Skip to main content

Trace Gas Emissions from Domestic Biofuel Combustion in Southern Africa

  • Chapter
  • First Online:
Biomass Burning in Sub-Saharan Africa

Abstract

Biomass energy accounts for more than 90% of the total rural energy supplies in developing countries. The combustion of domestic biofuels results in the emission of trace gases such as CO2, CO, NO and CH4 and aerosols. Such gases have a significant influence on climate and biogeochemical cycles. Trace gas emissions in this study were estimated based on the amount of domestic biofuel used by rural households across southern African countries. This study found that South Africa contributes the most trace gases to the regional budget (9.12 Tg C a−1 of CO2, 0.89 Tg C a−1 of CO, 10.77 Gg N a−1 of NO and 30.25 Gg C a−1 of CH4) and Botswana the least (0.25 Tg a−1 of CO2, 0.02 Tg a−1 of CO, 0.29 Gg a−1 of NO and 0.83 Gg a−1 of CH4). Fuelwood is the dominant fuel type used in all southern African countries and contributes to high emissions of trace gases. Annual CO2, CO, NO and CH4 emissions produced in Southern Africa are 23.0 Tg C, 2.2 Tg C, 29.4 Gg N and 81.4 Gg C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryan, P., & Openshaw, K. (1991). Assessment of biomass energy resources: A discussion on its need and methodology. World Bank Industry and Energy. Department working paper, Energy series paper no. 48.

    Google Scholar 

  2. Brocard, D., Lacaux, C., Lacaux, J., Kouadio, G., & Yoboue, V. (1996). Emissions from the combustion of biofuels in West Africa. In Levine, J. S. (Ed.), Biomass burning and global change. Remote sensing, modeling and inventory development, and biomass burning in Africa (Vol. 1, pp. 350–360). Cambridge, Massachusetts: The MIT Press.

    Google Scholar 

  3. Andrasko, K. J., Ahuja, D. R., Winnett, S. M., & Tirpak, D. A. (1999). Policy options for managing biomass burning to mitigate global climate change. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implication (pp. 445–456). Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  4. Bhattacharya, S. C., Salam, P. A., & Sharma, C. (2000). Emissions from biomass energy use in some selected Asian countries. Energy, 25, 169–188.

    Article  CAS  Google Scholar 

  5. Bhattacharya, S. C., & Salam, P. A. (2002). Low greenhouse gas biomass options for cooking in the developing countries. Biomass and Bioenergy, 22, 305–317.

    Article  Google Scholar 

  6. Crutzen, P. J., & Andreae, M. O. (1990). Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science, 250, 1669–1678.

    Article  CAS  Google Scholar 

  7. Johansson, J., & Lundqvist, U. (1999). Estimating Swedish biomass energy supply. Biomass and Bioenergy, 17, 85–93.

    Article  Google Scholar 

  8. Mia, D., Ahmed, R., & Uddin, M. B. (2003). Biomass fuel use by the rural households in Chittagong region, Bangladesh. Biomass and Bioenergy, 24, 277–283.

    Article  Google Scholar 

  9. Crutzen, P. J., Heidt, L. E., Kransec, W. H., & Seiler, W. (1997). Biomass burning as a source of atmospheric trace gases, CO, H2, N2O, NO, CH3Cl and COS. Nature, 18, 253–256.

    Google Scholar 

  10. Andreae, M. O. (1991). Biomass burning: Its history, use and distribution and its impact on environmental quality and global change. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implication (pp. 3–21). Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  11. Prasad, V. K., Gupta, P. K., Sharma, C., Sarkar, A. K., Kant, Y., Badarinath, K. V. S., et al. (2000). NOx emissions from biomass burning of shifting cultivation areas from tropical deciduous forests of India–estimates from ground–based measurement. Journal of Atmospheric Environment, 34, 3271–3280.

    Article  CAS  Google Scholar 

  12. Lindesay, J. A. (1992). Biomass burning as a factor in atmospheric chemistry and terrestrial ecology. South African Journal of Science, 88, 193–202.

    Google Scholar 

  13. Gupta, P. K., Prasad, V. K., Sharma, C., Sarkar, A. K., Kant, Y., Badarinath, K. V. S., et al. (2001). CH4 emissions from biomass burning of shifting cultivation areas of tropical deciduous forest–experimental results from ground–based measurements. Chemosphere–Global Change Science, 3, 133–143.

