Stable Isotopic Labeling for Proteomics

  • Keith AshmanEmail author
  • María Isabel Ruppen Cañás
  • Jose L. Luque-Garcia
  • Fernando García Martínez


Since the coining of the term Proteome, the field of Proteomics has developed rapidly and come to rely heavily on mass spectrometry, initially for protein identification but recently the use of stable isotopic labels for protein quantitation has grown in importance. This trend has been driven by improvements in the mass spectrometers and reagents but also by the need to understand the molecular dynamics of cells. Since proteins are important effector molecules in most biochemical processes, key questions to be answered are: how much is present and when. In this chapter we describe the various methods currently available to quantitate proteins based on stable isotope protein labeling and discuss their merits as well as some of the issues still to be addressed.


Proteomics Quantitation Stable isotope labeling iTRAQ SILAC Fractionation HPLC Mass spectrometer MALDI Electrospray Peptides Amines Protein Derivatization Biomarkers Metabolic Stoichiometry Chromatography 





Absolute quantification


Collision induced disassociation


Cleavable isobaric labeled affinity tag


Electrospray ionisation


Isotopically coded affinity tags


Isobaric tags for relative and absolute quantitation


Hydrophilic interaction chromatography


High performance liquid chromatography


Isotope-coded protein label


Inductively coupled plasma mass spectrometry




Immobilized pH gradient


Immobilized pH gradient isoelectric focusing


Liquid chromatography matrix assisted laser desorption ionization tandem mass spectrometry


