Advertisement

Leukocyte-Cancer Cell Fusion: Initiator of the Warburg Effect in Malignancy?

  • Rossitza Lazova
  • Ashok Chakraborty
  • John M. PawelekEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 950)

Abstract

The causes of metastasis remain unknown, however it has been proposed for nearly a century that metastatic cells are generated by fusion of tumor cells with tumor-associated leukocytes such as macrophages. Indeed, regardless of cell or tissue origin, when cancer cells in the original in situ tumor transform to malignant, invasive cells, they generally become aneuploid and begin to express molecules and traits characteristic of activated macrophages. This includes two key features of malignancy: chemotactic motility and the use of aerobic glycolysis as a metabolic energy source (the Warburg effect). Here we review evidence that these phenomena can be well-explained by macrophage-cancer cell fusion, as evidenced by studies of experimental macrophage-melanoma hybrids generated in vitro and spontaneous host-tumor hybrids in animals and more recently humans. A key finding to emerge is that experimental and spontaneous cancer cell hybrids alike displayed a high degree of constitutive autophagy, a macrophage trait that is expressed under hypoxia and nutrient deprivation as part of the Warburg effect. Subsequent surveys of 21 different human cancers from nearly 2,000 cases recently revealed that the vast majority (~85%) exhibited autophagy and that this was associated with tumor proliferation and metastasis. While much work needs to be done, we posit that these findings with human cancers could be a reflection of widespread leukocyte-cancer cell fusion as an initiator of metastasis. Such fusions would generate hybrids that express the macrophage capabilities for motility and survival under adverse conditions of hypoxia and nutrient deprivation, while at the same time maintaining the deregulated mitotic cycle of the cancer cell fusion partner.

Keywords

Melanoma Cell Cell Fusion Aerobic Glycolysis Fusion Partner Metastatic Phenotype 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We thank Vincent Klump, Yale Dermatopathology for the excellent immunohistochemistry. Funded in part by a generous gift from the Amway Corporation.

