Advertisement

Class III Viral Membrane Fusion Proteins

  • Marija BackovicEmail author
  • Theodore S. Jardetzky
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 950)

Abstract

Members of class III of viral fusion proteins share common structural features and molecular architecture, although they belong to evolutionary distant viruses and carry no sequence homology. Based of the experimentally determined three-dimensional structures of their ectodomains, glycoprotein B (gB) of herpesviruses, G protein of rhabdoviruses and glycoprotein 64 (gp64) of baculoviruses have been identified as class III fusion proteins. The structures are proposed to represent post-fusion conformations, and they reveal trimeric, elongated, rod-like molecules, with each protomer being composed of five domains. Sequences which interact with target membranes and form the fusion peptides are located in two loops found at one end of the molecule. Class III fusion proteins are embedded in viral envelope with the principal function of catalyzing fusion of viral and cellular membranes, an event that is essential for infection to occur. In addition, they have been implicated in processes such as attachment to target cells and viral maturation. G protein is the only class III fusion protein for which structures of both pre- and post-fusion states have been determined, shedding light on the mechanism involved in the conformational change and membrane fusion. Whether similar structural organization of class III fusion proteins translates into a common mechanism involved in carrying out membrane fusion remains to be investigated.

Keywords

Fusion Protein Vesicular Stomatitis Virus Fusion Peptide Stem Region Herpes Virus Entry Mediator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Pellet PE, Roizman B (2007) The family Herpesviridae: a brief introduction. In Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, New York, NYGoogle Scholar
  2. 2.
    Rickinson A, Kieff E (2007) Epstein-Barr virus. In Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Williams & Wilkins, New York, NYGoogle Scholar
  3. 3.
    Lyles DS, Rupprecht CE (2007) Rhabdoviridae. In Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott Wiliams & Wilkins, New York, NYGoogle Scholar
  4. 4.
    Blissard GW, Wenz JR (1992) Baculovirus gp64 envelope glycoprotein is sufficient to mediate pH-dependent membrane fusion. J Virol 66(11):6829–6835PubMedGoogle Scholar
  5. 5.
    Le Blanc I, Luyet PP, Pons V et al (2005) Endosome-to-cytosol transport of viral nucleocapsids. Nat Cell Biol 7(7):653–664PubMedCrossRefGoogle Scholar
  6. 6.
    Heldwein EE, Krummenacher C (2008) Entry of herpesviruses into mammalian cells. Cell Mol Life Sci 65(11):1653–1668PubMedCrossRefGoogle Scholar
  7. 7.
    Subramanian RP, Geraghty RJ (2007) Herpes simplex virus type 1 mediates fusion through a hemifusion intermediate by sequential activity of glycoproteins D, H, L, and B. Proc Natl Acad Sci USA 104:2903–2908PubMedCrossRefGoogle Scholar
  8. 8.
    Farnsworth A, Wisner TW, Webb M et al (2007) Herpes simplex virus glycoproteins gB and gH function in fusion between the virion envelope and the outer nuclear membrane. Proc Natl Acad Sci USA 104(24):10187–10192PubMedCrossRefGoogle Scholar
  9. 9.
    Strive T, Gicklhorn D, Wohlfahrt M et al (2005) Site directed mutagenesis of the carboxyl terminus of human cytomegalovirus glycoprotein B leads to attenuation of viral growth in cell culture. Arch Virol 150(3):585–593PubMedCrossRefGoogle Scholar
  10. 10.
    Lee SK, Longnecker R (1997) The Epstein-Barr virus glycoprotein 110 carboxy-terminal tail domain is essential for lytic virus replication. J Virol 71(5):4092–4097PubMedGoogle Scholar
  11. 11.
    Krishnan HH, Sharma-Walia N, Zeng L et al (2005) Envelope glycoprotein gB of Kaposi’s sarcoma-associated herpesvirus is essential for egress from infected cells. J Virol 79(17):10952–10967PubMedCrossRefGoogle Scholar
  12. 12.