Liquid chromatography mass spectrometry


Matrix assisted laser desorption ionisation


Methyl methane-thiosulphonate


Mass spectrometry


Tandem mass spectrometry

Nano RP LC

Nano reversed phase liquid chromatography




Phosphate buffered saline


Artificial proteins representing a quantification concatamer


Quadrupole time of flight tandem mass spectrometry


Reversed phase liquid chromatography


Stable isotope labeling by amino acids in cell culture


Strong cation exchange chromatography


Stable isotope standards and capture by anti-peptide antibodies


Tri-chloroacetic acid


Tris (2-carboxyethyl) phosphine


Triethylammonium bicarbonate


Tandem Mass Tag Technology


Time of flight/time of flight


  1. Ahrends, R., Pieper, S., Neumann, B., Scheler, C., and Linscheid, M.W. (2009). Metal-coded affinity tag labeling: A demonstration of analytical robustness and suitability for biological applications. Anal Chem 81, 2176–2184.CrossRefGoogle Scholar
  2. Anderson, N.L., Anderson, N.G., Haines, L.R., Hardie, D.B., Olafson, R.W., and Pearson, T.W. (2004). Mass spectrometric quantitation of peptides and proteins using stable isotope standards and capture by anti-peptide Antibodies (SISCAPA). J Proteome Res 3, 235–244.CrossRefGoogle Scholar
  3. Antonov, V.K., Ginodman, L.M., Rumsh, L.D., Kapitannikov, Y.V., Barshevskaya, T.N., Yavashev, L.P., Gurova, A.G., and Volkova, L.I. (1981). Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem 117, 195–200.CrossRefGoogle Scholar
  4. Bellew, M., Coram, M., Fitzgibbon, M., Igra, M., Randolph, T., Wang, P., May, D., Eng, J., Fang, R., Lin, C., et al. (2006). A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics 22, 1902–1909.CrossRefGoogle Scholar
  5. Bendall, S.C., Hughes, C., Stewart, M.H., Doble, B., Bhatia, M., and Lajoie, G.A. (2008). Prevention of amino acid conversion in SILAC experiments with embryonic stem cells. Mol Cell Proteomics 7, 1587–1597.CrossRefGoogle Scholar
  6. Berger, S.J., Lee, S.W., Anderson, G.A., Pasa-Tolic, L., Tolic, N., Shen, Y., Zhao, R., and Smith, R.D. (2002). High-throughput global peptide proteomic analysis by combining stable isotope amino acid labeling and data-dependent multiplexed-MS/MS. Anal Chem 74, 4994–5000.CrossRefGoogle Scholar
  7. Bettmer, J., Montes Bayon, M., Encinar, J.R., Fernandez Sanchez, M.L., Fernandez de la Campa Mdel, R., and Sanz Medel, A. (2009). The emerging role of ICP-MS in proteomic analysis. J Proteomics 72, 989–1005.Google Scholar
  8. Beynon, R.J., and Pratt, J.M. (2005). Metabolic labeling of proteins for proteomics. Mol Cell Proteomics 4, 857–872.CrossRefGoogle Scholar
  9. Bhat, V.B., Choi, M.H., Wishnok, J.S., and Tannenbaum, S.R. (2005). Comparative plasma proteome analysis of lymphoma-bearing SJL mice. J Proteome Res 4, 1814–1825.CrossRefGoogle Scholar
  10. Boersema, P.J., Raijmakers, R., Lemeer, S., Mohammed, S., and Heck, A.J. (2009). Multiplex peptide stable isotope dimethyl labeling for quantitative proteomics. Nat Protoc 4, 484–494.CrossRefGoogle Scholar
  11. Boyer, P.D. (1954). Spectrophotometric study of the reaction of protein sulfhydryl groups with organic mercurials. J Am Chem Soc 76, 4331–4337.CrossRefGoogle Scholar
  12. Brusniak, M.Y., Bodenmiller, B., Campbell, D., Cooke, K., Eddes, J., Garbutt, A., Lau, H., Letarte, S., Mueller, L.N., Sharma, V., et al. (2008). Corra: Computational framework and tools for LC-MS discovery and targeted mass spectrometry-based proteomics. BMC Bioinformatics 9, 542.CrossRefGoogle Scholar
  13. Cargile, B.J., Sevinsky, J.R., Essader, A.S., Stephenson, J.L., Jr., and Bundy, J.L. (2005). Immobilized pH gradient isoelectric focusing as a first-dimension separation in shotgun proteomics. J Biomol Tech 16, 181–189.Google Scholar