References

  1. 1.
    Aichel O (1911) Über Zellverschmelzung mit Qualitativ Abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. In Roux W (ed) Vorträge und Aufsätze über Entwickelungsmechanik Der Organism, pp. 1–115. Wilhelm Engelmann. Leipzig, Germany, Chapter XIIIGoogle Scholar
  2. 2.
    Pawelek JM (2000) Tumor cell hybridization and metastasis revisited. Melanoma Res 10:507–514PubMedCrossRefGoogle Scholar
  3. 3.
    Pawelek J (2005) Tumor cell fusion as a source of myeloid traits in cancer. Lancet Oncol 6:988–993PubMedCrossRefGoogle Scholar
  4. 4.
    Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386PubMedCrossRefGoogle Scholar
  5. 5.
    Pawelek JM, Chakraborty AK (2008) The cancer cell–leukocyte fusion theory of metastasis. Adv Cancer Res 101:397–444PubMedCrossRefGoogle Scholar
  6. 6.
    Chakraborty A, Lazova R, Davies S et al (2004) Donor DNA in a renal cell carcinoma metastasis from a bone marrow transplant recipient. Bone Marrow Transplant 34:183–186PubMedCrossRefGoogle Scholar
  7. 7.
    Yilmaz Y, Lazova R, Qumsiyeh M et al (2005) Donor Y chromosome in renal carcinoma cells of a female BMT recipient: visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplant 35:1021–1024PubMedCrossRefGoogle Scholar
  8. 8.
    Andersen TL, Boissy P, Sondergaard TE et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17PubMedCrossRefGoogle Scholar
  9. 9.
    Andersen TL, Søe K, Sondergaard TE et al (2010) Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. Br J Haematol 148:551–561PubMedCrossRefGoogle Scholar
  10. 10.
    Qian BZ, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51PubMedCrossRefGoogle Scholar
  11. 11.
    Lin EY, Nguyen AV, Russell RG et al (2001) Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. J Exp Med 193:727–740PubMedCrossRefGoogle Scholar
  12. 12.
    Pollard JW (2004) Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer 4:71–78PubMedCrossRefGoogle Scholar
  13. 13.
    Handerson T, Berger A, Harigopol M et al (2007) Melanophages reside in hypermelanotic, aberrantly glycosylated tumor areas and predict improved outcome in primary CMM. J Cutan Pathol 34:667–738CrossRefGoogle Scholar
  14. 14.
    Mekler LB (1968) A general theory of oncogenesis. Materials of symposia on general immunol. The club of immunologists of NF Gamaleya. Inst of Epidemiol and Microbiol 3:91–100Google Scholar
  15. 15.
    Mekler LB (1971) Hybridization of transformed cells with lymphocytes as 1 of the probable causes of the progression leading to the development of metastatic malignant cells. Vestn Acad Med Nauk SSR 26:80–89Google Scholar
  16. 16.
    Goldenberg DM (1968) On the progression of malignity: a hypothesis. Klin Wochenschr 46:898–899PubMedCrossRefGoogle Scholar
  17. 17.
    Goldenberg DM, Götz H (1968) On the ‘human’ nature of highly malignant heterotransplantable tumors of human origin. Eur J Cancer 4:547–548PubMedGoogle Scholar
  18. 18.
    Rachkovsky MS, Sodi S, Chakraborty A et al (1998) Melanoma×macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16:299–312PubMedCrossRefGoogle Scholar
  19. 19.
    Sodi SA, Chakraborty AK, Platt JT et al (1998) Melanoma × macrophage fusion hybrids acquire increased melanogenesis and metastatic potential: altered N-glycosylation as an underlying mechanism. Pigment Cell Res 11:299–309PubMedCrossRefGoogle Scholar
  20. 20.
    Pawelek JM, Chakraborty AK, Rachkovsky ML et al (2000) Altered N-glycosylation in macrophage×melanoma fusion hybrids. Cell Mol Biol (Noisy-Le-Grand) 45:1011–1027Google Scholar
  21. 21.
    Chakraborty AK, Funasaka Y, Ichihashi M et al (2009) Upregulation of alpha and beta integrin subunits in metastatic macrophage-melanoma fusion hybrids. Melanoma Res 19:343–349CrossRefGoogle Scholar
  22. 22.
