Skip to main content

Expression of Macrophage Antigens by Tumor Cells

  • Chapter
  • First Online:
Cell Fusion in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 950))

Abstract

Macrophages are a heterogeneous cell population of the myeloid linage derived from monocytes. These cells show two different polarization states, M1 and M2 macrophages in response to different micro environmental signals. Tumor associated macrophages (TAM) represent the M2 type and promote tumor progression. These cells express antigens that more or less are specific for macrophages like: CD14, CD68, MAC387, CD163, and DAP12. In a series of recent studies it is shown that cancer cells may express these antigens and CD163, MAC387 and DAP12 may be expressed by e.g. breast cancer cells. Thus, 48% of the breast cancers expressed CD163 that is a scavenger receptor normally expressed by macrophages alone. The corresponding figure for rectal cancer is 31%. The expression of CD163 is correlated to early distant recurrence in breast cancer and local recurrence in rectal cancer and reduced survival time in both conditions. Expression of macrophage antigens in breast- and colorectal-cancers may have a prognostic relevance in clinical praxis. One explanation to these findings is that resemblance with macrophages may indicate a more invasive phenotype due to genetic exchange between the primary tumor cells and associated macrophages. This is further supported by the finding that expression of DAP12, a macrophage fusion receptor, in breast cancer is associated with an advanced tumor grade and higher rates of skeletal and liver metastases and overall shorter distant recurrence free survival. Another explanation to the changed phenotype is a genetic exchange between the cells by exosome-mediated transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mantovani A, Bottazzi B, Colotta F et al (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270

    Article  PubMed  CAS  Google Scholar 

  2. Mantovani A, Schioppa T, Biswas SK et al (2003) Tumor-associated macrophages and dendritic cells as prototypic type II polarized myeloid populations. Tumori 89:459–468

    PubMed  CAS  Google Scholar 

  3. Mantovani A, Schioppa T, Porta C et al (2006) Role of tumor-associated macrophages in tumor progression and invasion. Cancer Metastasis Rev 25:315–322

    Article  PubMed  Google Scholar 

  4. Mantovani A, Sozzani S, Locati M et al (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23:549–555

    Article  PubMed  CAS  Google Scholar 

  5. Martinez FO, Sica A, Mantovani A et al (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  PubMed  CAS  Google Scholar 

  6. Vignery A (2005) Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med 202:337–340

    Article  PubMed  CAS  Google Scholar 

  7. Larizza L, Schirrmacher V, Graf L et al (1984) Suggestive evidence that the highly metastatic variant ESb of the T-cell lymphoma eb is derived from spontaneous fusion with a host macrophage. Int J Cancer 34:699–707

    Article  PubMed  CAS  Google Scholar 

  8. Larizza L, Schirrmacher V, Pfluger E (1984) Acquisition of high metastatic capacity after in vitro fusion of a nonmetastatic tumor line with a bone marrow-derived macrophage. J Exp Med 160:1579–1584

    Article  PubMed  CAS  Google Scholar 

  9. Munzarova M, Lauerova L, Capkova J (1992) Are advanced malignant melanoma cells hybrids between melanocytes and macrophages? Melanoma Res 2:127–129

    Article  PubMed  CAS  Google Scholar 

  10. Munzarova M, Lauerova L, Kovarik J et al (1992) Fusion-induced malignancy? A preliminary study. (A challenge to today’s common wisdom). Neoplasma 39:79–86

    PubMed  CAS  Google Scholar 

  11. Munzarova M, Zemanova D (1992) Transformation of blood monocytes to multinucleated giant cells in vitro: are there any differences between malignant and nonmalignant states? Physiol Res 41:221–226

    PubMed  CAS  Google Scholar 

  12. Busund LT, Killie MK, Bartnes K et al (2002) Spontaneously formed tumorigenic hybrids of meth A sarcoma and macrophages grow faster and are better vascularized than the parental tumor. Int J Cancer 100:407–413

    Article  PubMed  CAS  Google Scholar 

  13. Pawelek JM, Chakraborty AK, Rachkovsky ML et al (1999) Altered N-glycosylation in macrophage x melanoma fusion hybrids. Cell Mol Biol (Noisy-Le-Grand) 45:1011–1027

