Sample Handling of Body Fluids for Proteomics

  • Joao A. PauloEmail author
  • Ali R. Vaezzadeh
  • Darwin L. Conwell
  • Richard S. Lee
  • Hanno Steen


This chapter provides an overview of different approaches that can be used for sample preparation of body fluids for proteomics. Sample collection, protein extraction, protease inhibitor supplementation, sample storage, and abundant protein depletion are presented here in the context of various human body fluids. We emphasize that the particular set of techniques chosen for such investigations tightly correlates with the fluid to be analyzed, as no consensus methods are appropriate for all body fluids. However, we stress the need for standardized methods for the individual body fluids which is paramount in obtaining reproducible and robust data when analyzing human body fluids. In addition, we provide examples of optimized sample handling techniques using a systemic (urine) and a proximal body fluid (pancreatic fluid).


Body fluids Biomarkers Sample handling Urine Pancreas Pancreatitis Kidney 


  1. Anderson, N.L., and Anderson, N.G. (2002). The human plasma proteome: History, character, and diagnostic prospects. Mol Cell Proteomics 1, 845–867.Google Scholar
  2. Anderson, N.L., Polanski, M., Pieper, R., Gatlin, T., Tirumalai, R.S., Conrads, T.P., Veenstra, T.D., Adkins, J.N., Pounds, J.G., Fagan, R., et al. (2004). The human plasma proteome: A nonredundant list developed by combination of four separate sources. Mol Cell Proteomics 3, 311–326.Google Scholar
  3. Barelli, S., Crettaz, D., Thadikkaran, L., Rubin, O., and Tissot, J.D. (2007). Plasma/serum proteomics: Pre-analytical issues. Expert Rev Proteomics 4, 363–370.Google Scholar
  4. Barratt, J., and Topham, P. (2007). Urine proteomics: The present and future of measuring urinary protein components in disease. CMAJ 177, 361–368.Google Scholar
  5. Beier, J., Beeh, K.M., Kornmann, O., and Buhl, R. (2004). Induced sputum methodology: Validity and reproducibility of total glutathione measurement in supernatant of healthy and asthmatic individuals. J Lab Clin Med 144, 38–44.Google Scholar
  6. Bjorhall, K., Miliotis, T., and Davidsson, P. (2005). Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics 5, 307–317.Google Scholar
  7. Boschetti, E., Lomas, L., Citterio, A., and Righetti, P.G. (2007). Romancing the ‘hidden proteome’, Anno Domini two zero zero seven. J Chromatogr A 1153, 277–290.Google Scholar
  8. Bottini, P.V., Ribeiro Alves, M.A., and Garlipp, C.R. (2002). Electrophoretic pattern of concentrated urine: Comparison between 24-hour collection and random samples. Am J Kidney Dis 39, E2.Google Scholar
  9. Bramham, K., Mistry, H.D., Poston, L., Chappell, L.C., and Thompson, A.J. (2009). The non-invasive biopsy--will urinary proteomics make the renal tissue biopsy redundant? QJM 102, 523–538.Google Scholar
  10. Candiano, G., Musante, L., Bruschi, M., Petretto, A., Santucci, L., Del Boccio, P., Pavone, B., Perfumo, F., Urbani, A., Scolari, F., et al. (2006). Repetitive fragmentation products of albumin and alpha1-antitrypsin in glomerular diseases associated with nephrotic syndrome. J Am Soc Nephrol 17, 3139–3148.Google Scholar
  11. Casado, B., Pannell, L.K., Iadarola, P., and Baraniuk, J.N. (2005). Identification of human nasal mucous proteins using proteomics. Proteomics 5, 2949–2959.Google Scholar
  12. Castagna, A., Cecconi, D., Sennels, L., Rappsilber, J., Guerrier, L., Fortis, F., Boschetti, E., Lomas, L., and Righetti, P.G. (2005). Exploring the hidden human urinary proteome via ligand library beads. J Proteome Res 4, 1917–1930.Google Scholar
  13. Cavaletto, M., Giuffrida, M.G., and Conti, A. (2004). The proteomic approach to analysis of human milk fat globule membrane. Clin Chim Acta 347, 41–48.Google Scholar
  14. Chen, R., Brentnall, T.A., Pan, S., Cooke, K., Moyes, K.W., Lane, Z., Crispin, D.A., Goodlett, D.R., Aebersold, R., and Bronner, M.P. (2007a). Quantitative proteomics analysis reveals that proteins differentially expressed in chronic pancreatitis are also frequently involved in pancreatic cancer. Mol Cell Proteomics 6, 1331–1342.Google Scholar
  15. Chen, R., Pan, S., Cooke, K., Moyes, K.W., Bronner, M.P., Goodlett, D.R., Aebersold, R., and Brentnall, T.A. (2007b). Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis. Pancreas 34, 70–79.Google Scholar
  16. Chen, R., Yi, E.C., Donohoe, S., Pan, S., Eng, J., Cooke, K., Crispin, D.A., Lane, Z., Goodlett, D.R., Bronner, M.P., et al. (2005). Pancreatic cancer proteome: the proteins that underlie invasion, metastasis, and immunologic escape. Gastroenterology 129, 1187–1197.Google Scholar
