Cell Fusion, Drug Resistance and Recurrence CSCs

  • Christa Nagler
  • Kurt S. Zänker
  • Thomas DittmarEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 950)


Cancer stem cells (CSCs) are a rare population of cancer cells exhibiting stem cell properties, such as self-renewal, differentiation and tissue restoration. Beside the initiation of the primary tumor, CSCs have also been associated with metastasis formation and cancer relapses. In the context of cancer relapses, we have recently postulated the existence of so-called recurrence CSCs (rCSCs). These specific CSC subtype will initiate relapses exhibiting an “oncogenic resistance” phenotype, which are characterized by a markedly increased malignancy concomitant with a drug resistance towards first line therapy. In the present chapter we will discuss the necessity of rCSCs as a distinct CSC subtype and that cell fusion could be one mechanism how rCSCs could originate.


Chronic Myeloid Leukemia Cell Fusion Hybrid Cell Fusion Partner Side Population Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the “Verein zur Förderung der Krebsforschung e.V.”, Heidelberg, Germany and the Fritz-Bender-Foundation, Munich, Germany.


  1. 1.
    Fearon ER, Vogelstein B (1990) A genetic model for colorectal tumorigenesis. Cell 61:759–767PubMedCrossRefGoogle Scholar
  2. 2.
    Li R, Sonik A, Stindl R et al (2000) Aneuploidy vs. Gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. Proc Natl Acad Sci USA 97:3236–3241PubMedCrossRefGoogle Scholar
  3. 3.
    Boveri T (1902/1964) On multipolar mitosis as a means of analysis of the cell nucleus. In Willier BH, Oppenheimer JM (eds) Foundations of experimental embryology. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  4. 4.
    Hansemann D (1890) Ueber asymmetrische Zelltheilung in Epithelkrebsen und deren biologische Bedeutung. Virchows Arch Pathol Anat 119:299–326Google Scholar
  5. 5.
    Clarke MF, Dick JE, Dirks PB et al (2006) Cancer stem cells–perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66:9339–9344PubMedCrossRefGoogle Scholar
  6. 6.
    Tang DG, Patrawala L, Calhoun T et al (2007) Prostate cancer stem/progenitor cells: identification, characterization, and implications. Mol Carcinog 46:1–14PubMedCrossRefGoogle Scholar
  7. 7.
    Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904PubMedCrossRefGoogle Scholar
  8. 8.
    Li F, Tiede B, Massague J et al (2007) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14PubMedCrossRefGoogle Scholar
  9. 9.
    Houghton J (2007) Bone-marrow-derived cells and cancer – an opportunity for improved therapy. Nat Clin Pract 4:2–3Google Scholar
  10. 10.
    Houghton J, Stoicov C, Nomura S et al (2004) Gastric cancer originating from bone marrow-derived cells. Science 306:1568–1571PubMedCrossRefGoogle Scholar
  11. 11.
    Jaiswal S, Traver D, Miyamoto T et al (2003) Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci USA 100:10002–10007PubMedCrossRefGoogle Scholar
  12. 12.
    Reya T, Duncan AW, Ailles L et al (2003) A role for wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414PubMedCrossRefGoogle Scholar
  13. 13.
    Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822PubMedCrossRefGoogle Scholar
  14. 14.
    Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69:8536–8539PubMedCrossRefGoogle Scholar
  15. 15.
    Huff CA, Matsui W, Smith BD et al (2006) The paradox of response and survival in cancer therapeutics. Blood 107:431–434PubMedCrossRefGoogle Scholar
  16. 16.
    Blagosklonny MV (2005) Why therapeutic response May not prolong the life of a cancer patient: selection for oncogenic resistance. Cell Cycle 4:1693–1698PubMedCrossRefGoogle Scholar
  17. 17.
    Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26:2839–2845PubMedCrossRefGoogle Scholar
  18. 18.
    Rich JN (2007) Cancer stem cells in radiation resistance. Cancer Res 67:8980–8984PubMedCrossRefGoogle Scholar
  19. 19.
    Shervington A, Lu C (2008) Expression of multidrug resistance genes in normal and cancer stem cells. Cancer Invest 26:535–542PubMedCrossRefGoogle Scholar
  20. 20.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedCrossRefGoogle Scholar
  21. 21.
    Jamieson CH, Ailles LE, Dylla SJ et al (2004) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 351:657–667PubMedCrossRefGoogle Scholar
  22. 22.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedCrossRefGoogle Scholar
  23. 23.
    Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349PubMedCrossRefGoogle Scholar
  24. 24.
    O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedCrossRefGoogle Scholar
  25. 25.
    Dalerba P, Dylla SJ, Park IK et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA 104:10158–10163PubMedCrossRefGoogle Scholar
  26. 26.
    Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedCrossRefGoogle Scholar
  27. 27.
    Patrawala L, Calhoun-Davis T, Schneider-Broussard R et al (2007) Hierarchical organization of prostate cancer cells in xenograft tumors: the CD44+alpha2beta1+ cell population is enriched in tumor-initiating cells. Cancer Res 67:6796–6805PubMedCrossRefGoogle Scholar
  28. 28.
    Eramo A, Lotti F, Sette G et al (2008) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514PubMedCrossRefGoogle Scholar
  29. 29.
    Ito K, Bernardi R, Morotti A et al (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453:1072–1078Google Scholar
  30. 30.
    Essers MA, Offner S, Blanco-Bose WE et al (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458:904–908PubMedCrossRefGoogle Scholar
  31. 31.
    Wicha MS (2008) Cancer stem cell heterogeneity in hereditary breast cancer. Breast Cancer Res 10:105PubMedCrossRefGoogle Scholar
  32. 32.
    Wright MH, Calcagno AM, Salcido CD et al (2008) Brca1 breast tumors contain distinct CD44+/CD24 and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res 10:R10PubMedCrossRefGoogle Scholar
  33. 33.
    Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323PubMedCrossRefGoogle Scholar
  34. 34.
    Dittmar T, Heyder C, Gloria-Maercker E et al (2008) Adhesion molecules and chemokines: the navigation system for circulating tumor (stem) cells to metastasize in an organ-specific manner. Clin Exp Metastasis 25:11–32PubMedCrossRefGoogle Scholar
  35. 35.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedCrossRefGoogle Scholar
  36. 36.
    Seidel J, Batistin E, Schwitalla S et al (2007) Cancer cell+stem cell = cancer stem cell? In Saitama H (ed) New cell differentiation research topics. Nova Science Publishers, Hauppauge, NYGoogle Scholar
  37. 37.
    Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(-/low)/CD44+breast cancer-initiating cells to radiation. J Natl Cancer Inst 98:1777–1785PubMedCrossRefGoogle Scholar
  38. 38.
    Woodward WA, Chen MS, Behbod F et al (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104:618–623PubMedCrossRefGoogle Scholar
  39. 39.
    Hirschmann-Jax C, Foster AE, Wulf GG et al (2004) A distinct “side population” of cells with high drug efflux capacity in human tumor cells. Proc Natl Acad Sci USA 101:14228–14233PubMedCrossRefGoogle Scholar
  40. 40.
    Patrawala L, Calhoun T, Schneider-Broussard R et al (2005) Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2 cancer cells are similarly tumorigenic. Cancer Res 65:6207–6219PubMedCrossRefGoogle Scholar
  41. 41.
    Ho MM, Ng AV, Lam S et al (2007) Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res 67:4827–4833PubMedCrossRefGoogle Scholar
  42. 42.
    Magni M, Shammah S, Schiro R et al (1996) Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood 87:1097–1103PubMedGoogle Scholar
  43. 43.
    Pearce DJ, Taussig D, Simpson C et al (2005) Characterization of cells with a high aldehyde dehydrogenase activity from cord blood and acute myeloid leukemia samples. Stem Cells 23:752–760PubMedCrossRefGoogle Scholar
  44. 44.
    Ginestier C, Hur MH, Charafe-Jauffret E et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567PubMedCrossRefGoogle Scholar
  45. 45.
    Li L, Neaves WB (2006) Normal stem cells and cancer stem cells: the niche matters. Cancer Res 66:4553–4557PubMedCrossRefGoogle Scholar
  46. 46.
    Clarke MF, Fuller M (2006) Stem cells and cancer: two faces of eve. Cell 124:1111–1115PubMedCrossRefGoogle Scholar
  47. 47.
    Guan Y, Hogge DE (2000) Proliferative status of primitive hematopoietic progenitors from patients with acute myelogenous leukemia (AML). Leukemia 14:2135–2141PubMedCrossRefGoogle Scholar
  48. 48.
    Holyoake T, Jiang X, Eaves C et al (1999) Isolation of a highly quiescent subpopulation of primitive leukemic cells in chronic myeloid leukemia. Blood 94:2056–2064PubMedGoogle Scholar
  49. 49.
    Dittmar T, Nagler C, Schwitalla S et al (2009) Recurrence cancer stem cells–made by cell fusion? Med Hypotheses 73:542–547PubMedCrossRefGoogle Scholar
  50. 50.
    Shafee N, Smith CR, Wei S et al (2008) Cancer stem cells contribute to cisplatin resistance in brca1/p53-mediated mouse mammary tumors. Cancer Res 68:3243–3250PubMedCrossRefGoogle Scholar