    Oomens AG, Blissard GW (1999) Requirement for GP64 to drive efficient budding of Autographa californica multicapsid nucleopolyhedrovirus. Virology 254(2):297–314PubMedCrossRefGoogle Scholar
  13. 13.
    Spear PG (2004) Herpes simplex virus: receptors and ligands for cell entry. Cell Microbiol 6(5):401–410PubMedCrossRefGoogle Scholar
  14. 14.
    Satoh T, Arii J, Suenaga T et al (2008) PILRalpha is a herpes simplex virus-1 entry coreceptor that associates with glycoprotein B. Cell 132(6):935–944PubMedCrossRefGoogle Scholar
  15. 15.
    Wang X, Huong SM, Chiu ML et al (2003) Epidermal growth factor receptor is a cellular receptor for human cytomegalovirus. Nature 424(6947):456–461PubMedCrossRefGoogle Scholar
  16. 16.
    Wang X, Huang DY, Huong SM et al (2005) Integrin alphavbeta3 is a coreceptor for human cytomegalovirus. Nat Med 11(5):515–521PubMedCrossRefGoogle Scholar
  17. 17.
    Akula SM, Pramod NP, Wang FZ et al (2002) Integrin alpha3beta1 (CD 49c/29) is a cellular receptor for Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) entry into the target cells. Cell 108(3):407–419PubMedCrossRefGoogle Scholar
  18. 18.
    Hefferon KL, Oomens AG, Monsma SA et al (1999) Host cell receptor binding by baculovirus GP64 and kinetics of virion entry. Virology 258(2):455–468PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou J, Blissard GW (2008) Identification of a GP64 subdomain involved in receptor binding by budded virions of the baculovirus Autographica californica multicapsid nucleopolyhedrovirus. J Virol 82(9):4449–4460PubMedCrossRefGoogle Scholar
  20. 20.
    Schlegel R, Tralka TS, Willingham MC et al (1983) Inhibition of VSV binding and infectivity by phosphatidylserine: Is phosphatidylserine a VSV-binding site? Cell 32(2):639–646PubMedCrossRefGoogle Scholar
  21. 21.
    Coil DA, Miller AD (2004) Phosphatidylserine is not the cell surface receptor for vesicular stomatitis virus. J Virol 78(20):10920–10926PubMedCrossRefGoogle Scholar
  22. 22.
    Roche S, Albertini AA, Lepault J et al (2008) Structures of vesicular stomatitis virus glycoprotein: membrane fusion revisited. Cell Mol Life Sci 65(11):1716–1728PubMedCrossRefGoogle Scholar
  23. 23.
    White JM, Delos SE, Brecher M et al (2008) Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 43(3):189–219PubMedCrossRefGoogle Scholar
  24. 24.
    Harrison SC (2008) Viral membrane fusion. Nat Struct Mol Biol 15(7):690–698PubMedCrossRefGoogle Scholar
  25. 25.
    Kielian M, Rey FA (2006) Virus membrane-fusion proteins: more than one way to make a hairpin. Nat Rev Microbiol 4(1):67–76PubMedCrossRefGoogle Scholar
  26. 26.
    Wilson IA, Skehel JJ, Wiley DC (1981) Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289(5796):366–373PubMedCrossRefGoogle Scholar
  27. 27.
    Rey FA, Heinz FX, Mandl C et al (1995) The envelope glycoprotein from tick-borne encephalitis virus at 2 A resolution. Nature 375(6529):291–298PubMedCrossRefGoogle Scholar
  28. 28.
    Heldwein EE, Lou H, Bender FC et al (2006) Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313(5784):217–220PubMedCrossRefGoogle Scholar
  29. 29.
    Backovic M, Longnecker R, Jardetzky TS (2009) Structure of a trimeric variant of the Epstein-Barr virus glycoprotein B. Proc Natl Acad Sci USA 106(8):2880–2885PubMedCrossRefGoogle Scholar
  30. 30.
    Roche S, Bressanelli S, Rey FA et al (2006) Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313(5784):187–191PubMedCrossRefGoogle Scholar
  31. 31.
    Roche S, Rey FA, Gaudin Y et al (2007) Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 315(5813):843–848PubMedCrossRefGoogle Scholar
  32. 32.
    Kadlec J, Loureiro S, Abrescia NG et al (2008) The postfusion structure of baculovirus gp64 supports a unified view of viral fusion machines. Nat Struct Mol Biol 15(10):1024–1030PubMedCrossRefGoogle Scholar
  33. 33.
    Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9(2):99–111PubMedCrossRefGoogle Scholar
  34. 34.
    Lemmon MA (2004) Pleckstrin homology domains: not just for phosphoinositides. Biochem Soc Trans 32(Pt 5):707–711PubMedGoogle Scholar