  17. Chowdhury, R., Bhutani, M.S., Mishra, G., Toskes, P.P., and Forsmark, C.E. (2005). Comparative analysis of direct pancreatic function testing versus morphological assessment by endoscopic ultrasonography for the evaluation of chronic unexplained abdominal pain of presumed pancreatic origin. Pancreas 31, 63–68.Google Scholar
  18. Conwell, D.L., Zuccaro, G., Morrow, J.B., Van Lente, F., O’Laughlin, C., Vargo, J.J., and Dumot, J.A. (2002). Analysis of duodenal drainage fluid after cholecystokinin (CCK) stimulation in healthy volunteers. Pancreas 25, 350–354.Google Scholar
  19. Conwell, D.L., Zuccaro, G., Jr., Vargo, J.J., Morrow, J.B., Obuchowski, N., Dumot, J.A., Trolli, P.A., Burton, A., O’Laughlin, C., and Van Lente, F. (2003a). An endoscopic pancreatic function test with cholecystokinin-octapeptide for the diagnosis of chronic pancreatitis. Clin Gastroenterol Hepatol 1, 189–194.Google Scholar
  20. Conwell, D.L., Zuccaro, G., Jr., Vargo, J.J., Trolli, P.A., Vanlente, F., Obuchowski, N., Dumot, J.A., and O’Laughlin, C. (2003b). An endoscopic pancreatic function test with synthetic porcine secretin for the evaluation of chronic abdominal pain and suspected chronic pancreatitis. Gastrointest Endosc 57, 37–40.Google Scholar
  21. Crnogorac-Jurcevic, T., Gangeswaran, R., Bhakta, V., Capurso, G., Lattimore, S., Akada, M., Sunamura, M., Prime, W., Campbell, F., Brentnall, T.A., et al. (2005). Proteomic analysis of chronic pancreatitis and pancreatic adenocarcinoma. Gastroenterology 129, 1454–1463.Google Scholar
  22. Cui, Y., Tian, M., Zong, M., Teng, M., Chen, Y., Lu, J., Jiang, J., Liu, X., and Han, J. (2008). Proteomic analysis of pancreatic ductal adenocarcinoma compared with normal adjacent pancreatic tissue and pancreatic benign cystadenoma. Pancreatology 9, 89–98.Google Scholar
  23. D’Auria, E., Agostoni, C., Giovannini, M., Riva, E., Zetterstrom, R., Fortin, R., Greppi, G.F., Bonizzi, L., and Roncada, P. (2005). Proteomic evaluation of milk from different mammalian species as a substitute for breast milk. Acta Paediatr 94, 1708–1713.Google Scholar
  24. De Ceuninck, F., and Berenbaum, F. (2009). Proteomics: Addressing the challenges of osteoarthritis. Drug Discov Today 14, 661–667.Google Scholar
  25. Decramer, S., Gonzalez de Peredo, A., Breuil, B., Mischak, H., Monsarrat, B., Bascands, J.L., and Schanstra, J.P. (2008). Urine in clinical proteomics. Mol Cell Proteomics 7, 1850–1862.Google Scholar
  26. Delmotte, N., Lasaosa, M., Tholey, A., Heinzle, E., and Huber, C.G. (2007). Two-dimensional reversed-phase x ion-pair reversed-phase HPLC: An alternative approach to high-resolution peptide separation for shotgun proteome analysis. J Proteome Res 6, 4363–4373.Google Scholar
  27. Di Quinzio, M.K., Oliva, K., Holdsworth, S.J., Ayhan, M., Walker, S.P., Rice, G.E., Georgiou, H.M., and Permezel, M. (2007). Proteomic analysis and characterisation of human cervico-vaginal fluid proteins. Aust N Z J Obstet Gynaecol 47, 9–15.Google Scholar
  28. DiMagno, E.P., Go, V.L., and Summerskill, W.H. (1973). Relations between pancreatic enzyme outputs and malabsorption in severe pancreatic insufficiency. N Engl J Med 288, 813–815.Google Scholar
  29. Dwivedi, R.C., Spicer, V., Harder, M., Antonovici, M., Ens, W., Standing, K.G., Wilkins, J.A., and Krokhin, O.V. (2008). Practical implementation of 2D HPLC scheme with accurate peptide retention prediction in both dimensions for high-throughput bottom-up proteomics. Anal Chem 80, 7036–7042.Google Scholar
  30. Echan, L.A., Tang, H.Y., Ali-Khan, N., Lee, K., and Speicher, D.W. (2005). Depletion of multiple high-abundance proteins improves protein profiling capacities of human serum and plasma. Proteomics 5, 3292–3303.Google Scholar
  31. Elschenbroich, S., Ignatchenko, V., Sharma, P., Schmitt-Ulms, G., Gramolini, A.O., and Kislinger, T. (2009). Peptide separations by on-line MudPIT compared to isoelectric focusing in an off-gel format: Application to a membrane-enriched fraction from C2C12 mouse skeletal muscle cells. J Proteome Res 8, 4860–4869.Google Scholar
  32. Fiedler, G.M., Baumann, S., Leichtle, A., Oltmann, A., Kase, J., Thiery, J., and Ceglarek, U. (2007). Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Clin Chem 53, 421–428.Google Scholar
  33. Finnie, C., and Svensson, B. (2002). Proteolysis during the isoelectric focusing step of two-dimensional gel electrophoresis may be a common problem. Anal Biochem 311, 182–186.Google Scholar
