Skip to main content

Manipulating the Mass Spectrometric Properties of Peptides through Selective Chemical Modification

  • Chapter
  • First Online:
Sample Preparation in Biological Mass Spectrometry

Abstract

Mass spectrometry is routinely applied to the detection of chemically modified peptides, and researchers deliberately induce chemical modifications in peptides for a variety of reasons. One motivation for doing so is to manipulate the behavior of the peptide in the mass spectrometer itself. Ionization efficiency, for example, can be selectively enhanced or suppressed in MALDI MS, and the charge state distribution altered in ESI. Addition of fixed or localized charges can enhance or suppress entire ion series upon CID, with dramatic effects in MALDI, and more subtle changes in ESI. Newer activation techniques such as ECD and ETD can be favorably combined with ESI and charge derivatization to simplify product ion spectra and map sites of posttranslational modification. Peptides containing specific amino acids and PTMs can be targeted for selective detection or recognized amid a complex background of other peptides by virtue of characteristic product ions or neutral losses conferred by a well-chosen chemical modification. The mass spectrometrist thus possesses a rich set of chemical modifications that can be applied to achieve specific goals in peptide and protein analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Annan, R.S., Huddleston, M.J., Verma, R., Deshaies, R.J., and Carr, S.A. (2001). A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal Chem 73, 393–404.

    Article  CAS  Google Scholar 

  • Arnott, D., Kottmeier, D., Yates, N., Shabanowitz, J., and Hunt, D.F. (1994). Fragmentation of Multiply Protonated Peptides Under Low Energy Conditions. Paper presented at: Proceedings of the 42nd ASMS Conference on Mass Spectrometry and Allied Topics (Chicago, IL).

    Google Scholar 

  • Bartlet-Jones, M., Jeffery, W.A., Hansen, H.F., and Pappin, D.J. (1994). Peptide ladder sequencing by mass spectrometry using a novel, volatile degradation reagent. Rapid Commun Mass Spectrom 8, 737–742.

    Article  CAS  Google Scholar 

  • Beardsley, R.L., Karty, J.A., and Reilly, J.P. (2000). Enhancing the intensities of lysine-terminated tryptic peptide ions in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 14, 2147–2153.

    Article  CAS  Google Scholar 

  • Beardsley, R.L., and Reilly, J.P. (2002). Optimization of guanidination procedures for MALDI mass mapping. Anal Chem 74, 1884–1890.

    Article  CAS  Google Scholar 

  • Biemann, K., and Martin, S.A. (1987). Mass spectrometric determination of the amino acid sequence of peptides and proteins. Mass Spectrom Rev 6, 1–75.

    Article  CAS  Google Scholar 

  • Boja, E.S., Sokoloski, E.A., and Fales, H.M. (2004). Divinyl sulfone as a postdigestion modifier for enhancing the a(1) Ion in MS/MS and postsource decay: potential applications in proteomics. Anal Chem 76, 3958–3970.

    Article  CAS  Google Scholar 

  • Brancia, F.L., Butt, A., Beynon, R.J., Hubbard, S.J., Gaskell, S.J., and Oliver, S.G. (2001). A combination of chemical derivatisation and improved bioinformatic tools optimises protein identification for proteomics. Electrophoresis 22, 552–559.

    Article  CAS  Google Scholar 

  • Brancia, F.L., Oliver, S.G., and Gaskell, S.J. (2000). Improved matrix-assisted laser desorption/ionization mass spectrometric analysis of tryptic hydrolysates of proteins following guanidination of lysine-containing peptides. Rapid Commun Mass Spectrom 14, 2070–2073.

    Article  CAS  Google Scholar 

  • Chamot-Rooke, J., van der Rest, G., Dalleu, A., Bay, S., and Lemoine, J. (2007). The combination of electron capture dissociation and fixed charge derivatization increases sequence coverage for O-glycosylated and O-phosphorylated peptides. J Am Soc Mass Spectrom 18, 1405–1413.