    Rachkovsky M, Pawelek J (1999) Acquired melanocyte stimulating hormone-inducible chemotaxis following macrophage fusion with cloudman S91 melanoma cells. Cell Growth Diff 10:515–524Google Scholar
  23. 23.
    Roos E, La Rivière G, Collard JG et al (1985) Invasiveness of T-cell hybridomas in vitro and their metastatic potential in vivo. Cancer Res 45:6238–6243PubMedGoogle Scholar
  24. 24.
    Kerbel RS, Lagarde AE, Dennis JW et al (1983) Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Mol Cell Biol 3:523–538PubMedGoogle Scholar
  25. 25.
    Larizza L, Schirrmacher V, Stöhr M (1984) Inheritance of immunogenicity and metastatic potential in murine cell hybrids from the T-lymphoma ESb08 and normal spleen lymphocytes. J Natl Cancer Inst 72:1371–1381PubMedGoogle Scholar
  26. 26.
    Larizza L, Schirrmacher V, Graf L et al (1984) Suggestive evidence that the highly metastatic variant ESb of the T-cell lymphoma eb is derived from spontaneous fusion with a host macrophage. Int J Cancer 34:699–707PubMedCrossRefGoogle Scholar
  27. 27.
    Robert G, Gaggioli C, Bailet O et al (2006) SPARC represses E-cadherin and induces mesenchymal transition during melanoma development. Cancer Res 66:7516–7523PubMedCrossRefGoogle Scholar
  28. 28.
    Alonso SR, Tracey L, Ortiz P et al (2007) A high-throughput study in melanoma identifies epithelial-mesenchymal transition as a major determinant of metastasis. Cancer Res 67:3450–3460PubMedCrossRefGoogle Scholar
  29. 29.
    Reed MJ, Puolakkainen P, Lane TF et al (1993) Differential expression of SPARC and thrombospondin 1 in wound repair: immunolocalization and in situ hybridization. J Histochem Cytochem 41:1467–1477PubMedCrossRefGoogle Scholar
  30. 30.
    Charest A, Pépin A, Shetty R et al (2006) Distribution of SPARC during neovascularisation of degenerative aortic stenosis. Heart 92:1844–1849PubMedCrossRefGoogle Scholar
  31. 31.
    Chakraborty AK, de Freitas Sousa J, Espreafico EM et al (2001) Human monocyte×mouse melanoma fusion hybrids express human gene. Gene 275:103–106PubMedCrossRefGoogle Scholar
  32. 32.
    Handerson T, Pawelek JM (2003) β1,6-Branched oligosaccharides and coarse vesicles: a common and pervasive phenotype in melanoma and other human cancers. Cancer Res 63:5363–5369PubMedGoogle Scholar
  33. 33.
    Handerson T, Camp R, Harigopal M et al (2005) β1,6-Branched oligosaccharides are associated with metastasis and predict poor outcome in breast carcinoma. Clin Cancer Res 11:2969–2973PubMedCrossRefGoogle Scholar
  34. 34.
    Fukuda M, Spooncer E, Oates JE et al (1984) Structure of sialylated fucosyl lactosaminoglycan isolated from human granulocytes. J Biol Chem 25:10925–10935Google Scholar
  35. 35.
    Sawada R, Lowe JB, Fukuda M (1993) E-selectin-dependent adhesion efficiency of colonic carcinoma cells is increased by genetic manipulation of their cell surface lysosomal membrane glycoprotein-1 expression levels. J Biol Chem 268:12675–12681PubMedGoogle Scholar
  36. 36.
    Sarafian V, Jadot M, FoidartJ M et al (1998) Expression of lamp-1 and lamp-2 and their interactions with galectin-3 in human tumor cells. Int J Cancer 75:105–111PubMedCrossRefGoogle Scholar
  37. 37.
    Chakraborty AK, Pawelek J, Ikeda Y et al (2001) Fusion hybrids with macrophage and melanoma cell up-regulate N-acetylglucosaminyltransferase V, β1-6 branching, and metastasis. Cell Growth Diff 12:623–630PubMedGoogle Scholar
  38. 38.
    Dennis JW, Waller CA, Schirrmacher V (1984) Identification of asparagine-linked oligosaccharides involved in tumor cell adhesion to laminin and type IV collagen. J Cell Biol 99:1416–1423PubMedCrossRefGoogle Scholar
  39. 39.
    Chang MH, Hua CT, Isaac EL et al (2004) Transthyretin interacts with the lysosome-associated membrane protein (LAMP-1) in circulation. Biochem J 382:481–489PubMedCrossRefGoogle Scholar
