Advertisement

Cell Fusion Hypothesis of the Cancer Stem Cell

  • Xin Lu
  • Yibin KangEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 950)

Abstract

A major advance in recent cancer research is the identification of tumor cells with stem cell-like properties. Cancer stem cells (CSCs) often represent a rare population in the tumor mass and possess the exclusive ability to initiate the growth of a heterogeneous tumor. The origin of CSCs remains elusive and is likely to be cancer type specific. One possible but under-appreciated potential mechanism for the generation of CSCs is through fusion between stem cells and differentiated cells. The cell fusion hypothesis of CSCs adds an important functional underpinning to the potential multifaceted roles of cell fusion in the initiation and progression of cancer.

Keywords

Cell Fusion Fusion Partner Somatic Stem Cell Transplant Bone Marrow Cell Supernumerary Centrosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aichel O (1911) Über Zellverschmelzung mit qualitativ abnormer Chromosomenverteilung als Ursache der Geschwulstbildung. Vorträge Und Aufsätze Über Entwicklungsmechanik Der Organismen 13:1–115Google Scholar
  2. 2.
    Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448PubMedGoogle Scholar
  3. 3.
    Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386PubMedGoogle Scholar
  4. 4.
    Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69:8536–8539PubMedGoogle Scholar
  5. 5.
    Shackleton M, Quintana E, Fearon ER et al (2009) Heterogeneity in cancer: cancer stem cells versus clonal evolution. Cell 138:822–829PubMedGoogle Scholar
  6. 6.
    Reya T, Morrison SJ, Clarke MF et al (2001) Stem cells, cancer, and cancer stem cells. Nature 414:105–111PubMedGoogle Scholar
  7. 7.
    Zhou B-BS, Zhang H, Damelin M et al (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823PubMedGoogle Scholar
  8. 8.
    Bjerkvig R, Tysnes BB, Aboody KS et al (2005) The origin of the cancer stem cell: current controversies and new insights. Nature Rev Cancer 5:899–904Google Scholar
  9. 9.
    Tysnes BB, Bjerkvig R (2007) Cancer initiation and progression: involvement of stem cells and the microenvironment. Biochim Biophys Acta 1775:283–297PubMedGoogle Scholar
  10. 10.
    Dittmar T, Nagler C, Schwitalla S et al (2009) Recurrence cancer stem cells – made by cell fusion? Med Hypotheses 73:542–547PubMedGoogle Scholar
  11. 11.
    Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6:567–575PubMedGoogle Scholar
  12. 12.
    Lluis F, Cosma MP (2010) Cell-fusion-mediated somatic-cell reprogramming: a mechanism for tissue regeneration. J Cell Physiol 223:6–13PubMedGoogle Scholar
  13. 13.
    Harris H, Watkins JF (1965) Hybrid cells derived from mouse and man: artificial heterokaryons of mammalian cells from different species. Nature 205:640–646PubMedGoogle Scholar
  14. 14.
    Wang X, Willenbring H, Akkari Y et al (2003) Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901PubMedGoogle Scholar
  15. 15.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973PubMedGoogle Scholar
  16. 16.
    Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904PubMedGoogle Scholar
  17. 17.
    Weimann JM, Johansson CB, Trejo A et al (2003) Stable reprogrammed heterokaryons form spontaneously in purkinje neurons after bone marrow transplant. Nature Cell Biol 5:959–966PubMedGoogle Scholar
  18. 18.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedGoogle Scholar
  19. 19.
    Ogle BM (2004) Spontaneous fusion of cells between species yields transdifferentiation and retroviral transfer in vivo. FASEB J 18:548–550PubMedGoogle Scholar
  20. 20.
    Relvas JB, Aldridge H, Wells KE et al (1997) Exogenous genes are expressed in mdx muscle fibres following the implantation of primary mouse skin cells. Basic Appl Myol 7:211–219Google Scholar
  21. 21.
    Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow derived myogenic progenitors. Science 279:1528–1530PubMedGoogle Scholar
  22. 22.
    Bittner RE, Schofer C, Weipoltshammer K et al (1999) Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat Embryol (Berl) 199:391–396Google Scholar
  23. 23.
    Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  24. 24.
    Gussoni E, Bennett RR, Muskiewicz KR et al (2002) Long-term persistence of donor nuclei in a duchenne muscular dystrophy patient receiving bone marrow transplantation. J Clin Invest 110:807–814PubMedGoogle Scholar
  25. 25.
    Goldenberg DM (1968) ÜBer die Progression der Malignität: Eine Hypothese. J Mol Med 46:898–900Google Scholar
  26. 26.
    Mekler LB (1971) Hybridization of transformed cells with lymphocytes as 1 of the probable causes of the progression leading to the development of metastatic malignant cells. Vestnik Akademii Meditsinskikh Nauk SSSR 26:80–89PubMedGoogle Scholar
  27. 27.
    Goldenberg DM, Pavia RA, Tsao MC (1974) In vivo hybridisation of human tumour and normal hamster cells. Nature 250:649–651PubMedGoogle Scholar
  28. 28.
    Pawelek JM (2005) Tumour-cell fusion as a source of myeloid traits in cancer. Lancet Oncol 6:988–993PubMedGoogle Scholar
  29. 29.
    Yilmaz Y, Lazova R, Qumsiyeh M et al (2005) Donor Y chromosome in renal carcinoma cells of a female BMT recipient: visualization of putative BMT-tumor hybrids by FISH. Bone Marrow Transplant 35:1021–1024PubMedGoogle Scholar
  30. 30.
    Li R, Sonik A, Stindl R et al (2000) Aneuploidy vs. Gene mutation hypothesis of cancer: recent study claims mutation but is found to support aneuploidy. PNAS 97:3236–3241PubMedGoogle Scholar
  31. 31.
    Miller FR, McInerney D, Rogers C et al (1988) Spontaneous fusion between metastatic mammary tumor subpopulations. J Cell Biochem 36:129–136PubMedGoogle Scholar
  32. 32.
    Miller F, Mohamed A, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49:4316–4321PubMedGoogle Scholar
  33. 33.
    Friedlander M, Hedley D, Taylor I et al (1984) Influence of cellular DNA content on survival in advanced ovarian cancer. Cancer Res 44:397–400PubMedGoogle Scholar
  34. 34.
    Frankfurt O, Chin J, Englander L et al (1985) Relationship between DNA ploidy, glandular differentiation, and tumor spread in human prostate cancer. Cancer Res 45:1418–1423PubMedGoogle Scholar
  35. 35.
    Auer G, Eriksson E, Azavedo E et al (1984) Prognostic significance of nuclear DNA content in mammary adenocarcinomas in humans. Cancer Res 44:394–396PubMedGoogle Scholar
  36. 36.
    Coulson P, Thornthwaite J, Woolley T et al (1984) Prognostic indicators including DNA histogram type, receptor content, and staging related to human breast cancer patient survival. Cancer Res 44:4187–4196PubMedGoogle Scholar
  37. 37.
    Heselmeyer K (1996) Gain of chromosome 3q defines the transition from severe dysplasia to invasive carcinoma of the uterine cervix. Proc Natl Acad Sci USA 93:479–484PubMedGoogle Scholar
  38. 38.
    Fujiwara T, Bandi M, Nitta M et al (2005) Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437:1043–1047PubMedGoogle Scholar
  39. 39.
    Sheehy PF, Wakonig-Vaartaja T, Winn R et al (1974) Asynchronous DNA synthesis and asynchronous mitosis in multinuclear ovarian cancer cells. Cancer Res 34:991–996PubMedGoogle Scholar
  40. 40.
    Shi Q, King RW (2005) Chromosome nondisjunction yields tetraploid rather than aneuploid cells in human cell lines. Nature 437:1038–1042PubMedGoogle Scholar
  41. 41.
    Nigg EA (2002) Centrosome aberrations: cause or censequence of cancer progression? Nat Rev Cancer 2: 815–825PubMedGoogle Scholar
  42. 42.
    Ruff M, Pert C (1984) Small cell carcinoma of the lung: macrophage-specific antigens suggest hemopoietic stem cell origin. Science 225:1034–1036PubMedGoogle Scholar
  43. 43.
    Atkin NB (1979) Premature chromosome condensation in carcinoma of the bladder: presumptive evidence for fusion of normal and malignant cells. Cytogenet Cell Genet 23:217–219PubMedGoogle Scholar
  44. 44.
    Petkovic I (1988) Premature chromosome condensation in children with acute lymphocytic leukemia (L1) and malignant histiocytosis. Cancer Genet Cytogenet 35:37–40PubMedGoogle Scholar
  45. 45.
    Sreekantaiah C, Bhargava MK, Shetty NJ (1987) Premature chromosome condensation in human cervical carcinoma. Cancer Genet Cytogenet 24:263–269PubMedGoogle Scholar
  46. 46.
    Reichmann A, Levin B (1981) Premature chromosome condensation in human large bowel cancer. Cancer Genet Cytogenet 3:221–225PubMedGoogle Scholar
  47. 47.
    Williams DM, Scott CD, Beck TM (1976) Premature chromosome condensation in human leukemia. Blood 47:687–693PubMedGoogle Scholar
  48. 48.
    Rao PN, Johnson RT (1972) Premature chromosome condensation: a mechanism for the elimination of chromosomes in virus-fused cells. J Cell Sci 10:495–513PubMedGoogle Scholar
  49. 49.
    Kovacs G (1985) Premature chromosome condensation: evidence for in vivo cell fusion in human malignant tumours. Int J Cancer 36:637–641PubMedGoogle Scholar
  50. 50.
    Pawelek JM (2000) Tumour cell hybridization and metastasis revisited. Melanoma Res 10:507–514PubMedGoogle Scholar
  51. 51.
    Lagarde AE, Kerbel RS (1985) Somatic cell hybridization in vivo and in vitro in relation to the metastatic phenotype. Biochimica Et Biophysica Acta 823:81–110PubMedGoogle Scholar
  52. 52.
    Lu X, Kang Y (2009) Efficient acquisition of dual metastasis organotropism to bone and lung through stable spontaneous fusion between MDA-MB-231 variants. Proc Natl Acad Sci 106:9385–9390PubMedGoogle Scholar
  53. 53.
    Kerbel RS, Lagarde AE, Dennis JW et al (1983) Spontaneous fusion in vivo between normal host and tumor cells: possible contribution to tumor progression and metastasis studied with a lectin-resistant mutant tumor. Mol Cell Biol 3:523–538PubMedGoogle Scholar
  54. 54.
    Rachkovsky M, Sodi S, Chakraborty A et al (1998) Melanoma x macrophage hybrids with enhanced metastatic potential. Clin Exp Metastasis 16:299–312PubMedGoogle Scholar
  55. 55.
    Duelli DM, Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2:859–862PubMedGoogle Scholar
  56. 56.
    Vignery A (2005) Macrophage fusion: are somatic and cancer cells possible partners? Trends Cell Biol 15: 188–193PubMedGoogle Scholar
  57. 57.
    Kelly PN, Dakic A, Adams JM et al (2007) Tumor growth need not be driven by rare cancer stem cells. Science 317:337PubMedGoogle Scholar
  58. 58.
    Quintana E, Shackleton M, Sabel MS et al (2008) Efficient tumour formation by single human melanoma cells. Nature 456:593–598PubMedGoogle Scholar
  59. 59.
    Lapidot T, Sirard C, Vormoor J et al (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367:645–648PubMedGoogle Scholar
  60. 60.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737PubMedGoogle Scholar
  61. 61.
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al (2003) Prospective identification of tumorigenic breast cancer cells. PNAS 100:3983–3988PubMedGoogle Scholar
  62. 62.
    Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401PubMedGoogle Scholar
  63. 63.
    Ricci-Vitiani L, Lombardi DG, Pilozzi E et al (2007) Identification and expansion of human colon-cancer-initiating cells. Nature 445:111–115PubMedGoogle Scholar
  64. 64.
    O’Brien CA, Pollett A, Gallinger S et al (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110PubMedGoogle Scholar
  65. 65.
    Dalerba P, Dylla SJ, Park I-K et al (2007) Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci 104:10158–10163PubMedGoogle Scholar
  66. 66.
    Prince ME, Sivanandan R, Kaczorowski A et al (2007) Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci 104:973–978PubMedGoogle Scholar
  67. 67.
    Li C, Heidt DG, Dalerba P et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67:1030–1037PubMedGoogle Scholar
  68. 68.
    Hermann PC, Huber SL, Herrler T et al (2007) Distinct populations of cancer stem cells determine tumor growth and metastatic activity in human pancreatic cancer. Cell Stem Cell 1:313–323PubMedGoogle Scholar
  69. 69.
    Schatton T, Murphy GF, Frank NY et al (2008) Identification of cells initiating human melanomas. Nature 451:345–349PubMedGoogle Scholar
  70. 70.
    Yang ZF, Ho DW, Ng MN et al (2008) Significance of CD90+ cancer stem cells in human liver cancer. Cancer Cell 13:153–166PubMedGoogle Scholar
  71. 71.
    Eramo A, Lotti F, Sette G et al (2007) Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ 15:504–514PubMedGoogle Scholar
  72. 72.
    Collins AT, Berry PA, Hyde C et al (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951PubMedGoogle Scholar
  73. 73.
    Curley MD, Therrien VA, Cummings CL et al (2009) CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells 27:2875–2883PubMedGoogle Scholar
  74. 74.
    Deshpande AJ, Cusan M, Rawat VPS et al (2006) Acute myeloid leukemia is propagated by a leukemic stem cell with lymphoid characteristics in a mouse model of CALM/AF10-positive leukemia. Cancer Cell 10:363–374PubMedGoogle Scholar
  75. 75.
    Krivtsov AV, Twomey D, Feng Z et al (2006) Transformation from committed progenitor to leukaemia stem cell initiated by MLL-AF9. Nature 442:818–822PubMedGoogle Scholar
  76. 76.
    Yilmaz ÖH, Valdez R, Theisen BK et al (2006) Pten dependence distinguishes haematopoietic stem cells from leukaemia-initiating cells. Nature 441:475–482PubMedGoogle Scholar
  77. 77.
    Cho RW, Wang X, Diehn M et al (2008) Isolation and molecular characterization of cancer stem cells in MMTV-wnt-1 murine breast tumors. Stem Cells 26:364–371PubMedGoogle Scholar
  78. 78.
    Vaillant F, Asselin-Labat M-L, Shackleton M et al (2008) The mammary progenitor marker CD61/beta-3 integrin identifies cancer stem cells in mouse models of mammary tumorigenesis. Cancer Res 68:7711–7717PubMedGoogle Scholar
  79. 79.
    Zhang M, Behbod F, Atkinson RL et al (2008) Identification of tumor-initiating cells in a p53-null mouse model of breast cancer. Cancer Res 68:4674–4682PubMedGoogle Scholar
  80. 80.
    Malanchi I, Peinado H, Kassen D et al (2008) Cutaneous cancer stem cell maintenance is dependent on [bgr]-catenin signalling. Nature 452:650–653PubMedGoogle Scholar
  81. 81.
    Graham SM, Jorgensen HG, Allan E et al (2002) Primitive, quiescent, philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood 99:319–325PubMedGoogle Scholar
  82. 82.
    Bhatia R, Holtz M, Niu N et al (2003) Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood 101: 4701–4707PubMedGoogle Scholar
  83. 83.
    Masters JRW, Koberle B (2003) Curing metastatic cancer: lessons from testicular germ-cell tumours. Nat Rev Cancer 3:517–525PubMedGoogle Scholar
  84. 84.
    O’Brien CA, Kreso A, Jamieson CHM (2010) Cancer stem cells and self-renewal. Clin Cancer Res 16:3113–3120PubMedGoogle Scholar
  85. 85.
    Jamieson CHM, Ailles LE, Dylla SJ et al (2009) Granulocyte-macrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Eng J Med 351:657–667Google Scholar
  86. 86.
    Abrahamsson AE, Geron I, Gotlib J et al (2009) Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci 106:3925–3929PubMedGoogle Scholar
  87. 87.
    Wang Y, Krivtsov AV, Sinha AU et al (2010) The wnt/{beta}-catenin pathway is required for the development of leukemia stem cells in AML. Science 327:1650–1653PubMedGoogle Scholar
  88. 88.
    Korkaya H, Paulson A, Charafe-Jauffret E et al (2009) Regulation of mammary stem/progenitor cells by PTEN/akt/beta-catenin signaling. PLoS Biol 7:e1000121PubMedGoogle Scholar
  89. 89.
    Zhao C, Chen A, Jamieson CH et al (2009) Hedgehog signalling is essential for maintenance of cancer stem cells in myeloid leukaemia. Nature 458:776–779PubMedGoogle Scholar
  90. 90.
    Dierks C, Beigi R, Guo G-R et al (2008) Expansion of bcr-abl-positive leukemic stem cells is dependent on hedgehog pathway activation. Cancer Cell 14:238–249PubMedGoogle Scholar
  91. 91.
    Liu S, Dontu G, Mantle ID et al (2006) Hedgehog signaling and bmi-1 regulate self-renewal of normal and malignant human mammary stem cells. Cancer Res 66:6063–6071PubMedGoogle Scholar
  92. 92.
    Clement V, Sanchez P, de Tribolet N et al (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172PubMedGoogle Scholar
  93. 93.
    Bar EE, Chaudhry A, Lin A et al (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533PubMedGoogle Scholar
  94. 94.
    Varnat F, Duquet A, Malerba M et al (2009) Human colon cancer epithelial cells harbour active HEDGEHOG-GLI signalling that is essential for tumour growth, recurrence, metastasis and stem cell survival and expansion. EMBO Mol Med 1:338–351PubMedGoogle Scholar
  95. 95.
    Hoey T, Yen W-C, Axelrod F et al (2009) DLL4 blockade inhibits tumor growth and reduces tumor-initiating cell frequency. Cell Stem Cell 5:168–177PubMedGoogle Scholar
  96. 96.
    Harrison H, Farnie G, Howell SJ et al (2010) Regulation of breast cancer stem cell activity by signaling through the notch4 receptor. Cancer Res 70:709–718PubMedGoogle Scholar
  97. 97.
    Fan X, Khaki L, Zhu TS et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16PubMedGoogle Scholar
  98. 98.
    Ikushima H, Todo T, Ino Y et al (2009) Autocrine TGF-[beta] signaling maintains tumorigenicity of glioma-initiating cells through sry-related HMG-box factors. Cell Stem Cell 5:504–514PubMedGoogle Scholar
  99. 99.
    Li Z, Bao S, Wu Q et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513PubMedGoogle Scholar
  100. 100.
    Piccirillo SG, Vescovi AL (2006) Bone morphogenetic proteins regulate tumorigenicity in human glioblastoma stem cells. Ernst Schering Found Symp Proc 5:59–81PubMedGoogle Scholar
  101. 101.
    Rizo A, Olthof S, Han L et al (2009) Repression of BMI1 in normal and leukemic human CD34+ cells impairs self-renewal and induces apoptosis. Blood 114:1498–1505PubMedGoogle Scholar
  102. 102.
    Abdouh M, Facchino S, Chatoo W et al (2009) BMI1 sustains human glioblastoma multiforme stem cell renewal. Journal of Neuroscience 29:8884–8896PubMedGoogle Scholar
  103. 103.
    Brabletz T, Jung A, Spaderna S et al (2005) Migrating cancer stem cells [mdash] an integrated concept of malignant tumour progression. Nat Rev Cancer 5:744–749PubMedGoogle Scholar
  104. 104.
    Li F, Tiede B, Massague J, Kang Y (2006) Beyond tumorigenesis: cancer stem cells in metastasis. Cell Res 17:3–14Google Scholar
  105. 105.
    Balic M, Lin H, Young L et al (2006) Most early disseminated cancer cells detected in bone marrow of breast cancer patients have a putative breast cancer stem cell phenotype. Clin Cancer Res 12:5615–5621PubMedGoogle Scholar
  106. 106.
    Yang Z-J, Ellis T, Markant SL et al (2008) Medulloblastoma can be initiated by deletion of patched in lineage-restricted progenitors or stem cells. Cancer Cell 14:135–145PubMedGoogle Scholar
  107. 107.
    Bachoo RM, Maher EA, Ligon KL et al (2002) Epidermal growth factor receptor and ink4a/arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell 1:269–277PubMedGoogle Scholar
  108. 108.
    Molyneux G, Geyer FC, Magnay FA et al (2010) BRCA1 basal-like breast cancers originate from luminal epithelial profenitors and not from basal stem cells. Cell Stem CEll 7:403–417PubMedGoogle Scholar
  109. 109.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedGoogle Scholar
  110. 110.
    Bernards R, Weinberg RA (2002) A progression puzzle. Nature 418:823PubMedGoogle Scholar
  111. 111.
    Van’t Veer LJ, Weigelt B (2003) Road map to metastasis. Nat Med 9:999–1000PubMedGoogle Scholar
  112. 112.
    Fidler IJ, Kripke ML (1977) Metastasis results from preexisting variant cells within a malignant tumor. Science 197:893–895PubMedGoogle Scholar
  113. 113.
    Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458PubMedGoogle Scholar
  114. 114.
    van ‘t Veer LJ, Dai H, van de Vijver MJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536PubMedGoogle Scholar
  115. 115.
    van de Vijver MJ, He YD, van’t Veer LJ et al (2002) A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med 347:1999–2009PubMedGoogle Scholar
  116. 116.
    Husemann Y, Geigl JB, Schubert F et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68PubMedGoogle Scholar
  117. 117.
    Klein CA (2009) Parallel progression of primary tumours and metastases. Nat Rev Cancer 9:302–312PubMedGoogle Scholar
  118. 118.
    Podsypanina K, Du YC, Jechlinger M et al (2008) Seeding and propagation of untransformed mouse mammary cells in the lung. Science 321:1841–1844PubMedGoogle Scholar
  119. 119.
    Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:153–162PubMedGoogle Scholar
  120. 120.
    Hess KR, Varadhachary GR, Taylor SH et al (2006) Metastatic patterns in adenocarcinoma. Cancer 106: 1624–1633PubMedGoogle Scholar
  121. 121.
    Paget S (1889) Distribution of secondary growths in cancer of the breast. Lancet 1:571–573Google Scholar
  122. 122.
    De Baetselier P, Roos E, Brys L et al (1984) Nonmetastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells. Cancer Metastasis Rev 3:5–24PubMedGoogle Scholar
  123. 123.
    Duncan AW, Hickey RD, Paulk NK et al (2009) Ploidy reductions in murine fusion-derived hepatocytes. PLoS Genet 5:e1000385PubMedGoogle Scholar
  124. 124.
    Martin GM, Sprague CA (1969) Parasexual cycle in cultivated human somatic cells. Science 166:761–763PubMedGoogle Scholar
  125. 125.
    Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583PubMedGoogle Scholar
  126. 126.
    Nygren JM, Liuba K, Breitbach M et al (2008) Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol 10:584–592PubMedGoogle Scholar
  127. 127.
    Balkwill F, Mantovani A (2001) Inflammation and cancer: back to virchow? The Lancet 357:539–545Google Scholar
  128. 128.
    Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420:860–867PubMedGoogle Scholar
  129. 129.
    Yamashita YM, Mahowald AP, Perlin JR et al (2007) Asymmetric inheritance of mother versus daughter centrosome in stem cell division. Science 315:518–521PubMedGoogle Scholar
  130. 130.
    Yamashita YM (2009) The centrosome and asymmetric cell division. Prion 3:84–88PubMedGoogle Scholar
  131. 131.
    Lingle WL, Barrett SL, Negron VC et al (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99:1978–1983PubMedGoogle Scholar
  132. 132.
    Lothschütz D, Jennewein M, Pahl S et al (2002) Polyploidization and centrosome hyperamplification in inflammatory bronchi. Inflamm Res 51:416–422–422Google Scholar
  133. 133.
    Oberringer M, Lothschütz D, Jennewein M et al (1999) Centrosome multiplication accompanies a transient clustering of polyploid cells during tissue repair. Mol Cell Biol Res Commun 2:190–196PubMedGoogle Scholar
  134. 134.
    Vignery A (2000) Osteoclasts and giant cells: macrophage – macrophage fusion mechanism. Int J Exp Pathol 81:291–304PubMedGoogle Scholar
  135. 135.
    Horsley V, Jansen KM, Mills ST et al (2003) IL-4 acts as a myoblast recruitment factor during mammalian muscle growth. Cell 113:483–494PubMedGoogle Scholar
  136. 136.
    Todaro M, Alea MP, Di Stefano AB et al (2007) Colon cancer stem cells dictate tumor growth and resist cell death by production of interleukin-4. Cell Stem Cell 1:389–402PubMedGoogle Scholar
  137. 137.
    Wright LM, Maloney W, Yu X et al (2005) Stromal cell-derived factor-1 binding to its chemokine receptor CXCR4 on precursor cells promotes the chemotactic recruitment, development and survival of human osteoclasts. Bone 36:840–853PubMedGoogle Scholar
  138. 138.
    Li X, Qin L, Bergenstock M et al (2007) Parathyroid hormone stimulates osteoblastic expression of MCP-1 to recruit and increase the fusion of pre/osteoclasts. J Biol Chem 282:33098–33106PubMedGoogle Scholar
  139. 139.
    Lu Y, Cai Z, Xiao G et al (2007) Monocyte chemotactic protein-1 mediates prostate cancer-induced bone resorption. Cancer Res 67:3646–3653PubMedGoogle Scholar
  140. 140.
    Muller A, Homey B, Soto H et al (2001) Involvement of chemokine receptors in breast cancer metastasis. Nature 410:50–56PubMedGoogle Scholar
  141. 141.
    Lu X, Kang Y (2009) Chemokine (C-c motif) ligand 2 engages CCR2+ stromal cells of monocytic origin to promote breast cancer metastasis to lung and bone. J Biol Chem 284:29087–29096PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of Molecular BiologyPrinceton UniversityPrincetonUSA
  2. 2.Breast Cancer ProgramThe Cancer Institute of New JerseyNew BrunswickUSA

Personalised recommendations