    Article  CAS  Google Scholar 

  • Che, F.Y., and Fricker, L.D. (2002). Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry. Anal Chem 74, 3190–3198.

    Article  CAS  Google Scholar 

  • Cleland, W.W. (1964). Dithiothreitol, a new protective reagent for Sh groups. Biochemistry 3, 480–482.

    Article  CAS  Google Scholar 

  • Corthals, G.L., and Rose, K. (2007). Quantitation in Proteomics. In Proteome Research: Concepts, Technology and Application, M.R. Wilkins, R.D. Appel, K.L. Williams, and D.F. Hochstrasser, eds. (Berlin, Heidelberg, Springer), pp. 69–93.

    Google Scholar 

  • DeGnore, J.P., and Qin, J. (1998). Fragmentation of phosphopeptides in an ion trap mass spectrometer. J Am Soc Mass Spectrom 9, 1175–1188.

    Article  CAS  Google Scholar 

  • Dickens, F. (1933). Interaction of halogenacetates and SH compounds: The reaction of halogenacetic acids with glutathione and cysteine. The mechanism of iodoacetate poisoning of glyoxalase. Biochem J 27, 1141–1151.

    CAS  Google Scholar 

  • English, M., Udeshi, N., Shabanowitz, J., and Hunt, D.F. (2009). Evaluation of ETD Fragmentation-Enhancing Peptide Charge Modification Strategies Amenable to Complex Samples and Direct Use With HPLC-MS. Paper presented at: Proceedings of the 57th ASMS Conference on Mass Spectrometry and Allied Topics (Philadelphia, PA).

    Google Scholar 

  • Ernoult, E., Gamelin, E., and Guette, C. (2008). Improved proteome coverage by using iTRAQ labelling and peptide OFFGEL fractionation. Proteome Science 6, 27–39.

    Google Scholar 

  • Gao, Y., and Wang, Y. (2007). A method to determine the ionization efficiency change of peptides caused by phosphorylation. J Am Soc Mass Spectrom 18, 1973–1976.

    Article  CAS  Google Scholar 

  • Good, D.M., Wirtala, M., McAlister, G.C., and Coon, J.J. (2007). Performance characteristics of electron transfer dissociation mass spectrometry. Mol Cell Proteomics 6, 1942–1951.

    Article  CAS  Google Scholar 

  • Guevremont, R., Siu, K.W.M., Le Blanc, J.C.Y., and Berman, S.S. (1992). Are the electrospray mass spectra of proteins related to their aqueous solution chemistry? J Am Soc Mass Spectrom 3, 216–224.

    Article  CAS  Google Scholar 

  • Hale, J.E., Butler, J.P., Knierman, M.D., and Becker, G.W. (2000). Increased sensitivity of tryptic peptide detection by MALDI-TOF mass spectrometry is achieved by conversion of lysine to homoarginine. Anal Biochem 287, 110–117.

    Article  CAS  Google Scholar 

  • He, Y., and Reilly, J.P. (2008). Does a charge tag really provide a fixed charge? Angew Chem Int Ed Engl 47, 2463–2465.

    Article  CAS  Google Scholar 

  • Hsu, J.L., Huang, S.Y., Shiea, J.T., Huang, W.Y., and Chen, S.H. (2005). Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. J Proteome Res 4, 101–108.

    Article  CAS  Google Scholar 

  • Hunt, D.F., Bone, W.M., Shabanowitz, J., Rhodes, J., and Ballard, J.M. (1981). Sequence analysis of oligopeptides by secondary ion/collision activated dissociation mass spectrometry. Anal Chem 53, 1704–1706.

    Article  CAS  Google Scholar 

  • Hunt, D.F., Yates, J.R., 3rd, Shabanowitz, J., Winston, S., and Hauer, C.R. (1986). Protein sequencing by tandem mass spectrometry. Proc Natl Acad Sci USA 83, 6233–6237.

