Skip to main content

Cell Fusion and Hyperactive Osteoclastogenesis in Multiple Myeloma

  • Chapter
  • First Online:
Cell Fusion in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 950))

Abstract

Multiple myeloma (MM) is a hematologic malignancy whose progression may account for uncontrolled osteoclastogenesis promoted by the malignant plasma cells within the marrow microenvironment. Osteoclasts are multinucleated cells derived from the fusion of myeloid progenitors such as monocytes/macrophages, in response to specific differentiation factors released within the marrow niche, that are significantly deregulated in MM. In this malignancy DC-STAMP, a major fusogen protein enrolled by pre-osteoclasts, is highly expressed by peripheral macrophages, whereas dendritic cells and myeloma plasma cells show high fusogenic susceptibility and under specific conditions transdifferentiate to osteoclasts. In particular, the malignant plasma cells, besides altered ploidy, expression of cancer stem cell phenotype and high metastasizing capability, are able to express phenotypic markers of osteclasts, namely the proteolytic enzymes for the bone matrix, and to activate the β3 transcriptional pathway leading to ERK1/2 phosphorylation and initiation of the bone resorbing activity. Thus, based on the imbalanced osteoclast formation and activity that involve cells constitutively uncommitted to osteoclast differentiation, both homotypic and heterotypic cell fusions in myeloma marrow microenvironment represent a major pathogenetic event that drives the development and progression of the skeleton devastation typical of the myeloma bone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bjerkvig R, Tysnes BB, Aboody KS et al (2005) Opinion: the origin of the cancer stem cell: current controversies and new insights. Nat Rev Cancer 5:899–904

    Article  PubMed  CAS  Google Scholar 

  2. Lu X, Kang Y (2009) Cell fusion as a hidden force in tumor progression. Cancer Res 69:8536–8539

    Article  PubMed  CAS  Google Scholar 

  3. Köhler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    Article  PubMed  Google Scholar 

  4. Pawelek JM, Chakraborty AK (2008) The cancer cell-leukocyte fusion theory of metastasis. Adv Cancer Res 101:397–444

    Article  PubMed  CAS  Google Scholar 

  5. Oren-Suissa M, Podbilewicz B (2010) Evolution of programmed cell fusion: common mechanisms and distinct functions. Dev Dynam 239:1515–1528

    Article  CAS  Google Scholar 

  6. Pawelek JM, Chakraborty AK (2008) Fusion of tumour cells with bone marrow-derived cells: a unifying explanation for metastasis. Nat Rev Cancer 8:377–386

    Article  PubMed  CAS  Google Scholar 

  7. Duelli D, Lazebnik Y (2003) Cell fusion: a hidden enemy? Cancer Cell 3:445–448.

    Article  PubMed  CAS  Google Scholar 

  8. Miller FR, McInerney D, Rogers C et al (1988) Spontaneous fusion between metastatic mammary tumor subpopulations. J Cell Biochem 36:129–136

    Article  PubMed  CAS  Google Scholar 

  9. Parris GE (2005) The role of viruses in cell fusion and its importance to evolution, invasion and metastasis of cancer clones. Med Hypotheses 64:1011–1014

    Article  PubMed  CAS  Google Scholar 

  10. Duelli D, Lazebnik Y (2007) Cell-to-cell fusion as a link between viruses and cancer. Nat Rev Cancer 7:968–976

    Article  PubMed  CAS  Google Scholar 

  11. Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583

    Article  PubMed  CAS  Google Scholar 

  12. Nygren JM, Liuba K, Breitbach M et al (2008) Myeloid and lymphoid contribution to non-haematopoietic lineages through irradiation-induced heterotypic cell fusion. Nat Cell Biol 10:584–592

    Article  PubMed  CAS  Google Scholar 

  13. Zelenin AV, Prudovskiĭ IA, Gumeniuk RR et al (1990) The nature of a proliferation block in differentiated cells with heterokaryons as a model: various types of absence of proliferation in cells in terminal differentiation. Ontogenez 21:32–40

    PubMed  CAS  Google Scholar 

  14. Yilmaz Y, Lazova R, Qumsiyeh M et al (2005) Donor Y chromosome in renal carcinoma cells of a female BMT recipient: visualization of putative BMT tumor hybrids by FISH. Bone Marrow Transplant 35:1021–1024