  34. Fliser, D., Novak, J., Thongboonkerd, V., Argiles, A., Jankowski, V., Girolami, M.A., Jankowski, J., and Mischak, H. (2007). Advances in urinary proteome analysis and biomarker discovery. J Am Soc Nephrol 18, 1057–1071.Google Scholar
  35. Fountoulakis, M., Juranville, J.F., Jiang, L., Avila, D., Roder, D., Jakob, P., Berndt, P., Evers, S., and Langen, H. (2004). Depletion of the high-abundance plasma proteins. Amino Acids 27, 249–259.Google Scholar
  36. Gerber, S.A., Kettenbach, A.N., Rush, J., and Gygi, S.P. (2007). The absolute quantification strategy: Application to phosphorylation profiling of human separase serine 1126. Methods Mol Biol 359, 71–86.Google Scholar
  37. Gerber, S.A., Rush, J., Stemman, O., Kirschner, M.W., and Gygi, S.P. (2003). Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100, 6940–6945.Google Scholar
  38. Gerszten, R.E., and Wang, T.J. (2008). The search for new cardiovascular biomarkers. Nature 451, 949–952.Google Scholar
  39. Gonzales, P.A., Pisitkun, T., Hoffert, J.D., Tchapyjnikov, D., Star, R.A., Kleta, R., Wang, N.S., and Knepper, M.A. (2009). Large-scale proteomics and phosphoproteomics of urinary exosomes. JASN 20, 363–379.Google Scholar
  40. Gonzalez-Buitrago, J.M., Ferreira, L., and Lorenzo, I. (2007). Urinary proteomics. Clin Chim Acta 375, 49–56.Google Scholar
  41. Good, D.M., Thongboonkerd, V., Novak, J., Bascands, J.L., Schanstra, J.P., Coon, J.J., Dominiczak, A., and Mischak, H. (2007). Body fluid proteomics for biomarker discovery: Lessons from the past hold the key to success in the future. J Proteome Res 6, 4549–4555.Google Scholar
  42. Gozal, D., Jortani, S., Snow, A.B., Kheirandish-Gozal, L., Bhattacharjee, R., Kim, J., and Capdevila, O.S. (2009). Two-dimensional differential in-gel electrophoresis proteomic approaches reveal urine candidate biomarkers in pediatric obstructive sleep apnea. Am J Respir Crit Care Med 180, 1253–1261.Google Scholar
  43. Gronborg, M., Bunkenborg, J., Kristiansen, T.Z., Jensen, O.N., Yeo, C.J., Hruban, R.H., Maitra, A., Goggins, M.G., and Pandey, A. (2004). Comprehensive proteomic analysis of human pancreatic juice. J Proteome Res 3, 1042–1055.Google Scholar
  44. Gronborg, M., Kristiansen, T.Z., Iwahori, A., Chang, R., Reddy, R., Sato, N., Molina, H., Jensen, O.N., Hruban, R.H., Goggins, M.G., et al. (2006). Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol Cell Proteomics 5, 157–171.Google Scholar
  45. Grote, T., and Logsdon, C.D. (2007). Progress on molecular markers of pancreatic cancer. Curr Opin Gastroenterol 23, 508–514.Google Scholar
  46. Haigh, B.J., Stewart, K.W., Whelan, J.R., Barnett, M.P., Smolenski, G.A., and Wheeler, T.T. (2010). Alterations in the salivary proteome associated with periodontitis. J Clin Periodontol 37, 241–247.Google Scholar
  47. Haltiwanger, R.S., and Lowe, J.B. (2004). Role of glycosylation in development. Annu Rev Biochem 73, 491–537.Google Scholar
  48. Han, X., Aslanian, A., and Yates, J.R., 3rd (2008). Mass spectrometry for proteomics. Curr Opin Chem Biol 12, 483–490.Google Scholar
  49. Hauskrecht, M., Pelikan, R., Malehorn, D.E., Bigbee, W.L., Lotze, M.T., Zeh, H.J., Whitcomb, D.C., and Lyons-Weiler, J. (2005). Feature selection for classification of SELDI-TOF-MS proteomic profiles. Appl Bioinformatics 4, 227–246.Google Scholar
  50. Heide, K., Haupt, H., and Schwick, H.G. (1997). Plasma Protein Fractionation, Vol. 3 (New York, NY, Academic).Google Scholar
  51. Hortin, G.L., Jortani, S.A., Ritchie, J.C., Jr., Valdes, R., Jr., and Chan, D.W. (2006). Proteomics: A new diagnostic frontier. Clin Chem 52, 1218–1222.Google Scholar
  52. Hortin, G.L., and Sviridov, D. (2007). Diagnostic potential for urinary proteomics. Pharmacogenomics 8, 237–255.Google Scholar
  53. Hsieh, S.Y., Chen, R.K., Pan, Y.H., and Lee, H.L. (2006). Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling. Proteomics 6, 3189–3198.Google Scholar
  54. Hu, S., Xie, Y., Ramachandran, P., Ogorzalek Loo, R.R., Li, Y., Loo, J.A., and Wong, D.T. (2005). Large-scale identification of proteins in human salivary proteome by liquid chromatography/mass spectrometry and two-dimensional gel electrophoresis-mass spectrometry. Proteomics 5, 1714–1728.Google Scholar
  55. Huang, C.M. (2004). Comparative proteomic analysis of human whole saliva. Arch Oral Biol 49, 951–962.Google Scholar