  40. 40.
    Rupani R, Handerson T, Pawelek J (2004) Co-localization of β1,6-branched oligosaccharides and coarse melanin in macrophage-melanoma fusion hybrids and human melanoma cells in vitro. Pigment Cell Res 17:281–288PubMedCrossRefGoogle Scholar
  41. 41.
    Chakraborty A, Sodi S, Rachkovsky M et al (2000) A spontaneous murine melanoma lung metastasis comprised of host×tumor hybrids. Cancer Res 60:2512–2519PubMedGoogle Scholar
  42. 42.
    Warburg O (1930) Über den Stoffwechsel der Tumoren. Constable: LondonGoogle Scholar
  43. 43.
    Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17: 596–603PubMedCrossRefGoogle Scholar
  44. 44.
    Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822PubMedCrossRefGoogle Scholar
  45. 45.
    Ogata M, Hino S, Saito A et al (2006) Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 26:9220–9231PubMedCrossRefGoogle Scholar
  46. 46.
    Yorimitsu T, Klionsky DJ (2007) Endoplasmic reticulum stress: a new pathway to induce autophagy. Autophagy 3:160–162PubMedGoogle Scholar
  47. 47.
    Vander Heiden MG et al (2009) Understanding the warburg effect: the metabolic requirements of cell proliferation. Science 324:1029–1033PubMedCrossRefGoogle Scholar
  48. 48.
    Jones RG, Thompson CB (2009) Tumor suppressors and cell metabolism: a recipe for cancer growth. Genes Dev 23:537–548PubMedCrossRefGoogle Scholar
  49. 49.
    Santore MT, McClintock DS, Lee VY et al (2002) Anoxia-induced apoptosis occurs through a mitochondria-dependent pathway in lung epithelial cells. Am J Physiol Lung Cell Mol Physiol 282:L727–734PubMedGoogle Scholar
  50. 50.
    Lee VY, McClintock DS, Santore MT et al (2002) Hypoxia sensitizes cells to nitric oxide-induced apoptosis. J Biol Chem 277:16067–16074PubMedCrossRefGoogle Scholar
  51. 51.
    van Loo G, Saelans X, van Gurp M et al (2002) The role of mitochondrial factors in apoptosis: a russian roulette with more than one bullet. Cell Death Differ 10:1031–1042Google Scholar
  52. 52.
    Roiniotis J, Dinh H, Masendycz P et al (2009) Hypoxia prolongs monocyte/macrophage survival and enhanced glycolysis is associated with their maturation under aerobic conditions. J Immunol 182:7974–7981PubMedCrossRefGoogle Scholar
  53. 53.
    Plas DR, Talapatra S, Edlinger AL et al (2001) Akt and bcl-xL promote growth factor-independent survival through distinct effects on mitochondrial physiology. J Biol Chem 276:12041–12048PubMedCrossRefGoogle Scholar
  54. 54.
    Lewis JS, Lee JA, Underwood JC et al (1999) Macrophage responses to hypoxia: relevance to disease mechanisms. J Leukoc Biol 66:889–900PubMedGoogle Scholar
  55. 55.
    Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657PubMedCrossRefGoogle Scholar
  56. 56.
    Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899PubMedCrossRefGoogle Scholar
  57. 57.
    Czernin J, Phelps ME (2002) Positron emission tomography scanning: current and future applications. Annu Rev Med 53:89–112PubMedCrossRefGoogle Scholar
  58. 58.
    Nair-Gill E, Wiltzius SM, Wei XX et al (2010) PET probes for distinct metabolic pathways have different cell specificities during immune responses in mice. J Clin Invest 120:2005–2015PubMedCrossRefGoogle Scholar
  59. 59.
    Laing R, Nair-Gill E, Witte ON et al (2010) Visualizing cancer and immune cell function with metabolic positron emission tomography. Curr Opin Genet Dev 20:100–105PubMedCrossRefGoogle Scholar
  60. 60.
    Radu CG, Shu CJ, Nair-Gill E et al (2008) Molecular imaging of lymphoid organs and immune activation by positron emission tomography with a new [18f]-labeled 2-deoxycytidine analog. Nat Med 14:783–738Google Scholar
  61. 61.
    Nair-Gill ED, Shu CJ, Radu CG et al (2008) Non-invasive imaging of adaptive immunity using positron emission tomography. Immunol Rev 221:214–228PubMedCrossRefGoogle Scholar