  14. Chick, J.M., Haynes, P.A., Molloy, M.P., Bjellqvist, B., Baker, M.S., and Len, A.C. (2008). Characterization of the rat liver membrane proteome using peptide immobilized pH gradient isoelectric focusing. J Proteome Res 7, 1036–1045.CrossRefGoogle Scholar
  15. Choe, L., D’Ascenzo, M., Relkin, N.R., Pappin, D., Ross, P., Williamson, B., Guertin, S., Pribil, P., and Lee, K.H. (2007). 8-plex quantitation of changes in cerebrospinal fluid protein expression in subjects undergoing intravenous immunoglobulin treatment for Alzheimer’s disease. Proteomics 7, 3651–3660.CrossRefGoogle Scholar
  16. Cox, J., Matic, I., Hilger, M., Nagaraj, N., Selbach, M., Olsen, J.V., and Mann, M. (2009). A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nat Protoc 4, 698–705.CrossRefGoogle Scholar
  17. Craig, R., and Beavis, R.C. (2003). A method for reducing the time required to match protein sequences with tandem mass spectra. Rapid Commun Mass Spectrom 17, 2310–2316.CrossRefGoogle Scholar
  18. De Leenheer, A.P., and Thienpont, L. M. (1992). Applications of isotope dilution-mass spectrometry in clinical chemistry, pharmacokinetics, and toxicology. Mass Spectrum Rev 11, 249–307.CrossRefGoogle Scholar
  19. DeSouza, L., Diehl, G., Rodrigues, M.J., Guo, J., Romaschin, A.D., Colgan, T.J., and Siu, K.W. (2005). Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res 4, 377–386.CrossRefGoogle Scholar
  20. Deutsch, E.W., Lam, H., and Aebersold, R. (2008). Data analysis and bioinformatics tools for tandem mass spectrometry in proteomics. Physiol Genomics 33, 18–25.CrossRefGoogle Scholar
  21. Dowell, J.A., Frost, D.C., Zhang, J., and Li, L. (2008). Comparison of two-dimensional fractionation techniques for shotgun proteomics. Anal Chem 80, 6715–6723.CrossRefGoogle Scholar
  22. Eriksson, H., Lengqvist, J., Hedlund, J., Uhlen, K., Orre, L.M., Bjellqvist, B., Persson, B., Lehtio, J., and Jakobsson, P.J. (2008). Quantitative membrane proteomics applying narrow range peptide isoelectric focusing for studies of small cell lung cancer resistance mechanisms. Proteomics 8, 3008–3018.CrossRefGoogle Scholar
  23. Fenselau, C., and Yao, X. (2009). 18O2-labeling in quantitative proteomic strategies: A status report. J Proteome Res 8, 2140–2143.CrossRefGoogle Scholar
  24. Gatlin, C.L., Eng, J.K., Cross, S.T., Detter, J.C., and Yates, J.R., 3rd (2000). Automated identification of amino acid sequence variations in proteins by HPLC/microspray tandem mass spectrometry. Anal Chem 72, 757–763.CrossRefGoogle Scholar
  25. Geer, L.Y., Markey, S.P., Kowalak, J.A., Wagner, L., Xu, M., Maynard, D.M., Yang, X., Shi, W., and Bryant, S.H. (2004). Open mass spectrometry search algorithm. J Proteome Res 3, 958–964.CrossRefGoogle Scholar
  26. Gerber, S.A., Kettenbach, A.N., Rush, J., and Gygi, S.P. (2007). The absolute quantification strategy: Application to phosphorylation profiling of human separase serine 1126. Methods Mol Biol 359, 71–86.CrossRefGoogle Scholar
  27. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100, 6940–6945.CrossRefGoogle Scholar
  28. Gevaert, K., Impens, F., Ghesquiere, B., Van Damme, P., Lambrechts, A., and Vandekerckhove, J. (2008). Stable isotopic labeling in proteomics. Proteomics 8, 4873–4885.CrossRefGoogle Scholar
  29. Grassl, J., Westbrook, J.A., Robinson, A., Boren, M., Dunn, M.J., and Clyne, R.K. (2009). Preserving the yeast proteome from sample degradation. Proteomics 9, 4616–4626.CrossRefGoogle Scholar
  30. Griffin, T.J., Xie, H., Bandhakavi, S., Popko, J., Mohan, A., Carlis, J.V., and Higgins, L. (2007). iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. J Proteome Res 6, 4200–4209.CrossRefGoogle Scholar
