Skip to main content

Abstract

Soybean, Glycine max, is the world’s foremost provider of protein and oil. Oilseeds constitute the world’s fourth most important component of the world’s food supply behind wheat and rice, coarse grains, and potatoes and cassava. Soybeans are the leading oilseed crop and constitute 50% – 55% of the world’s oilseed production. For the most part, soybeans are grown in developed countries with the United States producing 43% of the global production of 6751 million bushels in 2001 – 2002. Brazil followed with 24% of the world’s production followed by Argentina, China, India, Paraguay and others with 16%, 8%, 3%, 2% and 4%, respectively (United Soybean Board, 2002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, S. E., Jones, R. A. C., and Coutts, R. H. A. 1986. Expression of potato virus X resistance gene Rx in potato leaf protoplasts. J. Gen. Virol. 67: 2341–2345.

    Google Scholar 

  • Almeida, A. M. R. 1981. Identification of strains of soybean common mosaic virus in Parana State. Fitopatol. Brasil. 6: 131–136.

    Google Scholar 

  • Almeida, A. M. R. 1980. Survey of soybean common mosaic and bud blight viruses in different regions of Parana State. Fitopatol. Brasil. 5: 125–128.

    Google Scholar 

  • Anjos, J. R. N., Brioso, P. S. T., and Charchar, M. J. A. 1999. Partial characterization of bean pod mottle virus in soybeans in Brazil. Fitopatol. Brasil. 24: 85–87.

    Google Scholar 

  • Anjos, J. R. M., Lin, M. T., and Kitajima, E. W. 1985. Characterization of an isolate of soybean mosaic virus. Fitopatol. Brasil 10: 143–157.

    Google Scholar 

  • Athow, K. L., and Bancroft, J. B. 1959. Development and transmission of tobacco ringspot virus in soybean. Phytopathology 49: 697–701.

    Google Scholar 

  • Athow, K. L., and Laviolette, F. A. 1961. The relation of seed-transmitted tobacco ringspot virus to soybean yield. Phytopathology 51: 341–342.

    Google Scholar 

  • Bendahmane, A., Kanyuka, K., and Baulcombe, D. C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11: 781–791.

    Google Scholar 

  • Brunt, A.A., Crabtree, K., Dallwitz, M.J., Gibbs, A.J., Watson, L., and Zurcher, E.J. (eds.) (1996 onwards). ‘Plant Viruses Online: Descriptions and Lists from the VIDE Database. Version: 20th August 1996.’ URL http://biology.anu.edu.au/Groups/MES/vide/

  • Bryant, G. R., Hill, J. H., Bailey, T. B., Tachibana, H., Durand, D. P., and Benner, H. I. 1982. Detection of soybean mosaic virus in seed by solid-phase radioimmunoassay. Plant Dis. 66: 693–695.

    Google Scholar 

  • Bruening, G. 1978. Bean pod mottle virus. In: CMI/AAB Descr. Pl. Viruses no. 199, 4 pp.

    Google Scholar 

  • Buzzel, R. I., and Tu, J. C. 1984. Inheritance of soybean resistance to soybean mosaic virus. J. Hered. 75: 82.

    Google Scholar 

  • Calvert, L. A., and Ghabrial, S. A. 1983. Enhancement by soybean mosaic virus of bean pod mottle virus titer in doubly infected soybean. Phytopathology 73: 992–997.

    Google Scholar 

  • Cervera, M. T., Reichmann, J. L., Martin, M. T., and Garcia, J. A. 1993. 3′-terminal sequence of the plum pox PS and 06 isolates: evidence for RNA recombination within the potyvirus group. J. Gen. Virol. 74: 329–334.

    Google Scholar 

  • Chen, Y., Xue, B., Hu, Y., and Fang, Z. 1986. Identification of two new strains of soybean mosaic virus. Acta. Phytophyl. Sinica 13: 222–226.

    Google Scholar 

  • Cho, E.-K., Chung, B. J., and Lee, S. H. 1977. Studies on identification and classification of soybean virus diseases in Korea. II. Etiology of a necrotic disease of Glycine max. Plant Dis. Rep. 61: 313–317.