  35. 35.
    Backovic M, Jardetzky TS (2009) Class III viral membrane fusion proteins. Curr Opin Struct Biol 19(2):189–196PubMedCrossRefGoogle Scholar
  36. 36.
    Earp LJ, Delos SE, Park HE et al (2005) The many mechanisms of viral membrane fusion proteins. Curr Top Microbiol Immunol 285:25–66PubMedCrossRefGoogle Scholar
  37. 37.
    Fredericksen BL, Whitt MA (1995) Vesicular stomatitis virus glycoprotein mutations that affect membrane fusion activity and abolish virus infectivity. J Virol 69(3):1435–1443PubMedGoogle Scholar
  38. 38.
    Zhang L, Ghosh HP (1994) Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. J Virol 68(4):2186–2193PubMedGoogle Scholar
  39. 39.
    Sun X, Belouzard S, Whittaker GR (2008) Molecular architecture of the bipartite fusion loops of vesicular stomatitis virus glycoprotein G, a class III viral fusion protein. J Biol Chem 283(10):6418–6427PubMedCrossRefGoogle Scholar
  40. 40.
    Durrer P, Gaudin Y, Ruigrok RW et al (1995) Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J Biol Chem 270(29):17575–17581PubMedCrossRefGoogle Scholar
  41. 41.
    Hannah BP, Heldwein EE, Bender FC et al (2007) Mutational evidence of internal fusion loops in herpes simplex virus glycoprotein B. J Virol 81:4858–4865PubMedCrossRefGoogle Scholar
  42. 42.
    Backovic M, Jardetzky TS, Longnecker R (2007) Hydrophobic residues that form putative fusion loops of Epstein-Barr virus glycoprotein B are critical for fusion activity. J Virol 81(17):9596–9600PubMedCrossRefGoogle Scholar
  43. 43.
    Hannah BP, Cairns TM, Bender FC et al (2009) Herpes simplex virus glycoprotein B associates with target membranes via its fusion loops. J Virol 83(13):6825–6836PubMedCrossRefGoogle Scholar
  44. 44.
    Backovic M, Leser GP, Lamb RA et al (2007) Characterization of EBV gB indicates properties of both class I and class II viral fusion proteins. Virology 368(1):102–113PubMedCrossRefGoogle Scholar
  45. 45.
    Wimley WC, White SH (1992) Partitioning of tryptophan side-chain analogs between water and cyclohexane. Biochemistry 31(51):12813–12818PubMedCrossRefGoogle Scholar
  46. 46.
    Jeetendra E, Ghosh K, Odell D et al (2003) The membrane-proximal region of vesicular stomatitis virus glycoprotein G ectodomain is critical for fusion and virus infectivity. J Virol 77(23):12807–12818PubMedCrossRefGoogle Scholar
  47. 47.
    Jeetendra E, Robison CS, Albritton LM et al (2002) The membrane-proximal domain of vesicular stomatitis virus G protein functions as a membrane fusion potentiator and can induce hemifusion. J Virol 76(23):12300–12311PubMedCrossRefGoogle Scholar
  48. 48.
    Robison CS, Whitt MA (2000) The membrane-proximal stem region of vesicular stomatitis virus G protein confers efficient virus assembly. J Virol 74(5):2239–2246PubMedCrossRefGoogle Scholar
  49. 49.
    McShane MP, Longnecker R (2004) Cell-surface expression of a mutated Epstein-Barr virus glycoprotein B allows fusion independent of other viral proteins. Proc Natl Acad Sci USA 101(50):17474–17479PubMedCrossRefGoogle Scholar
  50. 50.
    Ruel N, Zago A, Spear PG (2006) Alanine substitution of conserved residues in the cytoplasmic tail of herpes simplex virus gB can enhance or abolish cell fusion activity and viral entry. Virology 346(1):229–237PubMedCrossRefGoogle Scholar
  51. 51.
    Chowdary TK, Heldwein EE (2010) Syncytial phenotype of C-terminally truncated herpes simplex virus type 1 gB is associated with diminished membrane interactions. J Virol 84(10):4923–4935PubMedCrossRefGoogle Scholar
  52. 52.
    Li Q, Spriggs MK, Kovats S et al (1997) Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71(6):4657–4662PubMedGoogle Scholar
  53. 53.
    Cocchi F, Fusco D, Menotti L et al (2004) The soluble ectodomain of herpes simplex virus gD contains a membrane-proximal pro-fusion domain and suffices to mediate virus entry. Proc Natl Acad Sci USA 101(19):7445–7450PubMedCrossRefGoogle Scholar
  54. 54.
