Skip to main content

Cell-Fusion-Mediated Reprogramming: Pluripotency or Transdifferentiation? Implications for Regenerative Medicine

  • Chapter
Cell Fusion in Health and Disease

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 713))

Abstract

Cell–cell fusion is a natural process that occurs not only during development, but as has emerged over the last few years, also with an important role in tissue regeneration. Interestingly, in-vitro studies have revealed that after fusion of two different cell types, the developmental potential of these cells can change. This suggests that the mechanisms by which cells differentiate during development to acquire their identities is not irreversible, as was considered until a few years ago. To date, it is well established that the fate of a cell can be changed by a process known as reprogramming. This mainly occurs in two different ways: the differentiated state of a cell can be reversed back into a pluripotent state (pluripotent reprogramming), or it can be switched directly to a different differentiated state (lineage reprogramming). In both cases, these possibilities of obtaining sources of autologous somatic cells to maintain, replace or rescue different tissues has provided new and fundamental insights in the stem-cell-therapy field. Most interestingly, the concept that cell reprogramming can also occur in vivo by spontaneous cell fusion events is also emerging, which suggests that this mechanism can be implicated not only in cellular plasticity, but also in tissue regeneration. In this chapter, we will summarize the present knowledge of the molecular mechanisms that mediate the restoration of pluripotency in vitro through cell fusion, as well as the studies carried out over the last 3 decades on lineage reprogramming, both in vitro and in vivo. How the outcome of these studies relate to regenerative medicine applications will also be discussed.

*These two authors contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen EH, Grote E, Mohler W et al (2007) Cell-cell fusion. FEBS Lett 581:2181–2193

    PubMed  CAS  Google Scholar 

  2. Lentz BR (2007) PEG as a tool to gain insight into membrane fusion. Eur Biophys J 36:315–326

    PubMed  CAS  Google Scholar 

  3. Ogle BM, Cascalho M, Platt JL (2005) Biological implications of cell fusion. Nat Rev Mol Cell Biol 6:567–575

    PubMed  CAS  Google Scholar 

  4. Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497

    PubMed  CAS  Google Scholar 

  5. Ahkong QF, Howell JI, Lucy JA et al (1975) Fusion of hen erythrocytes with yeast protoplasts induced by polyethylene glycol. Nature 255:66–67

    PubMed  CAS  Google Scholar 

  6. Arnold K, Herrmann A, Pratsch L et al (1985) The dielectric properties of aqueous solutions of poly(ethylene glycol) and their influence on membrane structure. Biochim Biophys Acta 815:515–518

    PubMed  CAS  Google Scholar 

  7. Chiu DT (2001) A microfluidics platform for cell fusion. Curr Opin Chem Biol 5:609–612

    PubMed  CAS  Google Scholar 

  8. Ramos C, Teissie J (2000) Electrofusion: a biophysical modification of cell membrane and a mechanism in exocytosis. Biochimie 82:511–518

    PubMed  CAS  Google Scholar 

  9. Teissie J, Rols MP (1986) Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem Biophys Res Commun 140:258–266

    PubMed  CAS  Google Scholar 

  10. Tweedell KS (2004) Embryos, clones, and stem cells: a scientific primer. Scientific World J 4:662–715

    CAS  Google Scholar 

  11. Wilmut I, Schnieke AE, McWhir J et al (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    PubMed  CAS  Google Scholar 

  12. Wakayama T, Perry AC, Zuccotti M et al (1998) Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394:369–374

    PubMed  CAS  Google Scholar 

  13. Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 16:639–641

    PubMed  CAS  Google Scholar 

  14. Onishi A, Iwamoto M, Akita T et al (2000) Pig cloning by microinjection of fetal fibroblast nuclei. Science 289:1188–1190