    Google Scholar 

  • Cho, E.-K., and Goodman, R. M. 1979. Strains of soybean mosaic virus: classification based on virulence in resistant soybean cultivaars. Phytopathology 69: 467–470.

    Google Scholar 

  • Crittenden, H. W., Hastings, K. M., and Moore, D. M. 1966. Soybean losses caused by tobacco ringspot virus. Plant Dis. Reptr. 50: 910–913.

    Google Scholar 

  • Demski, J.W., and Harris, H. B. 1974. Seed transmission of viruses in soybean. Crop Sci. 14: 888–890.

    Google Scholar 

  • Demski, J. W., Haris, H. B., and Jellum, M. D. 1971. Effects of time of inoculation with tobacco ringspot virus on the chemical composition and agronomic characteristics of soybean. Phytopathology 61: 308–311.

    Google Scholar 

  • Demski, J. W., Kuhn, C. W., and Hartman, G. L. 1999. Tobacco ringspot. In: Compendium of soybean diseases, 4 th edition. (eds) G. L. Hartman, J. B. Sinclair, and J. C. Rupe, pp. 66–68. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • De Zeeuw, D. J., and Hooker, W. J. 1965. Additional suscepts of the tobacco ringspot virus. Quarterly Bulletin of the Michigan Agr. Expt. Sta. 48: 76–80.

    Google Scholar 

  • Di. R., Hu, C.-C., and Ghabrial, S. A. 1999. Complete nucleotide sequence of Bean pod mottle virus RNA1: sequence comparisons and evolutionary relationships to other comoviruses. Virus Genes 18: 129–137.

    Google Scholar 

  • Edwardson, J. R., and Christie, R. G. 1991. Soybean mosaic virus. Thepotyvirus group, vol. III. University of Florida Monograph Series No. 16-III. pp. 821–835.

    Google Scholar 

  • Eggenberger, A. L., and Hill, J. H. 1997. Analysis of resistance-breaking determinants in soybean mosaic virus. Phytopathology 87:S27.

    Google Scholar 

  • Fehr, W. R., Caviness, C. E., Burmood, D. T., and Pennington, J. S. 1971. Stage of development descriptions for soybeans, Glycine max (L.) Merrill. Crop Sci. 11: 929–931.

    Google Scholar 

  • Fernandez-Suarez, R. 1984. Bibliographic review of some virus diseases of soya bean (Glycine max). Reporte de Investigacion del Instituto de Investigaciones Fundamentales. Agricultural Tropical No. 16. 31pp.

    Google Scholar 

  • Geisler, L. J., Ghabrial, S. A., Hunt, T. E., and Hill, J. H. 2002. Bean pod mottle virus. A threat to U.S. soybean production. Plant Dis. 86: 1280–1289.

    Google Scholar 

  • Gergerich, R. C. 1999. Comoviruses: Bean pod mottle comovirus. In: Compendium of soybean diseases, 4 th edition. (eds) G. L. Hartman, J. B. Sinclair, and J. C. Rupe, pp. 61–62. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Gergerich, R. C., and Scott, H. A. 1996. Comoviruses: Transmission, epidemiology, and control. In: The Plant Viruses 5: Polyhedral Virions and Bipartite RNA Genomes. pp. 77–98. Plenum Press, New York.

    Google Scholar 

  • Gooding, Jr., G. V. 1970. Natural serological strains of tobacco ringspot virus. Phytopathology 60: 708–713.

    Google Scholar 

  • Gore, M. A., Hayes, A. J., Jeong, S. C., Yue, Y. G., Buss, G. R., and Saghai Maroof. M. A. 2002. Mapping tightly linked genes controlling potyvirus infection at the Rsv1 and Rpv1 region in soybean. Genome 45: 592–599.

    Google Scholar 

  • Granillo, C. R., and Smith, S. H. 1974. Tobacco and tomato ringspot viruses and their relationships with Tetranychus urticae. Phytopathology 64: 494–499.