  56. Huang, H.L., Stasyk, T., Morandell, S., Mogg, M., Schreiber, M., Feuerstein, I., Huck, C.W., Stecher, G., Bonn, G.K., and Huber, L.A. (2005). Enrichment of low-abundant serum proteins by albumin/immunoglobulin G immunoaffinity depletion under partly denaturing conditions. Electrophoresis 26, 2843–2849.Google Scholar
  57. Issaq, H.J., Xiao, Z., and Veenstra, T.D. (2007). Serum and plasma proteomics. Chem Rev 107, 3601–3620.Google Scholar
  58. Ivanov, V.T., and Yatskin, O.N. (2005). Peptidomics: A logical sequel to proteomics. Expert Rev Proteomics 2, 463–473.Google Scholar
  59. Jiang, L., He, L., and Fountoulakis, M. (2004). Comparison of protein precipitation methods for sample preparation prior to proteomic analysis. J Chromatogr A 1023, 317–320.Google Scholar
  60. Ke, E., Patel, B.B., Liu, T., Li, X.M., Haluszka, O., Hoffman, J.P., Ehya, H., Young, N.A., Watson, J.C., Weinberg, D.S., et al. (2009). Proteomic analyses of pancreatic cyst fluids. Pancreas 38, 33–42.Google Scholar
  61. Kentsis, A., Monigatti, F., Dorff, K., Campagne, F., Bachur, R., and Steen, H. (2009). Urine proteomics for profiling of human disease using high accuracy mass spectrometry. Proteomics Clin Appl 3, 1052–1061.Google Scholar
  62. Kirkpatrick, D.S., Gerber, S.A., and Gygi, S.P. (2005). The absolute quantification strategy: A general procedure for the quantification of proteins and post-translational modifications. Methods 35, 265–273.Google Scholar
  63. Kojima, T., Andersen, E., Sanchez, J.C., Wilkins, M.R., Hochstrasser, D.F., Pralong, W.F., and Cimasoni, G. (2000). Human gingival crevicular fluid contains MRP8 (S100A8) and MRP14 (S100A9), two calcium-binding proteins of the S100 family. J Dent Res 79, 740–747.Google Scholar
  64. Koopmann, J., Fedarko, N.S., Jain, A., Maitra, A., Iacobuzio-Donahue, C., Rahman, A., Hruban, R.H., Yeo, C.J., and Goggins, M. (2004). Evaluation of osteopontin as biomarker for pancreatic adenocarcinoma. Cancer Epidemiol Biomarkers Prev 13, 487–491.Google Scholar
  65. Koyama, R., Nakanishi, T., Ikeda, T., and Shimizu, A. (2003). Catalogue of soluble proteins in human vitreous humor by one-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization mass spectrometry including seven angiogenesis-regulating factors. J Chromatogr B Anal Technol Biomed Life Sci 792, 5–21.Google Scholar
  66. Latterich, M., Abramovitz, M., and Leyland-Jones, B. (2008). Proteomics: New technologies and clinical applications. Eur J Cancer 44, 2737–2741.Google Scholar
  67. Lee, R.S., Monigatti, F., Briscoe, A.C., Waldon, Z., Freeman, M.R., and Steen, H. (2008). Optimizing sample handling for urinary proteomics. J Proteome Res 7, 4022–4030.Google Scholar
  68. Li, C., Simeone, D.M., Brenner, D.E., Anderson, M.A., Shedden, K.A., Ruffin, M.T., and Lubman, D.M. (2008). Pancreatic cancer serum detection using a lectin/glyco-antibody array method. J Proteome Res 8, 483–492.Google Scholar
  69. Lifshitz, E., and Kramer, L. (2000). Outpatient urine culture: does collection technique matter? Arch Intern Med 160, 2537–2540.Google Scholar
  70. Lohr, M., and Faissner, R. (2004). Proteomics in pancreatic disease. Pancreatology 4, 67–75.Google Scholar
  71. Lowenthal, M.S., Mehta, A.I., Frogale, K., Bandle, R.W., Araujo, R.P., Hood, B.L., Veenstra, T.D., Conrads, T.P., Goldsmith, P., Fishman, D., et al. (2005). Analysis of albumin-associated peptides and proteins from ovarian cancer patients. Clin Chem 51, 1933–1945.Google Scholar
  72. Lundblad, R.L. (2004). Considerations for the use of blood plasma and serum for proteomic analysis. Internet J Genomics Proteomics 1.Google Scholar
  73. Lundgren, D.H., Hwang, S.I., Wu, L., and Han, D.K. (2010) Role of spectral counting in quantitative proteomics. Expert Rev Proteomics 7, 39–53.Google Scholar
  74. Luque-Garcia, J.L., and Neubert, T.A. (2007). Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J Chromatogr A 1153, 259–276.Google Scholar
  75. Macarthur, D.J., and Jacques, N.A. (2003). Proteome analysis of oral pathogens. J Dent Res 82, 870–876.Google Scholar
  76. Manabe, T., Miyamoto, H., Inoue, K., Nakatsu, M., and Arai, M. (1999). Separation of human cerebrospinal fluid proteins by capillary isoelectric focusing in the absence of denaturing agents. Electrophoresis 20, 3677–3683.Google Scholar
  77. Manadas, B., English, J.A., Wynne, K.J., Cotter, D.R., and Dunn, M.J. (2009). Comparative analysis of OFFGel, strong cation exchange with pH gradient, and RP at high pH for first-dimensional separation of peptides from a membrane-enriched protein fraction. Proteomics 9, 5194–5198.Google Scholar