    PubMed  CAS  Google Scholar 

  15. Morgan HD, Santos F, Green K et al (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14 Spec No 1:R47–58

    Google Scholar 

  16. Carlson LL, Page AW, Bestor TH (1992) Properties and localization of DNA methyltransferase in preimplantation mouse embryos: implications for genomic imprinting. Genes Dev 6:2536–2541

    PubMed  CAS  Google Scholar 

  17. Bourc’his D, Le Bourhis D, Patin D et al (2001) Delayed and incomplete reprogramming of chromosome methylation patterns in bovine cloned embryos. Curr Biol 11:1542–1546

    PubMed  Google Scholar 

  18. Dean W, Santos F, Stojkovic M et al (2001) Conservation of methylation reprogramming in mammalian development: aberrant reprogramming in cloned embryos. Proc Natl Acad Sci USA 98:13734–13738

    PubMed  CAS  Google Scholar 

  19. Kang YK, Koo DB, Park JS et al (2001) Aberrant methylation of donor genome in cloned bovine embryos. Nat Genet 28:173–177

    PubMed  CAS  Google Scholar 

  20. Miller RA, Ruddle FH (1976) Pluripotent teratocarcinoma-thymus somatic cell hybrids. Cell 9:45–55

    PubMed  CAS  Google Scholar 

  21. Cowan CA, Atienza J, Melton DA et al (2005) Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science 309:1369–1373

    PubMed  CAS  Google Scholar 

  22. Tada M, Takahama Y, Abe K et al (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    PubMed  CAS  Google Scholar 

  23. Blau HM, Chiu CP, Webster C (1983) Cytoplasmic activation of human nuclear genes in stable heterocaryons. Cell 32:1171–1180

    PubMed  CAS  Google Scholar 

  24. Blau HM, Pavlath GK, Hardeman EC et al (1985) Plasticity of the differentiated state. Science 230:758–766

    PubMed  CAS  Google Scholar 

  25. Baron MH, Maniatis T (1986) Rapid reprogramming of globin gene expression in transient heterokaryons. Cell 46:591–602

    PubMed  CAS  Google Scholar 

  26. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    PubMed  CAS  Google Scholar 

  27. Yu J, Vodyanik MA, Smuga-Otto K et al (2007) Induced Pluripotent Stem Cell Lines Derived from Human Somatic Cells. Science 318:1917–1920

    Google Scholar 

  28. Aoi T, Yae K, Nakagawa M et al (2008) Generation of Pluripotent Stem Cells from Adult Mouse Liver and Stomach Cells. Science 321:699–702

    Google Scholar 

  29. Hanna J, Markoulaki S, Schorderet P et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264

    PubMed  CAS  Google Scholar 

  30. Cowling VH and Cole MD (2006) Mechanism of transcriptional activation by the Myc oncoproteins. Semin Cancer Biol 16:242–252

    PubMed  CAS  Google Scholar 

  31. Knoepfler PS (2007) Myc goes global: new tricks for an old oncogene. Cancer Res 67:5061–5063

    PubMed  CAS  Google Scholar 

  32. Lebofsky R, Walter JC (2007) New Myc-anisms for DNA replication and tumorigenesis? Cancer Cell 12:102–103

    PubMed  CAS  Google Scholar 

  33. Nakagawa M, Koyanagi M, Tanabe K et al (2007) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    Google Scholar 

  34. Wernig M, Meissner A, Cassady JP et al (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12

    PubMed  CAS  Google Scholar 

  35. Jiang J, Chan YS, Loh YH et al (2008) A core Klf circuitry regulates self-renewal of embryonic stem cells. Nat Cell Biol 10:353–360

    PubMed  Google Scholar 

  36. Nakatake Y, Fukui N, Iwamatsu Y et al (2006) Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 26:7772–7782

    PubMed  CAS  Google Scholar 

  37. Feng B, Jiang J, Kraus P et al (2009) Reprogramming of fibroblasts into induced pluripotent stem cells with orphan nuclear receptor Esrrb. Nat Biol Cell 11:197–203