    Article  CAS  Google Scholar 

  • Jaffe, H., Veeranna, and Pant, H.C. (1998). Characterization of serine and threonine phosphorylation sites in beta-elimination/ethanethiol addition-modified proteins by electrospray tandem mass spectrometry and database searching. Biochemistry 37, 16211–16224.

    Article  CAS  Google Scholar 

  • Janek, K., Wenschuh, H., Bienert, M., and Krause, E. (2001). Phosphopeptide analysis by positive and negative ion matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 15, 1593–1599.

    Article  CAS  Google Scholar 

  • Jentoft, N., and Dearborn, D.G. (1983). Protein labeling by reductive alkylation. Methods Enzymol 91, 570–579.

    Article  CAS  Google Scholar 

  • Johnson, G., and Wu, T.T. (2000). Kabat Database and its applications: 30 years after the first variability plot. Nucleic Acids Res 28, 214–218.

    Article  CAS  Google Scholar 

  • Keough, T., Lacey, M.P., and Youngquist, R.S. (2002). Solid-phase derivatization of tryptic peptides for rapid protein identification by matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 16, 1003–1015.

    Article  CAS  Google Scholar 

  • Keough, T., Youngquist, R.S., and Lacey, M.P. (1999). A method for high-sensitivity peptide sequencing using postsource decay matrix-assisted laser desorption ionization mass spectrometry. Proc Natl Acad Sci USA 96, 7131–7136.

    Article  CAS  Google Scholar 

  • Kim, T.Y., Brun, Y.V., and Reilly, J.P. (2005). Effects of tryptic peptide esterification in MALDI mass spectrometry. Anal Chem 77, 4185–4193.

    Article  CAS  Google Scholar 

  • Kim, J.S., Cui, E., and Kim, H.J. (2009). Picolinamidination of phosphopeptides for MALDI-TOF-TOF mass spectrometric sequencing with enhanced sensitivity. J Am Soc Mass Spectrom 20, 1751–1758.

    Article  CAS  Google Scholar 

  • Kinter, M., and Sherman, N.E. (2000). Protein Sequencing and Identification Using Tandem Mass Spectrometry (New York, NY, Wiley).

    Book  Google Scholar 

  • Klemm, C., Schroder, S., Gluckmann, M., Beyermann, M., and Krause, E. (2004). Derivatization of phosphorylated peptides with S- and N-nucleophiles for enhanced ionization efficiency in matrix-assisted laser desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 18, 2697–2705.

    Article  CAS  Google Scholar 

  • Krause, E., Wenschuh, H., and Jungblut, P.R. (1999). The dominance of arginine-containing peptides in MALDI-derived tryptic mass fingerprints of proteins. Anal Chem 71, 4160–4165.

    Article  CAS  Google Scholar 

  • Krishnamurthy, T., Szafraniec, L., Hunt, D.F., Shabanowitz, J., Yates, J.R., 3rd, Hauer, C.R., Carmichael, W.W., Skulberg, O., Codd, G.A., and Missler, S. (1989). Structural characterization of toxic cyclic peptides from blue-green algae by tandem mass spectrometry. Proc Natl Acad Sci USA 86, 770–774.

    Article  CAS  Google Scholar 

  • Lamari, F.N., Kuhn, R., and Karamanos, N.K. (2003). Derivatization of carbohydrates for chromatographic, electrophoretic and mass spectrometric structure analysis. J Chromatogr B 793, 15–36.

    Article  CAS  Google Scholar 

  • Lee, Y.H., Han, H., Chang, S.B., and Lee, S.W. (2004). Isotope-coded N-terminal sulfonation of peptides allows quantitative proteomic analysis with increased de novo peptide sequencing capability. Rapid Commun Mass Spectrom 18, 3019–3027.

    Article  CAS  Google Scholar 

  • Loo, J.A., Udseth, H.R., and Smith, R.D. (1989). Peptide and protein analysis by electrospray ionization-mass spectrometry and capillary electrophoresis-mass spectrometry. Anal Biochem 179, 404–412.