  78. Marshall, J., Kupchak, P., Zhu, W., Yantha, J., Vrees, T., Furesz, S., Jacks, K., Smith, C., Kireeva, I., Zhang, R., et al. (2003). Processing of serum proteins underlies the mass spectral fingerprinting of myocardial infarction. J Proteome Res 2, 361–372.Google Scholar
  79. McDonald, W.H., Ohi, R., Miyamoto, D.T., Mitchison, T.J., and Yates, J.R. (2002). Comparison of three directly coupled HPLC MS/MS strategies for identification of proteins from complex mixtures: Single-dimension LC-MS/MS, 2-phase MudPIT, and 3-phase MudPIT. Int J Mass Spectrom 219, 245–251.Google Scholar
  80. Mischak, H., Kaiser, T., Walden, M., Hillmann, M., Wittke, S., Herrmann, A., Knueppel, S., Haller, H., and Fliser, D. (2004). Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci (Lond) 107, 485–495.Google Scholar
  81. Mischak, H., Rolf, A., Banks, E., Mark, C., Joshua, C., Anna, D., Jochen, H.H.E., Danilo, F., Mark, G., Henning, H., et al. (2007). Clinical proteomics: a need to define the field and to begin to set adequate standards. Proteomics Clin Appl 1, 148–156.Google Scholar
  82. Motoyama, A., and Yates, J.R., 3rd (2008). Multidimensional LC separations in shotgun proteomics. Anal Chem 80, 7187–7193.Google Scholar
  83. Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., and Waggoner, A.S. (1989). Cyanine dye labeling reagents containing isothiocyanate groups. Cytometry 10, 11–19.Google Scholar
  84. Muller, H., and Brenner, H. (2006). Urine markers as possible tools for prostate cancer screening: Review of performance characteristics and practicality. Clin Chem 52, 562–573.Google Scholar
  85. Munro, N.P., Cairns, D.A., Clarke, P., Rogers, M., Stanley, A.J., Barrett, J.H., Harnden, P., Thompson, D., Eardley, I., Banks, R.E., et al. (2006). Urinary biomarker profiling in transitional cell carcinoma. Int J Cancer 119, 2642–2650.Google Scholar
  86. Musante, L., Candiano, G., Petretto, A., Bruschi, M., Dimasi, N., Caridi, G., Pavone, B., Del Boccio, P., Galliano, M., Urbani, A., et al. (2007). Active focal segmental glomerulosclerosis is associated with massive oxidation of plasma albumin. J Am Soc Nephrol 18, 799–810.Google Scholar
  87. Nguyen, C.Q., and Peck, A.B. (2009). Unraveling the pathophysiology of Sjogren syndrome-associated dry eye disease. Ocul Surf 7, 11–27.Google Scholar
  88. Noel-Georis, I., Bernard, A., Falmagne, P., and Wattiez, R. (2001). Proteomics as the tool to search for lung disease markers in bronchoalveolar lavage. Dis Markers 17, 271–284.Google Scholar
  89. Nurkka, A., Obiero, J., Kayhty, H., and Scott, J.A. (2003). Effects of sample collection and storage methods on antipneumococcal immunoglobulin A in saliva. Clin Diagn Lab Immunol 10, 357–361.Google Scholar
  90. Omenn, G.S., States, D.J., Adamski, M., Blackwell, T.W., Menon, R., Hermjakob, H., Apweiler, R., Haab, B.B., Simpson, R.J., Eddes, J.S., et al. (2005). Overview of the HUPO Plasma Proteome Project: Results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 5, 3226–3245.Google Scholar
  91. Ortsater, H., Sundsten, T., Lin, J.M., and Bergsten, P. (2007). Evaluation of the SELDI-TOF MS technique for protein profiling of pancreatic islets exposed to glucose and oleate. Proteomics 7, 3105–3115.Google Scholar
  92. Paulo, J.A., Lee, L.S., Wu, B., Repas, K., Mortele, K.J., Banks, P.A., Steen, H., and Conwell, D.L. (2010a). Identification of pancreas-specific proteins in endoscopically (endoscopic pancreatic function test) collected pancreatic fluid with liquid chromatography-tandem mass spectrometry. Pancreas 39, 889–896.Google Scholar
  93. Paulo, J.A., Lee, L.S., Wu, B., Repas, K., Banks, P.A., Conwell, D.L., and Steen, H. (2010b). Optimized sample preparation of endoscopic collected pancreatic fluid for SDS-PAGE analysis. Electrophoresis 31, 2377–2387.Google Scholar
  94. Paulo, J.A., Lee, L.S., Wu, B., Repas, K., Banks, P.A., Conwell, D.L., and Steen, H. (2010c). Proteomic analysis of endoscopically (endoscopic pancreatic function test) collected gastroduodenal fluid using in-gel tryptic digestion followed by LC-MS/MS. Proteomics Clin Appl 4, 715–725.Google Scholar
  95. Paulo, J.A., Lee, L.S., Wu, B., Banks, P.A., Steen, H., and Conwell, D.L. (2011). Mass spectrometry-based proteomics of endoscopically collected pancreatic fluid in chronic pancreatitis research. Proteomics Clin Appl 5, 109–120.Google Scholar
  96. Pendyala, G., Trauger, S.A., Kalisiak, E., Ellis, R.J., Siuzdak, G., and Fox, H.S. (2009). Cerebrospinal fluid proteomics reveals potential pathogenic changes in the brains of SIV-infected monkeys. J Proteome Res 8, 2253–2260.Google Scholar