  31. Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17, 994–999.CrossRefGoogle Scholar
  32. Halligan, B.D., Slyper, R.Y., Twigger, S.N., Hicks, W., Olivier, M., and Greene, A.S. (2005). ZoomQuant: An application for the quantitation of stable isotope labeled peptides. J Am Soc Mass Spectrom 16, 302–306.CrossRefGoogle Scholar
  33. Holzmann, J., Pichler, P., Madalinski, M., Kurzbauer, R., and Mechtler, K. (2009). Stoichiometry determination of the MP1-p14 complex using a novel and cost-efficient method to produce an equimolar mixture of standard peptides. Anal Chem 81(24), 10254–10261.Google Scholar
  34. Hsu, J.L., Huang, S.Y., Chow, N.H., and Chen, S.H. (2003). Stable-isotope dimethyl labeling for quantitative proteomics. Anal Chem 75, 6843–6852.CrossRefGoogle Scholar
  35. Iliuk, A., Galan, J., and Tao, W.A. (2009). Playing tag with quantitative proteomics. Anal Bioanal Chem 393, 503–513.CrossRefGoogle Scholar
  36. Imami, K., Sugiyama, N., Tomita, M., and Ishihama, Y. (2010). Quantitative proteome and phosphoproteome analyses of cultured cells based on SILAC labeling without requirement of serum dialysis. Mol Biosyst 6, 594–602.Google Scholar
  37. Keller, A., Eng, J., Zhang, N., Li, X.J., and Aebersold, R. (2005). A uniform proteomics MS/MS analysis platform utilizing open XML file formats. Mol Syst Biol 1, 2005 0017.CrossRefGoogle Scholar
  38. Kerlavage, A., Bonazzi, V., di Tommaso, M., Lawrence, C., Li, P., Mayberry, F., Mural, R., Nodell, M., Yandell, M., Zhang, J., et al. (2002). The Celera discovery system. Nucleic Acids Res 30, 129–136.CrossRefGoogle Scholar
  39. Kruger, M., Moser, M., Ussar, S., Thievessen, I., Luber, C.A., Forner, F., Schmidt, S., Zanivan, S., Fassler, R., and Mann, M. (2008). SILAC mouse for quantitative proteomics uncovers kindlin-3 as an essential factor for red blood cell function. Cell 134, 353–364.CrossRefGoogle Scholar
  40. Lane, A.N., Fan, T.W., Higashi, R.M., Tan, J., Bousamra, M., and Miller, D.M. (2009). Prospects for clinical cancer metabolomics using stable isotope tracers. Exp Mol Pathol 86, 165–173.CrossRefGoogle Scholar
  41. Leitner, A., and Lindner, W. (2009). Chemical tagging strategies for mass spectrometry-based phospho-proteomics. Methods Mol Biol 527, 229–243, x.CrossRefGoogle Scholar
  42. Lemeer, S., Jopling, C., Gouw, J., Mohammed, S., Heck, A.J., Slijper, M., and den Hertog, J. (2008). Comparative phosphoproteomics of zebrafish Fyn/Yes morpholino knockdown embryos. Mol Cell Proteomics 7, 2176–2187.CrossRefGoogle Scholar
  43. Li, X.J., Zhang, H., Ranish, J.A., and Aebersold, R. (2003). Automated statistical analysis of protein abundance ratios from data generated by stable-isotope dilution and tandem mass spectrometry. Anal Chem 75, 6648–6657.CrossRefGoogle Scholar
  44. Lin, W.T., Hung, W.N., Yian, Y.H., Wu, K.P., Han, C.L., Chen, Y.R., Chen, Y.J., Sung, T.Y., and Hsu, W.L. (2006). Multi-Q: A fully automated tool for multiplexed protein quantitation. J Proteome Res 5, 2328–2338.CrossRefGoogle Scholar
  45. Lopez-Otin, C., and Bond, J.S. (2008). Proteases: Multifunctional enzymes in life and disease. J Biol Chem 283, 30433–30437.CrossRefGoogle Scholar
  46. Mann, M. (2006). Functional and quantitative proteomics using SILAC. Nat Rev Mol Cell Biol 7, 952–958.CrossRefGoogle Scholar
  47. McNulty, D.E., and Annan, R.S. (2008). Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol Cell Proteomics 7, 971–980.CrossRefGoogle Scholar
  48. Mirgorodskaya, O.A., Kozmin, Y.P., Titov, M.I., Korner, R., Sonksen, C.P., and Roepstorff, P. (2000). Quantitation of peptides and proteins by matrix-assisted laser desorption/ionization mass spectrometry using (18)O-labeled internal standards. Rapid Commun Mass Spectrom 14, 1226–1232.CrossRefGoogle Scholar
