Skip to main content

Alternative Techniques and Sustainable Methods for the Valorisation of Lignocellulosic Biomass

  • Chapter
  • First Online:
Biomass Burning in Sub-Saharan Africa

Abstract

The burning of crop residues is still a common, but heavily polluting, means of overcoming the problem of agricultural waste disposal. The main environmental damage comes from changes in soil properties (physical, chemical and biological), greenhouse gas emissions and decreasing crop yields. The use of crop residue biomass to replace fossil fuels is a valid alternative as it also supports farmers for land release and protects the environment. Many developing countries produce large quantities of agro-waste including rice husks, palm kernel shells, coconut shells, bagasse, milling residue-sawdust and plant biomass, such as grass. Residual biomass is a negative-cost feedstock for the production of fuels and commodity chemicals but could be used on a much larger scale. The realization of these economic benefits could provide the motivation necessary to achieve this goal and increase worldwide interest in biomass conversion for energy, fuels and chemicals. This chapter will describe some alternative uses for agricultural waste in Sub-Saharan Africa from bioenergy production to biomass conversion and briquetting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corradetti, A., & Desideri, U. (2007). Should biomass be used for power generation or hydrogen production. The Journal of Engineering for Gas Turbines and Power, 129, 629–636.

    Article  CAS  Google Scholar 

  2. Hall. D. O., Rosillo-Calle, F., & De Groot, P. (1992). Biomass energy lessons from case studies in developing countries. Energy Policy 62–73.

    Google Scholar 

  3. Mersie, E. (2008). Toward energy and livelihoods security in Africa: Smallholder production and processing of bioenergy as a strategy. Natural Resources Forum, 32, 152–162.

    Article  Google Scholar 

  4. Demirbas, A. (2007). Combustion Systems for Biomass Fuel Energy Sources Part A, 29, 303–312.

    Article  CAS  Google Scholar 

  5. Demirbas, A. (2003). Fuel characteristics of olive husk and walnut, hazelnut, sunflower and almond shells. Energy Sources, 24, 213–219.

    Google Scholar 

  6. von Doderer, C. C. C., & Kleynhans, T. E. (2014). Determing the most sustainable lignocellulosic bioenenrgy system following a case study approach. Biomass and Bioenergy, 70, 273–286.

    Article  Google Scholar 

  7. Adeleye, A. B., Adetunji, A., & Bamgboye, I. (2013). Towards deriving renewable energy from aquatic macrophytes polluting water bodies in Niger Delta Region of Nigeria. Research Journal of Applied Sciences, Engineering and Technology, 5(2), 387–391.

    Article  Google Scholar 

  8. Amigun, B., Gorgens, J., & Knoetze, H. (2010). Biomethanol production from gasification of non-woody plant in South Africa: Optimum scale and economic performance. Energy Policy, 38, 312–322.

    Article  CAS  Google Scholar 

  9. MaherKD, Bressler D. C. (2007). Pyrolysis of triglyceride materials for the production of renewable fuels and chemicals. Bioresource Technology, 98(12), 2351–2368.

    Article  Google Scholar 

  10. Lynd, L. R., van Zyl, W. H., McBride, J. E., & Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Current Opinion in Biotechnology, 16, 577–583.

    Article  CAS  Google Scholar 

  11. CHOREN industries. (2007). Biomass to Liquid synthetic Sundiesel. Retrieved February 2007, from http://www.Choren.com/en/energyforall/sundiesel/S.

  12. UNDESA (United Nations Department of Economic and Social Affairs). (2007). Small scale production and use of liquid biofuels in sub-saharan Africa: Perspectives for sustainable development. Paper No 2, DESA/DSD/2007/2.

    Google Scholar 

  13. Hill, J., Nelson, L., Tilman, D., Polasky, S., & Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. PNAS, 103(30), 11206–11210.

    Article  CAS  Google Scholar 

  14. Pimentel, D. (1995). Amount of pesticides reaching target plants: Environmental impact and ethics. Journal of Agricultural and Environmental Ethics, 8, 17–29.

    Article  Google Scholar 

  15. Thomsen, S. T., González Londoño, J. E., Schmidt, J. E., & Kádár, Z. (2015). Comparison of different pretreatment strategies for ethanol production of West African biomass. Applied Biochemistry and Biotechnology, 175, 2589–2601.

    Article  CAS  Google Scholar 

  16. Tabasso, S., Carnaroglio, D., Calcio Gaudino, E., & Cravotto, G. (2015). Microwave, ultrasound and ball mill procedures for bio-waste valorization. Green Chemistry, 17, 684–693.

    Article  CAS  Google Scholar 

  17. Read, P. (2003). Carbon cycle management within creased photo-synthesis and long-term sinks Royal Society of New Zealand. http://www.rsnz.org/topics/energy/ccmgmt.php/S.

  18. Thomas, V., & Kwong, A. (2001). Ethanol as lead replacement: phasing out leaded gasoline in Africa. Energy policy, 29, 1113–1143.

    Article  Google Scholar 

  19. Jadaa, R. I. (2015). Biotechnological use of pleurotus ostreatus for the management of agroindustrial waste WO2014/124611A3.

    Google Scholar 

  20. Alade1 OS, Betiku E (2014) Potential utilization of grass as solid-fuel (Briquette) in Nigeria. Energy Sources Part A, 36, 2519–2526.

    Article  CAS  Google Scholar 

  21. Styles, D., Thorne, F., & Jones, M. B. (2008). Energy crops in Ireland: An economic comparison of willow and miscanthus production with conventional farming systems. Biomass and Bioenergy, 32, 407–421.

    Article  Google Scholar 

  22. Oladeji, J. T. (2010). Fuel characterization of briquettes produced from corncob and rice husk resides. Pacific Journal of Science and Technology, 11(1), 101–106.

    Google Scholar 

  23. Kakareka, S. V., Kukharchyk, T. I., & Khomich, V. S. (2005). Study of PAH emission from the solid fuels combustion in residential furnaces. Environmental Pollution, 133, 383–387.

    Article  CAS  Google Scholar 

  24. Grover, P. D., & Mishra, S. K. (1996). Biomass briquetting technology and practices. Bangkok, Thailand: Food and Agricultural Organization of the U.N.

    Google Scholar 

  25. Cosgrove, D. M. (1985). Understanding briquetting. Arlington, VA: VITA. ISBN 0-86619-233-6.

    Google Scholar 

  26. Musa, N. A. (2006). Fuel characteristics of some selected biomass briquettes. International Journal of Scientific and Technology Research, 3, 193–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo Cravotto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tabasso, S., Grillo, G., Mariatti, F., Cravotto, G. (2020). Alternative Techniques and Sustainable Methods for the Valorisation of Lignocellulosic Biomass. In: Mammino, L. (eds) Biomass Burning in Sub-Saharan Africa. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0808-2_7

Download citation

Publish with us

Policies and ethics