  97. Peng, J., Elias, J.E., Thoreen, C.C., Licklider, L.J., and Gygi, S.P. (2003). Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: The yeast proteome. J Proteome Res 2, 43–50.Google Scholar
  98. Pieper, R., Gatlin, C.L., McGrath, A.M., Makusky, A.J., Mondal, M., Seonarain, M., Field, E., Schatz, C.R., Estock, M.A., Ahmed, N., et al. (2004). Characterization of the human urinary proteome: A method for high-resolution display of urinary proteins on two-dimensional electrophoresis gels with a yield of nearly 1400 distinct protein spots. Proteomics 4, 1159–1174.Google Scholar
  99. Pieper, R., Su, Q., Gatlin, C.L., Huang, S.T., Anderson, N.L., and Steiner, S. (2003). Multi-component immunoaffinity subtraction chromatography: An innovative step towards a comprehensive survey of the human plasma proteome. Proteomics 3, 422–432.Google Scholar
  100. Pisitkun, T., Shen, R.F., and Knepper, M.A. (2004). Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101, 13368–13373.Google Scholar
  101. Rai, A.J., Gelfand, C.A., Haywood, B.C., Warunek, D.J., Yi, J., Schuchard, M.D., Mehigh, R.J., Cockrill, S.L., Scott, G.B., Tammen, H., et al. (2005). HUPO Plasma Proteome Project specimen collection and handling: Towards the standardization of parameters for plasma proteome samples. Proteomics 5, 3262–3277.Google Scholar
  102. Rai, A.J., and Vitzthum, F. (2006). Effects of preanalytical variables on peptide and protein measurements in human serum and plasma: Implications for clinical proteomics. Expert Rev Proteomics 3, 409–426.Google Scholar
  103. Rifai, N., Gillette, M.A., and Carr, S.A. (2006). Protein biomarker discovery and validation: The long and uncertain path to clinical utility. Nat Biotechnol 24, 971–983.Google Scholar
  104. Ross, P.L., Huang, Y.N., Marchese, J.N., Williamson, B., Parker, K., Hattan, S., Khainovski, N., Pillai, S., Dey, S., Daniels, S., et al. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3, 1154–1169.Google Scholar
  105. Rosty, C., and Goggins, M. (2002). Early detection of pancreatic carcinoma. Hematol Oncol Clin North Am 16, 37–52.Google Scholar
  106. Saetun, P., Semangoen, T., and Thongboonkerd, V. (2009). Characterizations of urinary sediments precipitated after freezing and their effects on urinary protein and chemical analyses. Am J Physiol Renal Physiol 296, F1346–1354.Google Scholar
  107. Scarlett, C.J., Samra, J.S., Xue, A., Baxter, R.C., and Smith, R.C. (2007). Classification of pancreatic cystic lesions using SELDI-TOF mass spectrometry. ANZ J Surg 77, 648–653.Google Scholar
  108. Schaub, S., Wilkins, J., Weiler, T., Sangster, K., Rush, D., and Nickerson, P. (2004). Urine protein profiling with surface-enhanced laser-desorption/ionization time-of-flight mass spectrometry. Kidney Int 65, 323–332.Google Scholar
  109. Schulz-Knappe, P., Schrader, M., and Zucht, H.D. (2005). The peptidomics concept. Comb Chem High Throughput Screen 8, 697–704.Google Scholar
  110. Seike, M., Kondo, T., Fujii, K., Yamada, T., Gemma, A., Kudoh, S., and Hirohashi, S. (2004). Proteomic signature of human cancer cells. Proteomics 4, 2776–2788.Google Scholar
  111. Shaw, J.L., Smith, C.R., and Diamandis, E.P. (2007). Proteomic analysis of human cervico-vaginal fluid. J Proteome Res 6, 2859–2865.Google Scholar
  112. Shen, Y., Kim, J., Strittmatter, E.F., Jacobs, J.M., Camp, D.G., 2nd, Fang, R., Tolie, N., Moore, R.J., and Smith, R.D. (2005). Characterization of the human blood plasma proteome. Proteomics 5, 4034–4045.Google Scholar
  113. Shevchenko, A., Tomas, H., Havlis, J., Olsen, J.V., and Mann, M. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1, 2856–2860.Google Scholar
  114. Shevchenko, A., Wilm, M., Vorm, O., and Mann, M. (1996). Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 68, 850–858.Google Scholar
  115. Simpson, R.J., Lim, J.W., Moritz, R.L., and Mathivanan, S. (2009). Exosomes: Proteomic insights and diagnostic potential. Expert Rev Proteomics 6, 267–283.Google Scholar
  116. Stark, M., Jornvall, H., and Johansson, J. (1999). Isolation and characterization of hydrophobic polypeptides in human bile. Eur J Biochem 266, 209–214.Google Scholar
  117. Stevens, T., Conwell, D., Zuccaro, G., Van Lente, F., Khandwala, F., Hanaway, P., Vargo, J.J., and Dumot, J.A. (2004a). Analysis of pancreatic elastase-1 concentrations in duodenal aspirates from healthy subjects and patients with chronic pancreatitis. Dig Dis Sci 49, 1405–1411.Google Scholar