    Google Scholar 

  38. Boyer LA, Mathur D and Jaenisch R (2006) Molecular control of pluripotency. Curr Opin Genet Dev 16:455–462

    PubMed  CAS  Google Scholar 

  39. Niwa H (2007) How is pluripotency determined and maintained? Development 134:635–646

    PubMed  CAS  Google Scholar 

  40. Nichols J, Zevnik B, Anastassiadis K et al (1998) Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95:379–391

    PubMed  CAS  Google Scholar 

  41. Avilion AA, Nicolis SK, Pevny LH et al (2003) Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev 17:126–140

    PubMed  CAS  Google Scholar 

  42. Heng JC, Feng B, Han J et al (2010) The nuclear receptor Nr5a2 can replace Oct4 in the reprogramming of murine somatic cells to pluripotent cells. Cell Stem Cell 6:167–174

    PubMed  CAS  Google Scholar 

  43. Kim JB, Greber B, Arauzo-Bravo MJ et al (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–643

    Google Scholar 

  44. Byrne JA, Pedersen DA, Clepper LL et al (2007) Producing primate embryonic stem cells by somatic cell nuclear transfer. Nature 450:497–502

    PubMed  CAS  Google Scholar 

  45. Han J, Sidhu KS (2008) Current concepts in reprogramming somatic cells to pluripotent state. Curr Stem Cell Res Ther 3:66–74

    PubMed  CAS  Google Scholar 

  46. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    PubMed  CAS  Google Scholar 

  47. Martin GR (1981) Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 78:7634–7638

    PubMed  CAS  Google Scholar 

  48. Donovan PJ (1994) Growth factor regulation of mouse primordial germ cell development. Curr Top Dev Biol 29:189–225

    PubMed  CAS  Google Scholar 

  49. Jacob F (1978) The Leeuwenhoek Lecture, 1977. Mouse teratocarcinoma and mouse embryo. Proc R Soc Lond B Biol Sci 201:249–270

    PubMed  CAS  Google Scholar 

  50. Papaioannou A, Lissaios B, Vasilaros S et al (1983) Pre- and postoperative chemoendocrine treatment with or without postoperative radiotherapy for locally advanced breast cancer. Cancer 51:1284–1290

    PubMed  CAS  Google Scholar 

  51. Reubinoff BE, Pera MF, Fong CY et al (2000) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol 18:399–404

    PubMed  CAS  Google Scholar 

  52. Thomson JA, Itskovitz-Eldor J, Shapiro SS et al (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    PubMed  CAS  Google Scholar 

  53. Andrews PW, Goodfellow PN (1980) Antigen expression by somatic cell hybrids of a murine embryonal carcinoma cell with thymocytes and L cells. Somatic Cell Genet 6:271–284

    PubMed  CAS  Google Scholar 

  54. Rousset JP, Bucchini D, Jami J (1983) Hybrids between F9 nullipotent teratocarcinoma and thymus cells produce multidifferentiated tumors in mice. Dev Biol 96:331–336

    PubMed  CAS  Google Scholar 

  55. Do JT, Han DW, Gentile L et al (2007) Erasure of cellular memory by fusion with pluripotent cells. Stem Cells 25:1013–1020

    PubMed  CAS  Google Scholar 

  56. Atsumi T, Shirayoshi Y, Takeichi M et al (1982) Nullipotent teratocarcinoma cells acquire the pluripotency for differentiation by fusion with somatic cells. Differentiation 23:83–86

    PubMed  CAS  Google Scholar 

  57. Takagi N, Yoshida MA, Sugawara O et al (1983) Reversal of X-inactivation in female mouse somatic cells hybridized with murine teratocarcinoma stem cells in vitro. Cell 34:1053–1062