    Article  CAS  Google Scholar 

  • Madsen, J.A., and Brodbelt, J.S. (2009). Simplifying fragmentation patterns of multiply charged peptides by N-terminal derivatization and electron transfer collision activated dissociation. Anal Chem 81, 3645–3653.

    Article  CAS  Google Scholar 

  • McCormack, A.L., Somogyi, A., Dongre, A., and Wysocki, V. (1993). Fragmentation of protonated peptides: Surface-induced dissociation in conjunction with a quantum mechanical approach. Anal Chem 65, 2859–2872.

    Article  CAS  Google Scholar 

  • Mirzaei, H., and Regnier, F. (2006). Enhancing electrospray ionization efficiency of peptides by derivatization. Anal Chem 78, 4175–4183.

    Article  CAS  Google Scholar 

  • Molloy, M.P., and Andrews, P.C. (2001). Phosphopeptide derivatization signatures to identify serine and threonine phosphorylated peptides by mass spectrometry. Anal Chem 73, 5387–5394.

    Article  CAS  Google Scholar 

  • Moritz, R.L., Eddes, J.S., Reid, G.E., and Simpson, R.J. (1996). S-pyridylethylation of intact polyacrylamide gels and in situ digestion of electrophoretically separated proteins: A rapid mass spectrometric method for identifying cysteine-containing peptides. Electrophoresis 17, 907–917.

    Article  CAS  Google Scholar 

  • Nishikaze, T., and Takayama, M. (2006). Cooperative effect of factors governing molecular ion yields in desorption/ionization mass spectrometry. Rapid Commun Mass Spectrom 20, 376–382.

    Article  CAS  Google Scholar 

  • Reid, G.E., Roberts, K.D., Simpson, R.J., and O’Hair, R.A. (2005). Selective identification and quantitative analysis of methionine containing peptides by charge derivatization and tandem mass spectrometry. J Am Soc Mass Spectrom 16, 1131–1150.

    Article  CAS  Google Scholar 

  • Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., et al. (2004). Multiplexed Protein Quantitation in Saccharomyces cerevisiae using amine-reactive Isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.

    Article  CAS  Google Scholar 

  • Roth, K.D., Huang, Z.H., Sadagopan, N., and Watson, J.T. (1998). Charge derivatization of peptides for analysis by mass spectrometry. Mass Spectrom Rev 17, 255–274.

    Article  CAS  Google Scholar 

  • Sadagopan, N., and Watson, J.T. (2000). Investigation of the tris(trimethoxyphenyl)phosphonium acetyl charged derivatives of peptides by electrospray ionization mass spectrometry and tandem mass spectrometry. J Am Soc Mass Spectrom 11, 107–119.

    Article  CAS  Google Scholar 

  • Staudenmann, W., and James, P. (2001). Interpreting Peptide Tandem Mass-Spectrometry Fragmentation Spectra. In Proteome Research: Mass Spectrometry, P. James, ed. (Berlin, Springer), pp. 143–166.

    Google Scholar 

  • Steen, H., and Mann, M. (2002). A new derivatization strategy for the analysis of phosphopeptides by precursor ion scanning in positive ion mode. J Am Soc Mass Spectrom 13, 996–1003.

    Article  CAS  Google Scholar 

  • Stults, J.T., Lai, J., McCune, S., and Wetzel, R. (1993). Simplification of high-energy collision spectra of peptides by amino-terminal derivatization. Anal Chem 65, 1703–1708.

    Article  CAS  Google Scholar 

  • Swaney, D.L., McAlister, G.C., and Coon, J.J. (2008). Decision tree-driven tandem mass spectrometry for shotgun proteomics. Nat Methods 5, 959–964.

    Article  CAS  Google Scholar 

  • Syka, J.E., Coon, J.J., Schroeder, M.J., Shabanowitz, J., and Hunt, D.F. (2004). Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101, 9528–9533.