  49. Mortensen, P., Gouw, J.W., Olsen, J.V., Ong, S.E., Rigbolt, K.T., Bunkenborg, J., Cox, J., Foster, L.J., Heck, A.J., Blagoev, B., et al. (2009). MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. J Proteome Res 9(1), 393–403.Google Scholar
  50. Mueller, L.N., Brusniak, M.Y., Mani, D.R., and Aebersold, R. (2008). An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J Proteome Res 7, 51–61.CrossRefGoogle Scholar
  51. Nesvizhskii, A.I., Vitek, O., and Aebersold, R. (2007). Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat Methods 4, 787–797.CrossRefGoogle Scholar
  52. Ong, S.E., Blagoev, B., Kratchmarova, I., Kristensen, D.B., Steen, H., Pandey, A., and Mann, M. (2002). Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1, 376–386.CrossRefGoogle Scholar
  53. Ong, S.E., Kratchmarova, I., and Mann, M. (2003). Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J Proteome Res 2, 173–181.CrossRefGoogle Scholar
  54. Ong, S.E., and Mann, M. (2006). A practical recipe for stable isotope labeling by amino acids in cell culture (SILAC). Nat Protoc 1, 2650–2660.CrossRefGoogle Scholar
  55. Orchard, S., Hoogland, C., Bairoch, A., Eisenacher, M., Kraus, H.J., and Binz, P.A. (2009). Managing the data explosion. A report on the HUPO-PSI Workshop. August 2008, Amsterdam, The Netherlands. Proteomics 9, 499–501.CrossRefGoogle Scholar
  56. Park, S.K., Venable, J.D., Xu, T., and Yates, J.R., 3rd (2008). A quantitative analysis software tool for mass spectrometry-based proteomics. Nat Methods 5, 319–322.Google Scholar
  57. Perkins, D.N., Pappin, D.J., Creasy, D.M., and Cottrell, J.S. (1999). Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567.CrossRefGoogle Scholar
  58. Pratt, J.M., Petty, J., Riba-Garcia, I., Robertson, D.H., Gaskell, S.J., Oliver, S.G., and Beynon, R.J. (2002a). Dynamics of protein turnover, a missing dimension in proteomics. Mol Cell Proteomics 1, 579–591.CrossRefGoogle Scholar
  59. Pratt, J.M., Robertson, D.H., Gaskell, S.J., Riba-Garcia, I., Hubbard, S.J., Sidhu, K., Oliver, S.G., Butler, P., Hayes, A., Petty, J., et al. (2002b). Stable isotope labelling in vivo as an aid to protein identification in peptide mass fingerprinting. Proteomics 2, 157–163.CrossRefGoogle Scholar
  60. Ramos-Fernandez, A., Lopez-Ferrer, D., and Vazquez, J. (2007). Improved method for differential expression proteomics using trypsin-catalyzed 18O labeling with a correction for labeling efficiency. Mol Cell Proteomics 6, 1274–1286.CrossRefGoogle Scholar
  61. Reynolds, K.J., Yao, X., and Fenselau, C. (2002). Proteolytic 18O labeling for comparative proteomics: Evaluation of endoprotease Glu-C as the catalytic agent. J Proteome Res 1, 27–33.CrossRefGoogle Scholar
  62. Rivers, J., Simpson, D.M., Robertson, D.H., Gaskell, S.J., and Beynon, R.J. (2007). Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 6, 1416–1427.CrossRefGoogle Scholar
  63. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.CrossRefGoogle Scholar
  64. Schmidt, A., Bisle, B., and Kislinger, T. (2009). Quantitative peptide and protein profiling by mass spectrometry. Methods Mol Biol 492, 21–38.CrossRefGoogle Scholar
  65. Schnolzer, M., Jedrzejewski, P., and Lehmann, W.D. (1996). Protease-catalyzed incorporation of 18O into peptide fragments and its application for protein sequencing by electrospray and matrix-assisted laser desorption/ionization mass spectrometry. Electrophoresis 17, 945–953.CrossRefGoogle Scholar
  66. Schulze, W.X., and Mann, M. (2004). A novel proteomic screen for peptide-protein interactions. J Biol Chem 279, 10756–10764.CrossRefGoogle Scholar