    PubMed  CAS  Google Scholar 

  58. Flasza M, Shering AF, Smith K et al (2003) Reprogramming in inter-species embryonal carcinoma-somatic cell hybrids induces expression of pluripotency and differentiation markers. Cloning Stem Cells 5:339–354

    PubMed  CAS  Google Scholar 

  59. Rousset JP, Dubois P, Lasserre C et al (1979) Phenotype and surface antigens of mouse teratocarcinoma x fibroblast cell hybrids. Somatic Cell Genet 5:739–752

    PubMed  CAS  Google Scholar 

  60. Matveeva NM, Kuznetsov SB, Kaftanovskaya EM et al (2001) Segregation of parental chromosomes in hybrid cells obtained by fusion between embryonic stem cells and differentiated cells of adult animal. Dokl Biol Sci 379:399–401

    PubMed  CAS  Google Scholar 

  61. Matveeva NM, Shilov AG, Kaftanovskaya EM et al (1998) In vitro and in vivo study of pluripotency in intraspecific hybrid cells obtained by fusion of murine embryonic stem cells with splenocytes. Mol Reprod Dev 50:128–138

    PubMed  CAS  Google Scholar 

  62. Tada M, Morizane A, Kimura H et al (2003) Pluripotency of reprogrammed somatic genomes in embryonic stem hybrid cells. Dev Dyn 227:504–510

    PubMed  CAS  Google Scholar 

  63. Yu J, Vodyanik MA, He P et al (2006) Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells 24:168–176

    PubMed  Google Scholar 

  64. Blau HM, Blakely BT (1999) Plasticity of cell fate: insights from heterokaryons. Semin Cell Dev Biol 10:267–272

    PubMed  CAS  Google Scholar 

  65. Bhutani N, Brady JJ, Damian M et al (2010) Reprogramming towards pluripotency requires AID-dependent DNA demethylation. Nature 463:1042–1047

    PubMed  CAS  Google Scholar 

  66. Pereira CF, Terranova R, Ryan NK et al (2008) Heterokaryon-based reprogramming of human B lymphocytes for pluripotency requires Oct4 but not Sox2. PLoS Genet 4:e1000170

    PubMed  Google Scholar 

  67. Matsui Y, Zsebo K, Hogan BL (1992) Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture. Cell 70:841–847

    PubMed  CAS  Google Scholar 

  68. Resnick JL, Bixler LS, Cheng L et al (1992) Long-term proliferation of mouse primordial germ cells in culture. Nature 359:550–551

    PubMed  CAS  Google Scholar 

  69. Hajkova P, Erhardt S, Lane N et al (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    PubMed  CAS  Google Scholar 

  70. Monk M, Boubelik M, Lehnert S (1987) Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–382

    PubMed  CAS  Google Scholar 

  71. Tada T, Tada M, Hilton K et al (1998) Epigenotype switching of imprintable loci in embryonic germ cells. Dev Genes Evol 207:551–561

    PubMed  CAS  Google Scholar 

  72. Tada M, Tada T, Lefebvre L et al (1997) Embryonic germ cells induce epigenetic reprogramming of somatic nucleus in hybrid cells. Embo J 16:6510–6520

    PubMed  CAS  Google Scholar 

  73. Eggan K, Baldwin K, Tackett M et al (2004) Mice cloned from olfactory sensory neurons. Nature 428:44–49

    PubMed  CAS  Google Scholar 

  74. Hochedlinger K, Jaenisch R (2006) Nuclear reprogramming and pluripotency. Nature 441:1061–1067

    PubMed  CAS  Google Scholar 

  75. Hochedlinger K, Jaenisch R (2007) On the cloning of animals from terminally differentiated cells. Nat Genet 39:136–137; author reply 137–138

    PubMed  CAS  Google Scholar 

  76. Jaenisch R, Hochedlinger K, Blelloch R et al (2004) Nuclear cloning, epigenetic reprogramming, and cellular differentiation. Cold Spring Harb Symp Quant Biol 69:19–27