  62. 62.
    Garedew A, Henderson SO, Moncada S (2010) Activated macrophages utilize glycolytic ATP to maintain mitochondrial membrane potential and prevent apoptotic cell death. Cell Death Differ 17:1540–1550PubMedCrossRefGoogle Scholar
  63. 63.
    Butterick CJ, Williams DA, Boxer LA et al (1981) Changes in energy metabolism, structure and function in alveolar macrophages under anaerobic conditions. Br J Haematol 48:523–532PubMedCrossRefGoogle Scholar
  64. 64.
    Hannah S, Mecklenburgh K, Rahmen I et al (1995) Hypoxia prolongs neutrophil survival in vitro. FEBS Lett 372:233–237PubMedCrossRefGoogle Scholar
  65. 65.
    Murdoch C, Muthana M, Lewis CE (2005) Hypoxia regulates macrophage functions in inflammation. J Immunol 175:6257–6263PubMedGoogle Scholar
  66. 66.
    Murdoch C, Lewis CE (2005) Macrophage migration and gene expression in response to tumor hypoxia. Int J Cancer 117:701–708PubMedCrossRefGoogle Scholar
  67. 67.
    Walmsley SR, Print C, Farahi N et al (2005) Hypoxia-induced neutrophil survival is mediated by HIF-1alpha-dependent NF-kappaB activity. J Exp Med 201:105–115PubMedCrossRefGoogle Scholar
  68. 68.
    Semenza GL (2010) Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med 2:336–361PubMedCrossRefGoogle Scholar
  69. 69.
    Imtiyaz HZ, Simon MC (2010) Hypoxia-inducible factors as essential regulators of inflammation. Curr Top Microbiol Immunol 810:105–120CrossRefGoogle Scholar
  70. 70.
    Elstrom RL, Bauer DE, Buzzai M et al (2004) Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64:3892–3899PubMedCrossRefGoogle Scholar
  71. 71.
    Lazova R, Klump V, Pawelek J (2010) Autophagy in cutaneous malignant melanoma. J Cutan Pathol 37:256–268PubMedCrossRefGoogle Scholar
  72. 72.
    Lazova R, Pawelek J (2009) Why do melanomas get so dark? Exp Dermatol 18:934–938PubMedCrossRefGoogle Scholar
  73. 73.
    Klionsky DJ, Abeliovich H, Agostinis P et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 4:151–175PubMedGoogle Scholar
  74. 74.
    Martinou JC, Kroemer G (2009) Autophagy: evolutionary and pathophysiological insights. Biochim Biophys Acta 1793:1395–1396PubMedCrossRefGoogle Scholar
  75. 75.
    Amer AO, Swanson MS (2009) Autophagy is an immediate macrophage response to legionella pneumophila. Cell Microbiol 7:765–778CrossRefGoogle Scholar
  76. 76.
    Amer AO, Byrne BG, Swanson MS (2005) Macrophages rapidly transfer pathogens from lipid raft vacuoles to autophagosomes. Autophagy 1:53–58PubMedCrossRefGoogle Scholar
  77. 77.
    Sanjuan MA, Dillon CP, Tait SW et al (2007) Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 450:1253–1257PubMedCrossRefGoogle Scholar
  78. 78.
    Sanjuan MA, Green DR (2008) Eating for good health: linking autophagy and phagocytosis in host defense. Autophagy 4:607–611PubMedGoogle Scholar
  79. 79.
    Shui W, Sheu L, Liu J et al (2008) Membrane proteomics of phagosomes suggests a connection to autophagy. Proc Natl Acad Sci USA 105:16952–16957PubMedCrossRefGoogle Scholar
  80. 80.
    Deretic V (2008) Autophagosome and phagosome. Methods Mol Biol 445:1–10PubMedCrossRefGoogle Scholar
  81. 81.
    Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904PubMedCrossRefGoogle Scholar
  82. 82.
    Simsek T, Kocabas F, Zheng J et al (2010) The distinct metabolic profile of hematopoietic stem cells reflects their location in a hypoxic niche. Cell Stem Cell 7:380–390PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Rossitza Lazova
    • 1
  • Ashok Chakraborty
    • 1
  • John M. Pawelek
    • 2
    Email author
  1. 1.Department of DermatologyYale Cancer Center, Yale University School of MedicineNew HavenUSA
  2. 2.Department of DermatologyYale Cancer Center, Yale University School of MedicineNew HavenUSA

Personalised recommendations