    Article  PubMed  CAS  Google Scholar 

  15. Andersen TL, Boissy P, Sondergaard TE et al (2007) Osteoclast nuclei of myeloma patients show chromosome translocations specific for the myeloma cell clone: a new type of cancer-host partnership? J Pathol 211:10–17

    Article  PubMed  CAS  Google Scholar 

  16. Silvestris F, Ciavarella S, De Matteo M et al (2009) Bone-resorbing cells in multiple myeloma: osteoclasts, myeloma cell polykaryons, or both? Oncologist 14:264–275

    Article  PubMed  CAS  Google Scholar 

  17. Zandecki M, Lai JL, Facon T et al (1996) Multiple myeloma: almost all patients are cytogenetically abnormal. Br J Haematol 94:217–227

    Article  PubMed  CAS  Google Scholar 

  18. Fonseca R, Barlogie B, Bataille R et al (2004) Genetics and cytogenetics of multiple myeloma: a workshop report. Cancer Res 64:1546–1558

    Article  PubMed  CAS  Google Scholar 

  19. Kuehl WM, Bergsagel PL (2002) Multiple myeloma: evolving genetic events and host interactions. Nat Rev Cancer 2:175–187

    Article  PubMed  CAS  Google Scholar 

  20. Chang WJ, Van Wier SA, Ahmann GJ et al (2005) A validated FISH trisomy index demonstrates the hyperdiploid and nonhyperdiploid dichotomy in MGUS. Blood 106:2156–2161

    Article  Google Scholar 

  21. Avet-Loiseau H, Facon T, Grosbois B et al (2002) Oncogenesis of multiple myeloma: 14q32 and 13q chromosomal abnormalities are not randomly distributed, but correlate with natural history, immunological features, and clinical presentation. Blood 99:2185–2191

    Article  PubMed  CAS  Google Scholar 

  22. Fonseca R, Blood E, Rue M et al (2003) Clinical and biologic implications of recurrent genomic aberrations in myeloma. Blood 101:4569–4575

    Article  PubMed  CAS  Google Scholar 

  23. Avet-Loiseau H, Brigaudeau C, Morineau N et al (1999) High incidence of cryptic translocations involving the Ig heavy chain gene in multiple myeloma, as shown by fluorescence in situ hybridization. Genes Chromosomes Cancer 24:9–15

    Article  PubMed  CAS  Google Scholar 

  24. Smadja NV, Bastard C, Brigaudeau C et al (2001) Hypodiploidy is a major prognostic factor in multiple myeloma. Blood 98:2229–2238

    Article  PubMed  CAS  Google Scholar 

  25. Seong C, Delasalle K, Hayes K et al (1998) Prognostic value of cytogenetics in multiple myeloma. Br J Haematol 101:189–194.

    Article  PubMed  CAS  Google Scholar 

  26. Castedo M, Perfettini JL, Roumier T et al (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23:2825–2837

    Article  PubMed  CAS  Google Scholar 

  27. Vakifahmetoglu H, Olsson M, Tamm C et al (2008) DNA damage induces two distinct modes of cell death in ovarian carcinomas. Cell Death Differ 15:555–566

    Article  PubMed  CAS  Google Scholar 

  28. Skwarska A, Augustin E, Konopa J (2007) Sequential induction of mitotic catastrophe followed by apoptosis in human leukemia MOLT4 cells by imidazoacridinone C-1311. Apoptosis 12:2245–2257

    Article  PubMed  CAS  Google Scholar 

  29. Giehl M, Fabarius A, Frank O et al (2005) Centrosome aberrations in chronic myeloid leukemia correlate with stage of disease and chromosomal instability. Leukemia 19:1192–1197

    Article  PubMed  CAS  Google Scholar 

  30. Kramer A, Schweizer S, Neben K et al (2003) Centrosome aberrations as a possible mechanism for chromosomal instability in non-Hodgkin's lymphoma. Leukemia 17:2207–2213

    Article  PubMed  CAS  Google Scholar 

  31. Lingle WL, Barrett SL, Negron VC et al (2002) Centrosome amplification drives chromosomal instability in breast tumor development. Proc Natl Acad Sci USA 99:1978–1983