    Kirschner AN, Omerovic J, Popov B et al (2006) Soluble Epstein-Barr virus glycoproteins gH, gL, and gp42 form a 1:1:1 stable complex that acts like soluble gp42 in B-cell fusion but not in epithelial cell fusion. J Virol 80(19):9444–9454PubMedCrossRefGoogle Scholar
  55. 55.
    Krummenacher C, Supekar VM, Whitbeck JC et al (2005) Structure of unliganded HSV gD reveals a mechanism for receptor-mediated activation of virus entry. Embo J 24(23):4144–4153PubMedCrossRefGoogle Scholar
  56. 56.
    Kirschner AN, Sorem J, Longnecker R et al (2009) Structure of Epstein-Barr virus glycoprotein 42 suggests a mechanism for triggering receptor-activated virus entry. Structure 17(2):223–233PubMedCrossRefGoogle Scholar
  57. 57.
    Nicola AV, McEvoy AM, Straus SE (2003) Roles for endocytosis and low pH in herpes simplex virus entry into HeLa and Chinese hamster ovary cells. J Virol 77(9):5324–5332PubMedCrossRefGoogle Scholar
  58. 58.
    Nicola AV, Hou J, Major EO et al (2005) Herpes simplex virus type 1 enters human epidermal keratinocytes, but not neurons, via a pH-dependent endocytic pathway. J Virol 79(12):7609–7616PubMedCrossRefGoogle Scholar
  59. 59.
    Roche S, Gaudin Y (2002) Characterization of the equilibrium between the native and fusion-inactive conformation of rabies virus glycoprotein indicates that the fusion complex is made of several trimers. Virology 297(1):128–135PubMedCrossRefGoogle Scholar
  60. 60.
    Markovic I, Pulyaeva H, Sokoloff A et al (1998) Membrane fusion mediated by baculovirus gp64 involves assembly of stable gp64 trimers into multiprotein aggregates. J Cell Biol 143(5):1155–1166PubMedCrossRefGoogle Scholar
  61. 61.
    Zhou J, Blissard GW (2006) Mapping the conformational epitope of a neutralizing antibody (AcV1) directed against the AcMNPV GP64 protein. Virology 352(2):427–437PubMedCrossRefGoogle Scholar
  62. 62.
    Gaudin Y, Tuffereau C, Segretain D et al (1991) Reversible conformational changes and fusion activity of rabies virus glycoprotein. J Virol 65(9):4853–4859PubMedGoogle Scholar
  63. 63.
    Li Z, Blissard GW (2010) Baculovirus GP64 disulfide bonds: the intermolecular disulfide bond of AcMNPV GP64 is not Essential for Membrane Fusion and Virion Budding. J Virol 84(17):8584–8595PubMedCrossRefGoogle Scholar
  64. 64.
    Gillet L, Colaco S, Stevenson PG (2008) Glycoprotein B switches conformation during murid herpesvirus 4 entry. J Gen Virol 89(Pt 6):1352–1363PubMedCrossRefGoogle Scholar
  65. 65.
    Dollery SJ, Delboy MG, Nicola AV (2010) Low pH-induced conformational change in herpes simplex virus glycoprotein B. J Virol 84(8):3759–3766PubMedCrossRefGoogle Scholar
  66. 66.
    Chowdary TK, Cairns TM, Atanasiu D et al (2010) Crystal structure of the conserved herpesvirus fusion regulator complex gH-gL. Nat Struct Mol Biol 17(7):882–888PubMedCrossRefGoogle Scholar
  67. 67.
    Matsuura H, Kirschner AN, Longnecker R et al (2010) The crystal structure of the EBV gHgL complex. Proc Natl Acad Sci USA 107(52):22641–22646PubMedCrossRefGoogle Scholar
  68. 68.
    Backovic M, Dubois R, Cockburn JJ et al (2010) Structure of a core fragment of glycoprotein H from Pseudorabies virus in complex with antibody. Proc Natl Acad Sci USA 107(52):22635–22640PubMedCrossRefGoogle Scholar
  69. 69.
    Atanasiu D, Whitbeck JC, Cairns TM et al (2007) Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proc Natl Acad Sci USA 104(47):18718–18723PubMedCrossRefGoogle Scholar
  70. 70.
    Atanasiu D, Whitbeck JC, de Leon MP et al (2010) Bimolecular complementation defines functional regions of Herpes simplex virus gB that are involved with gH/gL as a necessary step leading to cell fusion. J Virol 84(8):3825–3834PubMedCrossRefGoogle Scholar
  71. 71.
    DeLano WL (2002) The PyMOL molecular graphics system. DeLano Scientific, San Carlos, CAGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  1. 1.Department of VirologyPasteur InstituteParisFrance
  2. 2.Department of Structural BiologyStanford University School of MedicineStanfordUSA

Personalised recommendations