  118. Stevens, T., Conwell, D.L., Zuccaro, G., Van Lente, F., Khandwala, F., Purich, E., Vargo, J.J., Fein, S., Dumot, J.A., Trolli, P., et al. (2004b). Electrolyte composition of endoscopically collected duodenal drainage fluid after synthetic porcine secretin stimulation in healthy subjects. Gastrointest Endosc 60, 351–355.Google Scholar
  119. Stewart, II, Thomson, T., and Figeys, D. (2001). 18O labeling: A tool for proteomics. Rapid Commun Mass Spectrom 15, 2456–2465.Google Scholar
  120. Tang, L.J., De Seta, F., Odreman, F., Venge, P., Piva, C., Guaschino, S., and Garcia, R.C. (2007). Proteomic analysis of human cervical-vaginal fluids. J Proteome Res 6, 2874–2883.Google Scholar
  121. Thompson, A., Schafer, J., Kuhn, K., Kienle, S., Schwarz, J., Schmidt, G., Neumann, T., Johnstone, R., Mohammed, A.K., and Hamon, C. (2003). Tandem mass tags: A novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75, 1895–1904.Google Scholar
  122. Thongboonkerd, V. (2007). Proteomics of Human Body Fluids: Principles, Methods, and Applications (Totowa, NJ, Humana Press).Google Scholar
  123. Thongboonkerd, V. (2008). Urinary proteomics: Towards biomarker discovery, diagnostics and prognostics. Mol Biosyst 4, 810–815.Google Scholar
  124. Thongboonkerd, V., Chutipongtanate, S., and Kanlaya, R. (2006). Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: Quantity, quality, and variability. J Proteome Res 5, 183–191.Google Scholar
  125. Thongboonkerd, V., McLeish, K.R., Arthur, J.M., and Klein, J.B. (2002). Proteomic analysis of normal human urinary proteins isolated by acetone precipitation or ultracentrifugation. Kidney Int 62, 1461–1469.Google Scholar
  126. Thongboonkerd, V., Mungdee, S., and Chiangjong, W. (2009). Should urine pH be adjusted prior to gel-based proteome analysis? J Proteome Res 8, 3206–3211.Google Scholar
  127. Thongboonkerd, V., and Saetun, P. (2007). Bacterial overgrowth affects urinary proteome analysis: Recommendation for centrifugation, temperature, duration, and the use of preservatives during sample collection. J Proteome Res 6, 4173–4181.Google Scholar
  128. Thouvenot, E., Urbach, S., Dantec, C., Poncet, J., Seveno, M., Demettre, E., Jouin, P., Touchon, J., Bockaert, J., and Marin, P. (2008). Enhanced detection of CNS cell secretome in plasma protein-depleted cerebrospinal fluid. J Proteome Res 7, 4409–4421.Google Scholar
  129. Thresher, W.C., and Swaisgood, H.E. (1990). Characterization of specific interactions of coenzymes, regulatory nucleotides and cibacron blue with nucleotide binding domains of enzymes by analytical affinity chromatography. J Mol Recognit 3, 220–228.Google Scholar
  130. Tian, M., Cui, Y.Z., Song, G.H., Zong, M.J., Zhou, X.Y., Chen, Y., and Han, J.X. (2008). Proteomic analysis identifies MMP-9, DJ-1 and A1BG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients. BMC Cancer 8, 241.Google Scholar
  131. Tomosugi, N., Kitagawa, K., Takahashi, N., Sugai, S., and Ishikawa, I. (2005). Diagnostic potential of tear proteomic patterns in Sjogren’s syndrome. J Proteome Res 4, 820–825.Google Scholar
  132. Tsangaris, G.T. (2009). From proteomics research to clinical practice. Expert Rev Proteomics 6, 235–238.Google Scholar
  133. Tyan, Y.C., Wu, H.Y., Lai, W.W., Su, W.C., and Liao, P.C. (2005a). Proteomic profiling of human pleural effusion using two-dimensional nano liquid chromatography tandem mass spectrometry. J Proteome Res 4, 1274–1286.Google Scholar
  134. Tyan, Y.C., Wu, H.Y., Su, W.C., Chen, P.W., and Liao, P.C. (2005b). Proteomic analysis of human pleural effusion. Proteomics 5, 1062–1074.Google Scholar
  135. Unlu, M., Morgan, M.E., and Minden, J.S. (1997). Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis 18, 2071–2077.Google Scholar
  136. Vaezzadeh, A.R., Steen, H., Freeman, M.R., and Lee, R.S. (2009). Proteomics and opportunities for clinical translation in urological disease. J Urol 182, 835–843.Google Scholar
  137. Vaillancourt, S., McGillivray, D., Zhang, X., and Kramer, M.S. (2007). To clean or not to clean: Effect on contamination rates in midstream urine collections in toilet-trained children. Pediatrics 119, e1288–e1293.Google Scholar
  138. Verma, M., Wright, G.L., Jr., Hanash, S.M., Gopal-Srivastava, R., and Srivastava, S. (2001). Proteomic approaches within the NCI early detection research network for the discovery and identification of cancer biomarkers. Ann N Y Acad Sci 945, 103–115.Google Scholar