    Google Scholar 

  • Gu, H., Clark, A. J., de Sa, P. B., Pfeiffer, T. W., Tolin, S., and Ghabrial, S. A. 2002. Genetic diversity among isolates of Bean pod mottle virus. Phytopathology 92: 446–452.

    Google Scholar 

  • Gupta, V. K. 1978. Further studies on bud blight disease of soybean. 1978. Acta Botanica Indica 6 Suppl: 169–170.

    Google Scholar 

  • Hajimorad, M. R., and Hill, J. H. 2001. Rsv1-mediated resistance against soybean mosaic virus-N is hypersensitive response-independent at inoculation site, but has the potential to initiate a hypersensitive response-like mechanism. Mol. Plant Micro. Interact. 14: 587–598.

    Google Scholar 

  • Hartman, G. L., Sinclair, J. B., and Rupe, J. C. (eds). 1999. Diseases caused by viruses. In: Compendium of soybean diseases, 4th edition, pp. 57–73. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Hayes, A. J., Ma, G., Buss, G. R., and Saghai Maroof, M. A. 2000. Molecular marker mapping of RSV4, a gene conferring resistance to all known strains of soybean mosaic virus. Crop Sci. 40: 1434–1437.

    Google Scholar 

  • Hill, J. H. 1999. Soybean mosaic. In: Compendium of soybean diseases, 4th edition. (eds) G. L. Hartman, J. B. Sinclair, and J. C. Rupe, pp. 70–71. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • Hill, J. H., and Benner, H. I. 1980a. Properties of soybean mosaic virus and its isolated protein. Phytopath. Z. 97: 272–281.

    Google Scholar 

  • Hill, J. H., and Benner, H. I. 1980b. Properties of soybean mosaic virus ribonucleic acid. Phytopathology 70: 236–239.

    Google Scholar 

  • Hill, J. H., Benner, H. I., Permar, T. A., Bailey, T. B., Andrews, R. E., Durand, D. P., and Van Deusen, R. A. 1989. Differentiation of soybean mosaic virus isolates by onedimensional trypsin peptide maps immunoblotted with monoclonal antibodies. Phytopathology 79: 1261–1265.

    Google Scholar 

  • Hill, J. H., Benner, H. I., and Van Deusen, R. A. 1994. Rapid differentiation of soybean mosaic virus isolates by antigenic signature analysis. J. Phytopath. 142: 152–162.

    Google Scholar 

  • Hill, J. H., Epstein, A. H., McLaughlin, M. R., and Nyvall, R. F. 1973. Aerial detection of tobacco ringspot virus-infected soybean plants. Plant Dis. Reptr. 57: 471–472.

    Google Scholar 

  • Hill, J. H., Lucas, B. S., Benner, H. I., Tachibana, H., Hammond, R. B., and Pedigo, L. P. 1980. Factors associated with the epidemiology of soybean mosaic virus in Iowa. Phytopathology 70: 536–540.

    Google Scholar 

  • Horn, N. S., Newsom, L. D., and Jensen, R. L. 1973. Economic injury thresholds of bean pod mottle and tobacco ringspot virus infection of soybeans. Plant Dis. Reptr. 57: 811–813.

    Google Scholar 

  • Jain, R. K., McKern, N. M., Tolin, S.A., Hill, J. H., Barnett, O. W., Tosic, M., Ford, R. E., Beachy, R. N., Yu, M. H., Ward, C. W., and Shukla, D. D. 1992. Similarity of coat protein peptide profiles of fourteen potyvirus isolates from soybean confirms that they are strains of the one virus. Phytopathology 82: 294–299.

    Google Scholar 

  • Jayaram, Ch., Hill, J. H., and Miller, W. A. 1992. Complete nucleotide sequences of two soybean mosaic virus strains differentiated by response of soybean containing the Rsv resistance gene. J. Gen. Virol. 73: 2067–2077.

    Google Scholar 

  • Jayaram, Ch., Van Deusen, R. A., Eggenberger, A. L., Schwabacher, A. W., and Hill, J. H. 1998. Characterization of a monoclonal antibody recognizing a DAG-containing epitope conserved in aphid transmissible potyviruses: evidence that the DAG motif is in a defined conformation. Virus Res. 58: 1–11.