  51. 51.
    Aichel O (1991) Über Zellverschmelzung mit quantitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. In Roux W (eds) Vorträge und Aufsätze über Entwicklungsmechanik der Organismen. Wilhelm Engelmann, LeipzigGoogle Scholar
  52. 52.
    Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448PubMedCrossRefGoogle Scholar
  53. 53.
    Barski G, Cornefert F (1962) Characteristics of “hybrid”-type clonal cell lines obtained from mixed cultures in vitro. J Natl Cancer Inst 28:801–821PubMedGoogle Scholar
  54. 54.
    Islam MQ, Meirelles Lda S, Nardi NB et al (2006) Polyethylene glycol-mediated fusion between primary mouse mesenchymal stem cells and mouse fibroblasts generates hybrid cells with increased proliferation and altered differentiation. Stem Cells Dev 15:905–919PubMedCrossRefGoogle Scholar
  55. 55.
    Miller FR, Mohamed AN, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49:4316–4321PubMedGoogle Scholar
  56. 56.
    Duelli DM, Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2:859–862PubMedCrossRefGoogle Scholar
  57. 57.
    Wakeling WF, Greetham J, Bennett DC (1994) Efficient spontaneous fusion between some co-cultured cells, especially murine melanoma cells. Cell Biol Int 18:207–210PubMedCrossRefGoogle Scholar
  58. 58.
    Chakraborty AK, Sodi S, Rachkovsky M et al (2000) A spontaneous murine melanoma lung metastasis comprised of host×tumor hybrids. Cancer Res 60:2512–2519PubMedGoogle Scholar
  59. 59.
    Pawelek J, Chakraborty A, Lazova R et al (2006) Co-opting macrophage traits in cancer progression: a consequence of tumor cell fusion? Contrib Microbiol 13:138–155PubMedCrossRefGoogle Scholar
  60. 60.
    Rizvi AZ, Swain JR, Davies PS et al (2006) Bone marrow-derived cells fuse with normal and transformed intestinal stem cells. Proc Natl Acad Sci USA 103:6321–6325PubMedCrossRefGoogle Scholar
  61. 61.
    Dittmar T, Schwitalla S, Seidel J et al (2011) Characterization of hybrid cells derived from spontaneous fusion events between breast epithelial cells exhibiting stem-like characteristics and breast cancer cells. Clin Exp Metastasis 28:75–90PubMedCrossRefGoogle Scholar
  62. 62.
    Alison MR, Poulsom R, Otto WR et al (2004) Recipes for adult stem cell plasticity: fusion cuisine or readymade? J Clin Pathol 57:113–120PubMedCrossRefGoogle Scholar
  63. 63.
    Camargo FD, Chambers SM, Goodell MA (2004) Stem cell plasticity: from transdifferentiation to macrophage fusion. Cell Prolif 37:55–65PubMedCrossRefGoogle Scholar
  64. 64.
    Rachkovsky M, Sodi S, Chakraborty A et al (1998) Melanoma×macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16:299–312PubMedCrossRefGoogle Scholar
  65. 65.
    Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6:567–575PubMedCrossRefGoogle Scholar
  66. 66.
    Vassilopoulos G, Russell DW (2003) Cell fusion: an alternative to stem cell plasticity and its therapeutic implications. Curr Opin Genet Dev 13:480–485PubMedCrossRefGoogle Scholar
  67. 67.
    Chang CC, Sun W, Cruz A et al (2001) A human breast epithelial cell type with stem cell characteristics as target cells for carcinogenesis. Radiat Res 155:201–207PubMedCrossRefGoogle Scholar
  68. 68.
    Camargo FD, Finegold M, Goodell MA (2004) Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners. J Clin Invest 113:1266–1270PubMedGoogle Scholar
  69. 69.
    Willenbring H, Bailey AS, Foster M et al (2004) Myelomonocytic cells are sufficient for therapeutic cell fusion in liver. Nat Med 10:744–748PubMedCrossRefGoogle Scholar
  70. 70.
    Li R, Sonik A, Stindl R et al (2000) Aneuploidy versus gene mutation hypothesis of cancer: recent study claims mutation, but is found to support aneuploidy. Proc Natl Acad Sci USA 97:3236–3241PubMedCrossRefGoogle Scholar
  71. 71.
    Duesberg P, Stindl R, Hehlmann R (2001) Origin of multidrug resistance in cells with and without multidrug resistance genes: chromosome reassortments catalyzed by aneuploidy. Proc Natl Acad Sci USA 98:11283–11288PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Christa Nagler
    • 1
  • Kurt S. Zänker
    • 1
  • Thomas Dittmar
    • 1
    • 2
    Email author
  1. 1.Institute of Immunology, Witten/Herdecke UniversityWittenGermany
  2. 2.Zentrum für Biomedizinische Ausbildung und Forschung an der UWH (ZBAF), Witten/Herdecke University, Institute of ImmunologyWittenGermany

Personalised recommendations