  67. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., and Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13, 2498–2504.CrossRefGoogle Scholar
  68. Shilov, I.V., Seymour, S.L., Patel, A.A., Loboda, A., Tang, W.H., Keating, S.P., Hunter, C.L., Nuwaysir, L.M., and Schaeffer, D.A. (2007). The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics 6, 1638–1655.CrossRefGoogle Scholar
  69. Shinkawa, T., Taoka, M., Yamauchi, Y., Ichimura, T., Kaji, H., Takahashi, N., and Isobe, T. (2005). STEM: A software tool for large-scale proteomic data analyses. J Proteome Res 4, 1826–1831.CrossRefGoogle Scholar
  70. Song, X., Bandow, J., Sherman, J., Baker, J.D., Brown, P.W., McDowell, M.T., and Molloy, M.P. (2008). iTRAQ experimental design for plasma biomarker discovery. J Proteome Res 7, 2952–2958.CrossRefGoogle Scholar
  71. Spellman, D.S., Deinhardt, K., Darie, C.C., Chao, M.V., and Neubert, T.A. (2008). Stable isotopic labeling by amino acids in cultured primary neurons: Application to brain-derived neurotrophic factor-dependent phosphotyrosine-associated signaling. Mol Cell Proteomics 7, 1067–1076.CrossRefGoogle Scholar
  72. Stewart, II, Thomson, T., and Figeys, D. (2001). 18O labeling: A tool for proteomics. Rapid Commun Mass Spectrom 15, 2456–2465.CrossRefGoogle Scholar
  73. Tang, W.H., Halpern, B.R., Shilov, I.V., Seymour, S.L., Keating, S.P., Loboda, A., Patel, A.A., Schaeffer, D.A., and Nuwaysir, L.M. (2005). Discovering known and unanticipated protein modifications using MS/MS database searching. Anal Chem 77, 3931–3946.CrossRefGoogle Scholar
  74. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K., and Hamon, C. (2003). Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895–1904.CrossRefGoogle Scholar
  75. Villanueva, J., Nazarian, A., Lawlor, K., and Tempst, P. (2009). Monitoring peptidase activities in complex proteomes by MALDI-TOF mass spectrometry. Nat Protoc 4, 1167–1183.CrossRefGoogle Scholar
  76. Whiteaker, J.R., Zhao, L., Anderson, L., and Paulovich, A.G. (2009). An automated and multiplexed method for high throughput peptide immunoaffinity enrichment and multiple reaction monitoring mass spectrometry-based quantification of protein biomarkers. Mol Cell Proteomics 9(1), 184–196.Google Scholar
  77. Wiese, S., Reidegeld, K.A., Meyer, H.E., and Warscheid, B. (2007). Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 7, 340–350.CrossRefGoogle Scholar
  78. Yan, W., and Chen, S.S. (2005). Mass spectrometry-based quantitative proteomic profiling. Brief Funct Genomic Proteomic 4, 27–38.CrossRefGoogle Scholar
  79. Yao, X., Afonso, C., and Fenselau, C. (2003). Dissection of proteolytic 18O labeling: Endoprotease-catalyzed 16O-to-18O exchange of truncated peptide substrates. J Proteome Res 2, 147–152.CrossRefGoogle Scholar
  80. Zeng, D., and Li, S. (2009). Improved CILAT reagents for quantitative proteomics. Bioorg Med Chem Lett 19, 2059–2061.CrossRefGoogle Scholar
  81. Zhang, G., Fenyo, D., and Neubert, T.A. (2009). Evaluation of the variation in sample preparation for comparative proteomics using stable isotope labeling by amino acids in cell culture. J Proteome Res 8, 1285–1292.CrossRefGoogle Scholar
  82. Zhang, R., Sioma, C.S., Thompson, R.A., Xiong, L., and Regnier, F.E. (2002). Controlling deuterium isotope effects in comparative proteomics. Anal Chem 74, 3662–3669.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Keith Ashman
    • 1
    Email author
  • María Isabel Ruppen Cañás
    • 1
  • Jose L. Luque-Garcia
    • 2
  • Fernando García Martínez
    • 1
  1. 1.Centro Nacional de Investigaciones Oncológicas (CNIO)MadridSpain
  2. 2.Department Analytical ChemistryUniversity Complutense of MadridMadridSpain

Personalised recommendations