    Google Scholar 

  • Kanematsu, S., Eggenberger, A. L., and Hill, J. H. 1998. Comparison of soybean mosaic virus strains G2 and G3 with Japanese strains A and B. Ann. Phytopathol. Soc. Japan 64: 607.

    Google Scholar 

  • Krell, R. K. 2002. Bean pod mottle virus ecology and management in Iowa. Ph.D. thesis. Iowa State University. 153 pp.

    Google Scholar 

  • Lee, Y. C., Kim, J. J., and Cho, E.-K. 1992. Classification of seed-borne SMV strains and resistance to SMV in leading soybean cultivars. Korean J. Breed. 23: 53–58.

    Google Scholar 

  • Ma., G., Chen, P., Buss, G. R., and Tolin, S. A. 2002. Complementary action of two independent dominanat genes in Columbia soybean for resistance to soybean mosaic virus. J. Hered. 93: 179–184.

    Google Scholar 

  • MacFarlane, S. A., Shanks, M., Davies, J. W., Zlotnick, A., and Lomonossoff, G. P. 1991. Analysis of the nucleotide sequence of bean pod mottle virus middle component RNA. Virology 183: 405–409.

    Google Scholar 

  • McGuire, J. M., and L. B. Douthit. 1978. Host effect on acquisition and transmission of tobacco ringspot virus by Xiphinema americanum. Phytopathology 68: 457–459.

    Google Scholar 

  • Michelutti, R., Tu., J. C., Hunt, W. A., Gagnier, D., Anderson, T. R., Welacky, T. W., and Tenuta, A. U. 2002. First report of bean pod mottle virus in Canada. Plant Dis. 86: 330.

    Google Scholar 

  • Milbrath, G. M., and Soong, M.-M. 1976. A local lesion assay for soybean mosaic virus using Phaseolus vulgaris L. cv. Top Crop. Phytopath. Z. 87: 255–259.

    Google Scholar 

  • North Central Soybean Research Program. 2003. Plant Health Initiative. URL http://.planthealth.info

    Google Scholar 

  • Nutter, F. W., Jr., Schultz, P. M., and Hill, J. H. 1998. Quantification of within-field spread of soybean mosaic virus in soybean using strain-specific monoclonal antibodies. Phytopathology 88: 895–901.

    Google Scholar 

  • Orellana, R. G. 1981. Resistance to bud blight introductions from the germ plasm of wild soybean. Plant Dis. 65: 594–595.

    Google Scholar 

  • Pu, Z., Cao, Q., Fang, D., Xi, B., and Fang, C. 1982. Identification of strains of soybean mosaic virus. Acta Phytophyl. Sinica 9: 15–20.

    Google Scholar 

  • Reddy, M. S. S., Ghabrial, S. A., Redmond, C. T., Dinkins, R. D., and Collins, G. B. 2001. Resistance to Bean pod mottle virus in transgenic soybean lines expressing the capsid polyprotein. Phytopathology 91: 831–838.

    Google Scholar 

  • Revers, F., Le Gall, O., Candresse, T., Le Romancer, M., and Dunez, J. 1996. Frequent occurrence of recombinant potyvirus isolates. J. Gen. Virol. 77: 1953–1965.

    Google Scholar 

  • Rezaian, M. A., and Francki, R. I. B. 1973. Replication of tobacco ringspot virus. I. Detection of a low molecular weight double-stranded RNA from infected plants. Virology 56: 238–249.

    Google Scholar 

  • Schmitthenner, A. F., and Kmetz, K. 1980. Role of Phomopsis sp in the soybean seed rot problem. In: Proc. World Soybean Res. Conf. 2 nd. pp. 355–366. Westview Press, Boulder CO.

    Google Scholar 

  • Schwenk, F. W., and Nickell, C. D. 1980. Soybean green stem caused by bean pod mottle virus. Plant Dis. 64: 863–865.