  139. Walsh, N., O’Donovan, N., Kennedy, S., Henry, M., Meleady, P., Clynes, M., and Dowling, P. (2009). Identification of pancreatic cancer invasion-related proteins by proteomic analysis. Proteome Sci 7, 3.Google Scholar
  140. Wandschneider, S., Fehring, V., Jacobs-Emeis, S., Thiesen, H.J., and Lohr, M. (2001). Autoimmune pancreatic disease: preparation of pancreatic juice for proteome analysis. Electrophoresis 22, 4383–4390.Google Scholar
  141. Wang, L., Li, F., Sun, W., Wu, S., Wang, X., Zhang, L., Zheng, D., Wang, J., and Gao, Y. (2006). Concanavalin A-captured glycoproteins in healthy human urine. Mol Cell Proteomics 5, 560–562.Google Scholar
  142. Washburn, M.P., Wolters, D., and Yates, J.R., 3rd (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat Biotechnol 19, 242–247.Google Scholar
  143. Wattiez, R., and Falmagne, P. (2005). Proteomics of bronchoalveolar lavage fluid. J Chromatogr B Anal Technol Biomed Life Sci 815, 169–178.Google Scholar
  144. Welch, A.A., Mulligan, A., Bingham, S.A., and Khaw, K.T. (2008). Urine pH is an indicator of dietary acid-base load, fruit and vegetables and meat intakes: Results from the European Prospective Investigation into Cancer and Nutrition (EPIC)-Norfolk population study. Br J Nutr 99, 1335–1343.Google Scholar
  145. Wenner, B.R., Lovell, M.A., and Lynn, B.C. (2004). Proteomic analysis of human ventricular cerebrospinal fluid from neurologically normal, elderly subjects using two-dimensional LC-MS/MS. J Proteome Res 3, 97–103.Google Scholar
  146. Wilson, R., Whitelock, J.M., and Bateman, J.F. (2009). Proteomics makes progress in cartilage and arthritis research. Matrix Biol 28, 121–128.Google Scholar
  147. Wu, B., and Conwell, D.L. (2009). The endoscopic pancreatic function test. Am J Gastroenterol 104, 2381–2383.Google Scholar
  148. Wu, J.Y., Yi, C., Chung, H.R., Wang, D.J., Chang, W.C., Lee, S.Y., Lin, C.T., Yang, Y.C., and Yang, W.C. (2010). Potential biomarkers in saliva for oral squamous cell carcinoma. Oral Oncol 46, 226–231.Google Scholar
  149. Xiao, F., Chen, D., Lu, Y., Xiao, Z., Guan, L.F., Yuan, J., Wang, L., Xi, Z.Q., and Wang, X.F. (2009). Proteomic analysis of cerebrospinal fluid from patients with idiopathic temporal lobe epilepsy. Brain Res 1255, 180–189.Google Scholar
  150. Yamamoto, T., Langham, R.G., Ronco, P., Knepper, M.A., and Thongboonkerd, V. (2008). Towards standard protocols and guidelines for urine proteomics: A report on the Human Kidney and Urine Proteome Project (HKUPP) symposium and workshop, 6 October 2007, Seoul, Korea and 1 November 2007, San Francisco, CA, USA. Proteomics 8, 2156–2159.Google Scholar
  151. Yates, J.R., Ruse, C.I., and Nakorchevsky, A. (2009). Proteomics by mass spectrometry: Approaches, advances, and applications. Annu Rev Biomed Eng 11, 49–79.Google Scholar
  152. Zhao, Y., Lee, W.N., Lim, S., Go, V.L., Xiao, J., Cao, R., Zhang, H., Recker, R.R., and Xiao, G.G. (2009). Quantitative proteomics: Measuring protein synthesis using 15 N amino acid labeling in pancreatic cancer cells. Anal Chem 81, 764–771.Google Scholar
  153. Zhou, L., Lu, Z., Yang, A., Deng, R., Mai, C., Sang, X., Faber, K.N., and Lu, X. (2007). Comparative proteomic analysis of human pancreatic juice: methodological study. Proteomics 7, 1345–1355.Google Scholar
  154. Zhou, M., Lucas, D.A., Chan, K.C., Issaq, H.J., Petricoin, E.F., 3rd, Liotta, L.A., Veenstra, T.D., and Conrads, T.P. (2004). An investigation into the human serum ‘interactome’. Electrophoresis 25, 1289–1298.Google Scholar
  155. Zolotarjova, N., Martosella, J., Nicol, G., Bailey, J., Boyes, B.E., and Barrett, W.C. (2005). Differences among techniques for high-abundant protein depletion. Proteomics 5, 3304–3313.Google Scholar
  156. Zhou, H., Yuen, P.S., Pisitkun, T., Gonzales, P.A., Yasuda, H., Dear, J.W., Gross, P., Knepper, M.A., and Star, R.A. (2006). Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 69, 1471–1476.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Joao A. Paulo
    • 1
    • 2
    • 3
    Email author
  • Ali R. Vaezzadeh
    • 4
  • Darwin L. Conwell
    • 1
    • 2
  • Richard S. Lee
    • 4
  • Hanno Steen
    • 3
    • 5
  1. 1.Division of Gastroenterology, Hepatology and EndoscopyCenter for Pancreatic Disease, Brigham and Women’s HospitalBostonUSA
  2. 2.Department of MedicineHarvard Medical SchoolBostonUSA
  3. 3.Department of PathologyChildren’s Hospital Boston, Harvard Medical SchoolBostonUSA
  4. 4.Department of UrologyHarvard Medical School, Children’s Hospital BostonBostonUSA
  5. 5.Proteomics Center at Children’s Hospital BostonBostonUSA

Personalised recommendations