    Article  PubMed  CAS  Google Scholar 

  32. Maxwell CA, Keats JJ, Belch AR et al (2005) Receptor for hyaluronan-mediated motility correlates with centrosome abnormalities in multiple myeloma and maintains mitotic integrity. Cancer Res 65:850–860

    PubMed  CAS  Google Scholar 

  33. Chang WJ, Ahmann GJ, Henderson K et al (2006) Clinical implication of centrosome amplification in plasma cell neoplasm. Blood 107:3669–3675

    Article  Google Scholar 

  34. Chang WJ, Braggio E, Mulligan G et al (2007) The centrosome index is a powerful prognostic marker in myeloma and identifies a cohort of patients that may benefit from aurora kinase inhibition. Blood 111:1603–1609

    Article  Google Scholar 

  35. Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8:755–768

    Article  PubMed  CAS  Google Scholar 

  36. Agarwal JR, Matsui W (2010) Multiple myeloma: a paradigm for translation of the cancer stem cell hypothesis. Anticancer Agents Med Chem 10:116–120

    PubMed  CAS  Google Scholar 

  37. Dittmar T, Seidel J, Zaenker KS et al (2006) Carcinogenesis driven by bone marrow-derived stem cells. Contrib Microbiol 13:156–169

    Article  PubMed  Google Scholar 

  38. Miller FR, Mohamed AN, McEachern D (1989) Production of a more aggressive tumor cell variant by spontaneous fusion of two mouse tumor subpopulations. Cancer Res 49:4316–4321

    PubMed  CAS  Google Scholar 

  39. Duelli DM, Lazebnik YA (2000) Primary cells suppress oncogene-dependent apoptosis. Nat Cell Biol 2:859–862

    Article  PubMed  CAS  Google Scholar 

  40. Li R, Hehlmann R, Sachs R et al (2005) Chromosomal alterations cause the high rates and wide ranges of drug resistance in cancer cells. Cancer Genet Cytogenet 163:44–56

    Article  PubMed  CAS  Google Scholar 

  41. Yagi M, Miyamoto T, Sawatani Y et al (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351

    Article  PubMed  CAS  Google Scholar 

  42. Yilmaz Y, Lazova R, Qumsiyeh M et al (2005) Donor Y chromosome in renal carcinoma cells of a female BMT recipient. Bone Marrow Transplant 35:1021–1024.

    Article  PubMed  CAS  Google Scholar 

  43. Larizza L, Schirrmacher V, Graf L et al (1984) Suggestive evidence that the highly metastatic variant ESb of the T-cell lymphoma Eb is derived from spontaneous fusion with a host macrophage. Int J Cancer 34:699–706

    Article  PubMed  CAS  Google Scholar 

  44. Pawelek JM (2007) Viewing malignant melanoma cells as macrophage-tumor hybrids. Cell Adh Migr 1:2–6

    PubMed  Google Scholar 

  45. Pawelek J (2005) Tumor cell fusion as a source of myeloid traits in cancer. Lancet Oncol 6:988–993

    Article  PubMed  CAS  Google Scholar 

  46. De Baetselier P, Roos E, Brys L et al (1984) Non-metastatic tumor cells acquire metastatic properties following somatic hybridization with normal cells. Cancer Metastasis Rev 3:5–24

    Article  PubMed  Google Scholar 

  47. Lu X, Kang Y (2007) Organotropism of breast cancer metastasis. J Mammary Gland Biol Neoplasia 12:153–162

    Article  PubMed  Google Scholar 

  48. Horowitz MC, Lorenzo JA (2004) The origin of osteoclasts. Curr Opin Rheumatol 16:464–468

    Article  PubMed  Google Scholar 

  49. Miyamoto T (2006) The dendritic cell-specific transmembrane protein DC-STAMP is essential for osteoclast fusion and osteoclast bone-resorbing activity. Mod Rheumatol 16:341–342

    Article  PubMed  CAS  Google Scholar 

  50. Yagi M, Miyamoto T, Sawatani Y et al (2005) DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med 202:345–351.

    Article  PubMed  CAS  Google Scholar 

  51. Yagi M, Miyamoto T, Toyama Y et al (2006) Role of DC-STAMP in cellular fusion of osteoclasts and macrophage giant cells. J Bone Miner Metab 24:355–358

    Article  PubMed  CAS  Google Scholar 

  52. Matozaki T, Murata Y, Okazawa H et al (2009) Functions and molecular mechanisms of the CD47-SIRPalpha signalling pathway. Trends Cell Biol 19:72–80

    Article  PubMed  CAS  Google Scholar 

  53. Cui W, Cuartas E, Ke J et al (2007) CD200 and its receptor, CD200R, modulate bone mass via the differentiation of osteoclasts. Proc Natl Acad Sci USA 104:14436–14441

    Article  PubMed  CAS  Google Scholar 

  54. Terpos E, Politou M, Rahemtulla A (2003) New insights into the pathophysiology and management of bone disease in multiple myeloma. Br J Haematol 123:758–769

    Article  PubMed  CAS  Google Scholar 

  55. Sezer O, Heider U, Zavrski I et al (2003) RANK ligand and osteoprotegerin in myeloma bone disease. Blood 101:2094–2098

    Article  PubMed  CAS  Google Scholar 

  56. Farrugia AN, Atkins GJ, To LB et al (2003) et al. Receptor activator of nuclear factor-kappaB ligand expression by human myeloma cells mediates osteoclast formation in vitro and correlates with bone destruction in vivo. Cancer Res 63:5438–5445

    PubMed  CAS  Google Scholar 

  57. Lai FP, Cole-Sinclair M, Cheng WJ et al (2004) Myeloma cells can directly contribute to the pool of RANKL in bone bypassing the classic stromal and osteoblast pathway of osteoclast stimulation. Br J Haematol 126:192–201

    Article  PubMed  CAS  Google Scholar 

  58. Giuliani N, Colla S, Morandi F et al (2005) Lack of receptor activator of nuclear factor-kB ligand (RANKL) expression and functional production by human multiple myeloma cells. Haematologica 90:275–278

    PubMed  CAS  Google Scholar 

  59. Calvani N, Silvestris F, Cafforio P et al (2004) Osteoclast-like cell formation by circulating myeloma B lymphocytes: role of RANK-L. Leuk Lymphoma 45:377–380

    Article  PubMed  CAS  Google Scholar 

  60. Seidel C, Hjertner O, Abildgaard N et al (2001) Serum osteoprotegerin levels are reduced in patients with multiple myeloma with lytic bone disease. Blood 98:2269–2271

    Article  PubMed  CAS  Google Scholar 

  61. Lipton A, Ali SM, Leitzel K et al (2002) Serum osteoprotegerin levels in healthy controls and cancer patients. Clin Cancer Res 8:2306–2310

    PubMed  CAS  Google Scholar 

  62. Terpos E, Politou M, Rahemtulla A (2005) The role of markers of bone remodelling in multiple myeloma. Blood Rev 19:125–142

    Article  PubMed  Google Scholar 

  63. Silvestris F, Cafforio P, Calvani N et al (2006) In-vitro functional phenotypes of plasma cell lines from patients with multiple myeloma. Leuk Lymphoma 47:1921–1931

    Article  PubMed  CAS  Google Scholar 

  64. Ghevaert C, Fournier M, Bernardi F et al (1997) Non-secretory multiple myeloma with multinucleated giant plasma cells. Leuk Lymphoma 27:185–189

    PubMed  CAS  Google Scholar 

  65. Zukerberg LR, Ferry JA, Conlon M et al (1990) Plasma cell myeloma with cleaved, multilobated and monocytoid nuclei. Am J Clin Pathol 93:657–661

    PubMed  CAS  Google Scholar 

  66. Kurabayashi H, Miyawaki S, Murakami H et al (1989) Ultrastructure of multinucleated giant myeloma cells: report of one case. Am J Hematol 31:284–285

    Article  PubMed  CAS  Google Scholar 

  67. Buss DH, Reynolds GD, Cooper MR (1988) Multiple myeloma associated multilobated plasma cell nuclei. Virchows Arch B Cell Pathol Incl Mol Pathol 55:287–292