    Google Scholar 

  • Scott, H. A., Van Scyoc, J. V., and Van Scyoc, C. E. 1974. Reaction of Glycine spp. to bean pod mottle virus. Plant Dis. Rept. 58: 191–192.

    Google Scholar 

  • Semancik, J. S., and Bancroft, J. B. 1965. Stability differences between the nucleoprotein components of bean pod mottle virus. Virology 27: 476–483.

    Google Scholar 

  • Steinlage. T. A., Hill, J. H., and Nutter, Jr., F. W. 2002. Temporal and spatial spread of soybean mosaic virus (SMV) in soybeans transformed with the coat protein gene of SMV. Phytopathology 92: 478–486.

    Google Scholar 

  • Stuckey, R. E., Ghabrial, S. A., and Reicosky, D. A. 1982. Increased incidence of Phomopsis spp. in seeds from soybean infected with bean pod mottle virus. Plant Disease 66: 826–829.

    Google Scholar 

  • Takahashi, K., Tanaka, T., Wataru, I., and Tsuda, T. 1980. Studies on virus diseases and causal viruses of soybean in Japan. Bull. Tohoku Natl. Agric. Exp. Stn. 62: 1–130.

    Google Scholar 

  • Thottappilly, G., and Rossel, H. W. 1987. Viruses affecting soybean. In: Soybeans in the tropics. (eds) S. R. Singh, K. Rachie, and K. Dashiell, pp. 53–68. John Wiley and Sons, New York.

    Google Scholar 

  • Tolin, S. A. 1999. Diseases caused by viruses. In: Compendium of soybean diseases, 4th edition. (eds) G. L. Hartman, J. B. Sinclair, and J. C. Rupe, pp. 57–59. APS Press, St. Paul, Minnesota.

    Google Scholar 

  • United Soybean Board Annual Soybean Statistics Guide. 2002. URL http://www.unitedsoybean.org/

  • Wang, X., Eggenberger, A. L., Nutter, Jr., F. W., and Hill, J. H. 2001. Pathogen-derived transgenic resistance to soybean mosaic virus in soybean. Mol. Breeding 8: 119–127.

    Google Scholar 

  • Werner, B. J., Krell, R. K., and Pedigo, L. P. 2002. New host plant and vector relationships for Bean pod mottle virus. Iowa State University. North Central Branch of the Entomological Society of America. On-line, publication D108. URL http://esa.ent.iastate.edu/progsearch?m=35&s=1&q=Werner

  • Wrather, J. A., Anderson, T. R., Arsyad, D. M., Tan, Y., Ploper, L. D., Porta-Puglia, A., Ram, H. H., and Yorinori, J. T. 2001. Soybean disease loss estimates for the top ten soybeanproducing countries in 1998. Can. J. Plant Pathol. 23: 115–121.

    Google Scholar 

  • Xu, Z., Polston, J. E., and Goodman, R. M. 1986. Identification of soybean mosaic, southern bean mosaic and tobacco ringspot viruses from soybean in the People’s Republic of China. Ann. appl. Biol. 108: 51–57.

    Google Scholar 

  • Yu, Y. G., Saghai Maroof, M. A., Buss, G. R., Maughan, P. J., and Tolin, S. A. 1994. RFLP and microsatellite mapping of a gene for soybean mosaic virus resistance. Phytopathology 84: 60–64.

    Google Scholar 

  • Zadeh, A. H., and Foster, G. D. 2001. Cloning and sequencing of the coat protein gene of tobacco ringspot virus isolates from UK and Iran. Acta Virologica 45: 319–326.

    Google Scholar 

  • Zettler, F. W., Stanaly, P. A., Elliot, M. S., Peralta, A., Carranza, C., and Morales, F. J. 1991. Bean pod mottle virus (BPMV) in Ecuador and its transmission by Cerotoma facialis maculata. Phytopathology 81: 695.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hill, J.H. (2003). Soybean. In: Loebenstein, G., Thottappilly, G. (eds) Virus and Virus-like Diseases of Major Crops in Developing Countries. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0791-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0791-7_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-3729-7

  • Online ISBN: 978-94-007-0791-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics