. 10.Department of Medical GeneticsUniversity of British Columbia (UBC)VancouverCanada
  11. 11.Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaCanada
  12. 12.University of Victoria-Genome BC Proteomics CentreVictoriaCanada
  13. 13.PROOF Centre of ExcellenceVancouverCanada
  14. 14.Department of StatisticsUniversity of British Columbia (UBC)VancouverCanada
  15. 15.Institute of Heart and Lung HealthVancouverCanada
  16. 16.Vancouver Coastal Health Research InstituteVancouverCanada
  17. 17.University of Victoria-Genome BC Proteomics Centre, #3101-4464 Markham StreetVancouver Island Technology ParkVictoriaCanada

Personalised recommendations