    PubMed  CAS  Google Scholar 

  68. Durie BGM, Grogan TM, Spier C et al (1989) Myelomonocytic myeloma cell line (LB 84-1). Blood 73:770–776

    PubMed  CAS  Google Scholar 

  69. Duperray C, Klein B, Durie BGM et al (1989) Phenotypic analysis of human myeloma cell lines. Blood 73:566–572

    PubMed  CAS  Google Scholar 

  70. Liu S, Otsuyama K, Ma Z et al (2007) Induction of multilineage markers in human myeloma cells and their downregulation by IL-6. Int J Hematol 85:49–58

    Article  PubMed  CAS  Google Scholar 

  71. Calvani N, Cafforio P, Silvestris F et al (2005) Functional osteoclast-like transformation of cultured human myeloma cell lines. Br J Haematol 130:926–938

    Article  PubMed  CAS  Google Scholar 

  72. Silvestris F, Cafforio P, De Matteo M et al (2008) Expression and function of the calcitonin receptor by myeloma cells in their osteoclast-like activity in vitro. Leuk Res 32:611–623

    Article  PubMed  CAS  Google Scholar 

  73. Silvestris F, Cafforio P, Tucci M et al (2002) Negative regulation of erythroblast maturation by Fas-L(+)/TRAIL(+) highly malignant plasma cells: a major pathogenetic mechanism of anemia in multiple myeloma. Blood 99: 1305–1313

    Article  PubMed  CAS  Google Scholar 

  74. Tucci M, De Palma R, Lombardi L et al (2009) β3 integrin subunit mediates the bone-resorbing function exerted by cultured myeloma plasma cells. Cancer Res 15;69:6738–6746

    Article  Google Scholar 

  75. Ries WL, Gong JK, Gunsolley JC (1987) The distribution and kinetics of nuclei in rat osteoclasts. Cell Tissue Kinet 20:1–14

    PubMed  CAS  Google Scholar 

  76. Andersen TL, Søe K, Sondergaard TE et al (2010) Myeloma cell-induced disruption of bone remodelling compartments leads to osteolytic lesions and generation of osteoclast-myeloma hybrid cells. Br J Haematol 148:551–561

    Article  PubMed  Google Scholar 

  77. Alnaeeli M, Park J, Mahamed D et al (2007) Dendritic cells at the osteo-immune interface: implications for inflammation-induced bone loss. J Bone Miner Res 22:775–780

    Article  PubMed  CAS  Google Scholar 

  78. Maitra R, Follenzi A, Yaghoobian A et al (2010) Dendritic cell-mediated in vivo bone resorption. J Immunol 185:1485–1491

    Article  PubMed  CAS  Google Scholar 

  79. Josselin N, Libouban H, Dib M et al (2009) Quantification of Dendritic Cells and Osteoclasts in the Bone Marrow of Patients with Monoclonal Gammopathy. Pathol Oncol Res 15:65–72

    Article  PubMed  Google Scholar 

  80. Wakkach A, Mansour A, Dacquin R et al (2008) Bone marrow microenvironment controls the in vivo differentiation of murine dendritic cells into osteoclasts. Blood 112:5074–5083

    Article  PubMed  CAS  Google Scholar 

  81. Kukreja A, Hutchinson A, Dhodapkar K et al (2006) Enhancement of clonogenicity of human multiple myeloma by dendritic cells. J Exp Med 203:1859–1865

    Article  PubMed  CAS  Google Scholar 

  82. Kukreja A, Radfar S, Sun BH et al (2009) Dominant role of CD47-thrombospondin-1 interactions in myeloma-induced fusion of human dendritic cells: implications for bone disease. Blood 114:3413–3421

    Article  PubMed  CAS  Google Scholar 

  83. Xie H, Ye M, Feng R et al (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by AIRC, 2009 (Italian Association for Cancer Research), Milan, Italy and by “Biotecnoter” Project funded by “Regione Puglia”, Italy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Silvestris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Silvestris, F., Ciavarella, S., Strippoli, S., Dammacco, F. (2011). Cell Fusion and Hyperactive Osteoclastogenesis in Multiple Myeloma. In: Dittmar, T., Zänker, K. (eds) Cell Fusion in Health and Disease. Advances in Experimental Medicine and Biology, vol 950. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0782-5_5

Download citation

Publish with us

Policies and ethics