    Article  CAS  Google Scholar 

  • Takao, T., Hori, H., Okamoto, K., Harada, A., Kamachi, M., and Shimonishi, Y. (1991). Facile assignment of sequence ions of a peptide labelled with 18O at the carboxyl terminus. Rapid Commun Mass Spectrom 5, 312–315.

    Article  CAS  Google Scholar 

  • Taouatas, N., Drugan, M.M., Heck, A.J.R., and Mohammed, S. (2008). Straightforward ladder sequencing of peptides using a Lys-N metalloendopeptidase. Nat Methods 5, 405–407.

    Article  CAS  Google Scholar 

  • Wagner, D.S., Salari, A., Gage, D.A., Leykam, J., Fetter, J., Hollingsworth, R., and Watson, J.T. (1991). Derivatization of peptides to enhance ionization efficiency and control fragmentation during analysis by fast atom bombardment tandem mass spectrometry. Biol Mass Spectrom 20, 419–425.

    Article  CAS  Google Scholar 

  • Wang, D., and Cotter, R.J. (2005). Approach for determining protein ubiquitination sites by MALDI-TOF mass spectrometry. Anal Chem 77, 1458–1466.

    Article  CAS  Google Scholar 

  • Wang, D., Fang, S., and Wohlhueter, R.M. (2009). N-terminal derivatization of peptides with isothiocyanate analogues promoting Edman-type cleavage and enhancing sensitivity in electrospray ionization tandem mass spectrometry analysis. Anal Chem 81, 1893–1900.

    Google Scholar 

  • Wang, D., Kalb, S.R., and Cotter, R.J. (2004). Improved procedures for N-terminal sulfonation of peptides for matrix-assisted laser desorption/ionization post-source decay peptide sequencing. Rapid Commun Mass Spectrom 18, 96–102.

    Article  CAS  Google Scholar 

  • Wang, D., Kalume, D., Pickart, C., Pandey, A., and Cotter, R.J. (2006). Identification of protein ubiquitylation by electrospray ionization tandem mass spectrometric analysis of sulfonated tryptic peptides. Anal Chem 78, 3681–3687.

    Article  CAS  Google Scholar 

  • Williamson, B.L., Marchese, J., and Morrice, N.A. (2006). Automated identification and quantification of protein phosphorylation sites by LC/MS on a hybrid triple quadrupole linear ion trap mass spectrometer. Mol Cell Proteomics 5, 337–346.

    CAS  Google Scholar 

  • Wong, S.S. (1991). Chemistry of Protein Conjugation and Cross-Linking (Boca Raton, FL, CRC Press).

    Google Scholar 

  • Wu, Z., and Fenselau, C. (1992). Proton affinity of arginine measured by the kinetic approach. Rapid Commun Mass Spectrom 6, 403–405.

    Article  CAS  Google Scholar 

  • Xu, Y., Zhang, L., Lu, H., and Yang, P. (2008). Mass spectrometry analysis of phosphopeptides after peptide carboxy group derivatization. Anal Chem 80, 8324–8328.

    Article  CAS  Google Scholar 

  • Yalcin, T., Khouw, C., Csizmadia, I.G., Peterson, M.R., and Harrison, A.G. (1995). Why are B ions stable species in peptide spectra? J Am Soc Mass Spectrom 6, 1165–1174.

    Article  CAS  Google Scholar 

  • Zubarev, R.A., Horn, D.M., Fridriksson, E.K., Kelleher, N.L., Kruger, N.A., Lewis, M.A., Carpenter, B.K., and McLafferty, F.W. (2000). Electron capture dissociation for structural characterization of multiply charged protein cations. Anal Chem 72, 563–573.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Arnott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Arnott, D., Liu, P.S., Molina, P., Phu, L., Sandoval, W.N. (2011). Manipulating the Mass Spectrometric Properties of Peptides through Selective Chemical Modification. In: Ivanov, A., Lazarev, A. (eds) Sample Preparation in Biological Mass Spectrometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0828-0_2

Download citation

Publish with us

Policies and ethics