    CAS  Google Scholar 

  14. Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10:507–514

    Article  PubMed  CAS  Google Scholar 

  15. Chakraborty AK, Sodi S, Rachkovsky M et al (2000) A spontaneous murine melanoma lung metastasis comprised of host x tumor hybrids. Cancer Res 60:2512–2519

    PubMed  CAS  Google Scholar 

  16. Chakraborty AK, Pawelek J, Ikeda Y et al (2001) Fusion hybrids with macrophage and melanoma cells up-regulate N-acetylglucosaminyltransferase V, beta1-6 branching, and metastasis. Cell Growth Differ 12:623–630

    PubMed  CAS  Google Scholar 

  17. Chakraborty AK, de Freitas Sousa J, Espreafico EM et al (2001) Human monocyte x mouse melanoma fusion hybrids express human gene. Gene 275:103–106

    Article  PubMed  CAS  Google Scholar 

  18. Nygren JM, Jovinge S, Breitbach M et al (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  PubMed  CAS  Google Scholar 

  19. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    Article  PubMed  CAS  Google Scholar 

  20. Mortensen K, Lichtenberg J, Thomsen PD et al (2004) Spontaneous fusion between cancer cells and endothelial cells. Cell Mol Life Sci 61:2125–2131

    Article  PubMed  CAS  Google Scholar 

  21. Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    Article  PubMed  CAS  Google Scholar 

  22. Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583

    Article  PubMed  CAS  Google Scholar 

  23. Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386

    Article  PubMed  CAS  Google Scholar 

  24. Shabo I, Olsson H, Sun XF et al (2009) Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer 125:1826–1831

    Article  PubMed  CAS  Google Scholar 

  25. Shabo I, Stal O, Olsson H et al (2008) Breast cancer expression of CD163, a macrophage scavenger receptor, is related to early distant recurrence and reduced patient survival. Int J Cancer 123:780–786

    Article  PubMed  CAS  Google Scholar 

  26. Ziegler-Heitbrock HW, Ulevitch RJ (1993) CD14: cell surface receptor and differentiation marker. Immunol Today 14:121–125

    Article  PubMed  CAS  Google Scholar 

  27. Bazil V, Baudys M, Hilgert I et al (1989) Structural relationship between the soluble and membrane-bound forms of human monocyte surface glycoprotein CD14. Mol Immunol 26:657–662

    Article  PubMed  CAS  Google Scholar 

  28. Kirkland TN, Viriyakosol S (1998) Structure-function analysis of soluble and membrane-bound CD14. Prog Clin Biol Res 397:79–87

    PubMed  CAS  Google Scholar 

  29. Viriyakosol S, Mathison JC, Tobias PS et al (2000) Structure-function analysis of CD14 as a soluble receptor for lipopolysaccharide. J Biol Chem 275:3144–3149

    Article  PubMed  CAS  Google Scholar 

  30. Peterson PK, Gekker G, Hu S et al (1995) CD14 receptor-mediated uptake of nonopsonized mycobacterium tuberculosis by human microglia. Infect Immun 63:1598–1602

    PubMed  CAS  Google Scholar 

  31. Tamai R, Sakuta T, Matsushita K et al (2002) Human gingival CD14(+) fibroblasts primed with gamma interferon increase production of interleukin-8 in response to lipopolysaccharide through up-regulation of membrane CD14 and MyD88 mRNA expression. Infect Immun 70:1272–1278

    Article  PubMed  CAS  Google Scholar 

  32. Frey EA, Miller DS, Jahr TG et al (1992) Soluble CD14 participates in the response of cells to lipopolysaccharide. J Exp Med 176:1665–1671

    Article  PubMed  CAS  Google Scholar 

  33. Pugin J, Ulevitch RJ, Tobias PS (1993) A critical role for monocytes and CD14 in endotoxin-induced endothelial cell activation. J Exp Med 178:2193–2200

    Article  PubMed  CAS  Google Scholar 

  34. Saito N, Pulford KA, Breton-Gorius J et al (1991) Ultrastructural localization of the CD68 macrophage-associated antigen in human blood neutrophils and monocytes. Am J Pathol 139:1053–1059