    Article  CAS  Google Scholar 

  14. Dignon, J., & Penner, J. E. (1991). Biomass burning: A source of nitrogen oxides in the atmosphere. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implication (pp. 370–375). Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  15. Houghton, R. A. (1991). Biomass burning from the perspective of the global carbon cycles. In J. S. Levine (Ed.), Global biomass burning: Atmospheric, climatic and biospheric implication (pp. 321–325). Cambridge, Massachusetts: MIT Press.

    Google Scholar 

  16. Lindesay, J. A. (2000). African savanna fires. Global atmospheric chemistry and southern tropical atlantic regional experiment. In: B. W. Van Wilgen, M. O. Andreae, J. G. Goldammer, & J. A. Lindesay (Eds.), Fire in southern African savannas (pp. 1–15). Witwatersrand University Press.

    Google Scholar 

  17. Ludwig, J., Marufu, L. T., Huber, B., Andreae, M. O., & Helas, G. (2003). Domestic combustion of biomass fuels in developing countries: A major source of atmospheric pollutants. Journal of Atmospheric Chemistry, 23, 23–37.

    Article  Google Scholar 

  18. Yevich, R., & Logan, J. A. (2003). An assessment of biofuel use and burning of agricultural wastes in the developing world. Global Biochemical Cycles, 17, 6–40.

    Article  Google Scholar 

  19. Tshikalanke, R. P. (2006). Spatial and temporal variation of domestic biofuel consumption in southern Africa. Unpublished M.Sc. dissertation, University of the Witwatersrand.

    Google Scholar 

  20. Andreae, M. O., & Merlet, P. (2001). Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955–966.

    Article  CAS  Google Scholar 

  21. Streets, D. G., & Waldhoff, S. T. (1999). Greenhouse gas emissions from biofuel combustion in Asia. Energy, 24, 841–855.

    Article  CAS  Google Scholar 

  22. Marufu, L., Ludwig, J., Andreae, M. O., Lelieveld, S., & Helas, G. (1999). Spatial and temporal variation in domestic biofuel consumption rates and patterns in Zimbabwe; Implication for the atmospheric trace gas emissions. Biomass and Bioenergy, 16, 311–332.

    Google Scholar 

  23. Brocard, D., & Lacaux, P. J. (1998). Domestic biomass combustion and associated emissions in West Africa. Global Biochemical Cycles, 12, 127–139.

    Article  CAS  Google Scholar 

  24. United Nations. (2003). World urbanisation prospects. Department of Economic and Social Affairs, United Nation Population Division. Retrieved Jan 20, 2015 from https://esa.un.org/unpd/wup/.

  25. Marufu, L., Ludwig, J., Andreae, M. O., Meixner, F. X., & Helas, G. (1997). Domestic biomass burning in Rural and Urban Zimbabwe–Part A. Biomass and Bioenergy, 12, 53–68.

    Article  Google Scholar 

  26. Meteorological Services of Royal Navy and the South African Air Force (SAAAS). (1970). Weather on the coasts of southern Africa from river Congo to Cape Delgado. Local information (Vol. II).

    Google Scholar 

  27. Ward, D. E., Hao, W. M., Sussott, R. A., & Babbitt, R. E. (1996). Effects of fuel composition on combustion efficiency and emission factors for African savanna ecosystem. Journal of Geophysical Research, 101, 23569–23576.

    Article  CAS  Google Scholar 

  28. Scholes, R. J., Ward, D. E., & Justice, C. O. (1996). Emissions of trace gases and aerosol particles due to vegetation burning in southern hemisphere Africa. Journal of Geophysical Research, 101, 23677–23682.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support provided by the Electricity Supply Commission of South Africa (Eskom), Department of Trade and Industry (DTI), Council for the Scientific and Industrial Research (CSIR), National Research Foundation (NRF) and National Student Financial Aid Scheme of South Africa (NSFAS) is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silas K. Mulaudzi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature B.V.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mulaudzi, S.K., Otter, L., Makhado, R.A. (2020). Trace Gas Emissions from Domestic Biofuel Combustion in Southern Africa. In: Mammino, L. (eds) Biomass Burning in Sub-Saharan Africa. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0808-2_4

Download citation

Publish with us

Policies and ethics