    PubMed  CAS  Google Scholar 

  35. Holness CL, da Silva RP, Fawcett J et al (1993) Macrosialin, a mouse macrophage-restricted glycoprotein, is a member of the lamp/lgp family. J Biol Chem 268:9661–9666

    PubMed  CAS  Google Scholar 

  36. Holness CL, Simmons DL (1993) Molecular cloning of CD68, a human macrophage marker related to lysosomal glycoproteins. Blood 81:1607–1613

    PubMed  CAS  Google Scholar 

  37. Kurushima H, Ramprasad M, Kondratenko N et al (2000) Surface expression and rapid internalization of macrosialin (mouse CD68) on elicited mouse peritoneal macrophages. J Leukoc Biol 67:104–108

    PubMed  CAS  Google Scholar 

  38. Ramprasad MP, Terpstra V, Kondratenko N et al (1996) Cell surface expression of mouse macrosialin and human CD68 and their role as macrophage receptors for oxidized low density lipoprotein. Proc Natl Acad Sci USA 93:14833–14838

    Article  PubMed  CAS  Google Scholar 

  39. Khazen W, M’Bika J-P, Tomkiewicz C et al (2005) Expression of macrophage-selective markers in human and rodent adipocytes. FEBS Letters 579:5631–5634

    PubMed  CAS  Google Scholar 

  40. Kunisch E, Fuhrmann R, Roth A et al (2004) Macrophage specificity of three anti-CD68 monoclonal antibodies (KP1, EBM11, and PGM1) widely used for immunohistochemistry and flow cytometry. Ann Rheum Dis 63:774–784

    Article  PubMed  CAS  Google Scholar 

  41. Doussis IA, Gatter KC, Mason DY (1993) CD68 reactivity of non-macrophage derived tumours in cytological specimens. J Clin Pathol 46:334–336

    Article  PubMed  CAS  Google Scholar 

  42. Gloghini A, Rizzo A, Zanette I et al (1995) KP1/CD68 expression in malignant neoplasms including lymphomas, sarcomas, and carcinomas. Am J Clin Pathol 103:425–431

    PubMed  CAS  Google Scholar 

  43. Facchetti F, Bertalot G, Grigolato PG (1991) KP1 (CD 68) staining of malignant melanomas. Histopathology 19:141–145

    Article  PubMed  CAS  Google Scholar 

  44. Cassidy M, Loftus B, Whelan A et al (1994) KP-1: not a specific marker. Staining of 137 sarcomas, 48 lymphomas, 28 carcinomas, 7 malignant melanomas and 8 cystosarcoma phyllodes. Virchows Arch 424:635–640

    Article  PubMed  CAS  Google Scholar 

  45. Strojnik T, Kavalar R, Zajc I et al (2009) Prognostic impact of CD68 and kallikrein 6 in human glioma. Anticancer Res 29:3269–3279

    PubMed  CAS  Google Scholar 

  46. Ribé A, McNutt NS (2003) S100A protein expression in the distinction between lentigo maligna and pigmented actinic keratosis. Am J Dermatopathol 25:93–99

    Article  PubMed  Google Scholar 

  47. Loftus B, Loh LC, Curran B et al (1991) Mac387: its non-specificity as a tumour marker or marker of histiocytes. Histopathology 19:251–255

    Article  PubMed  CAS  Google Scholar 

  48. Lopez-Beltran A, Requena MJ, Alvarez-Kindelan J et al (2007) Squamous differentiation in primary urothelial carcinoma of the urinary tract as seen by MAC387 immunohistochemistry. J Clin Pathol 60:332–335

    Article  PubMed  Google Scholar 

  49. Fabriek BO, Dijkstra CD, van den Berg TK (2005) The macrophage scavenger receptor CD163. Immunobiology 210:153–160

    Article  PubMed  CAS  Google Scholar 

  50. Kristiansen M, Graversen JH, Jacobsen C et al (2001) Identification of the haemoglobin scavenger receptor. Nature 409:198–201

    Article  PubMed  CAS  Google Scholar 

  51. Nguyen TT, Schwartz EJ, West RB et al (2005) Expression of CD163 (hemoglobin scavenger receptor) in normal tissues, lymphomas, carcinomas, and sarcomas is largely restricted to the monocyte/macrophage lineage. Am J Surg Pathol 29:617–624

    Article  PubMed  Google Scholar 

  52. Stover CM, Schleypen J, Gronlund J et al (2000) Assignment of CD163B, the gene encoding M160, a novel scavenger receptor, to human chromosome 12p13.3 By in situ hybridization and somatic cell hybrid analysis. Cytogenet Cell Genet 90:246–247

    Article  PubMed  CAS  Google Scholar 

  53. Pioli PA, Goonan KE, Wardwell K et al (2004) TGF-beta regulation of human macrophage scavenger receptor CD163 is smad3-dependent. J Leukoc Biol 76:500–508

    Article  PubMed  CAS  Google Scholar 

  54. Ritter M, Buechler C, Langmann T et al (1999) The scavenger receptor CD163: regulation, promoter structure and genomic organization. Pathobiology 67:257–261

    Article  PubMed  CAS  Google Scholar 

  55. Sulahian TH, Hogger P, Wahner AE et al (2000) Human monocytes express CD163, which is upregulated by IL-10 and identical to p155. Cytokine 12:1312–1321

    Article  PubMed  CAS  Google Scholar 

  56. Komohara Y, Hirahara J, Horikawa T et al (2006) AM-3 k, an anti-macrophage antibody, recognizes CD163, a molecule associated with an anti-inflammatory macrophage phenotype. J Histochem Cytochem 54:763–771

    Article  PubMed  CAS  Google Scholar 

  57. Sica A, Schioppa T, Mantovani A et al (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: potential targets of anti-cancer therapy. Eur J Cancer 42:717–727

    Article  PubMed  CAS  Google Scholar 

  58. Shabo I, Olsson H, Sun XF et al (2009) Expression of the macrophage antigen CD163 in rectal cancer cells is associated with early local recurrence and reduced survival time. Int J Cancer 125:1826–1831

    Google Scholar 

  59. Swedish Rectal Cancer Trial (1997) Improved survival with preoperative radiotherapy in resectable rectal cancer. N Engl J Med 336:980–987

    Article  Google Scholar 

  60. Jensen TO, Schmidt H, Steiniche T et al (2010) Melanoma cell expression of macrophage markers in AJCC stage I/II melanoma. J Clin Oncol (Meeting Abstracts) 28:e19034–

    Google Scholar 

  61. Kaifu T, Nakahara J, Inui M et al (2003) Osteopetrosis and thalamic hypomyelinosis with synaptic degeneration in DAP12-deficient mice. J Clin Invest 111:323–332

    PubMed  CAS  Google Scholar 

  62. Paloneva J, Mandelin J, Kiialainen A et al (2003) DAP12/TREM2 deficiency results in impaired osteoclast differentiation and osteoporotic features. J Exp Med 198:669–675

    Article  PubMed  CAS  Google Scholar 

  63. Lucas M, Daniel L, Tomasello E et al (2002) Massive inflammatory syndrome and lymphocytic immunodeficiency in KARAP/DAP12-transgenic mice. Eur J Immunol 32:2653–2663

    Article  PubMed  CAS  Google Scholar 

  64. Ivashkiv LB (2009) Cross-regulation of signaling by ITAM-associated receptors. Nat Immunol 10:340–347

    Article  PubMed  CAS  Google Scholar 

  65. Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306:1517–1519

    Article  PubMed  CAS  Google Scholar 

  66. Bakker AB, Hoek RM, Cerwenka A et al (2000) DAP12-deficient mice fail to develop autoimmunity Due To impaired antigen priming. Immunity 13:345–353

    Article  PubMed  CAS  Google Scholar 

  67. Valadi H, Ekstrom K, Bossios A et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9:654–659

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joar Svanvik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shabo, I., Svanvik, J. (2011). Expression of Macrophage Antigens by Tumor Cells. In: Dittmar, T., Zänker, K. (eds) Cell Fusion in Health and Disease. Advances in Experimental Medicine and Biology, vol 950. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0782-5_7

Download citation

Publish with us

Policies and ethics