    PubMed  CAS  Google Scholar 

  77. Hansis C, Barreto G, Maltry N et al (2004) Nuclear reprogramming of human somatic cells by xenopus egg extract requires BRG1. Curr Biol 14:1475–1480

    PubMed  CAS  Google Scholar 

  78. Taranger CK, Noer A, Sorensen AL et al (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16:5719–5735

    PubMed  CAS  Google Scholar 

  79. Do JT, Scholer HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941–949

    PubMed  CAS  Google Scholar 

  80. Chambers I, Colby D, Robertson M et al (2003) Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643–655

    PubMed  CAS  Google Scholar 

  81. Mitsui K, Tokuzawa Y, Itoh H et al (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:631–642

    PubMed  CAS  Google Scholar 

  82. Silva J, Nichols J, Theunissen TW et al (2009) Nanog is the gateway to the pluripotent ground state. Cell 138:722–737

    PubMed  CAS  Google Scholar 

  83. Silva J, Smith A (2008) Capturing pluripotency. Cell 132:532–536

    PubMed  CAS  Google Scholar 

  84. Silva J, Chambers I, Pollard S et al (2006) Nanog promotes transfer of pluripotency after cell fusion. Nature 441:997–1001

    PubMed  CAS  Google Scholar 

  85. Sato N, Meijer L, Skaltsounis L et al (2004) Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 10:55–63

    PubMed  CAS  Google Scholar 

  86. Cole MF, Johnstone SE, Newman JJ et al (2008) Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 22:746–755

    PubMed  CAS  Google Scholar 

  87. Willert K, Jones KA (2006) Wnt signaling: Is the party in the nucleus? Genes Dev 20:1394–1404

    PubMed  CAS  Google Scholar 

  88. Lluis F, Pedone E, Pepe S et al (2008) Periodic activation of Wnt/beta-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell 3:493–507

    PubMed  CAS  Google Scholar 

  89. He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    PubMed  CAS  Google Scholar 

  90. Tam WL, Lim CY, Han J et al (2008) T-cell factor 3 regulates embryonic stem cell pluripotency and self-renewal by the transcriptional control of multiple lineage pathways. Stem Cells 26:2019–2031

    PubMed  CAS  Google Scholar 

  91. Yi F, Pereira L, Merrill BJ (2008) Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells 26:1951–1960

    PubMed  CAS  Google Scholar 

  92. Lluis F, Cosma MP (2009) Somatic cell reprogramming control: signaling pathway modulation versus transcription factor activities. Cell Cycle 8:1138–1144

    PubMed  CAS  Google Scholar 

  93. Nakamura T, Inoue K, Ogawa S et al (2008) Effects of Akt signaling on nuclear reprogramming. Genes Cells 13:1269–1277

    Google Scholar 

  94. Watanabe S, Umehara H, Murayama K et al (2006) Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene 25:2697–2707

    PubMed  CAS  Google Scholar 

  95. Frei E, Schuh R, Baumgartner S et al (1988) Molecular characterization of spalt, a homeotic gene required for head and tail development in the Drosophila embryo. EMBO J 7:197–204

    PubMed  CAS  Google Scholar 

  96. Elling U, Klasen C, Eisenberger T et al (2006) Murine inner cell mass-derived lineages depend on Sall4 function. Proc Natl Acad Sci USA 103:16319–16324

    PubMed  CAS  Google Scholar 

  97. Zhang J, Tam WL, Tong GQ et al (2006) Sall4 modulates embryonic stem cell pluripotency and early embryonic development by the transcriptional regulation of Pou5f1. Nat Cell Biol 8:1114–1123

    PubMed  CAS  Google Scholar 

  98. Wong CC, Gaspar-Maia A, Ramalho-Santos M et al (2008) High-efficiency stem cell fusion-mediated assay reveals Sall4 as an enhancer of reprogramming. PLoS ONE 3:e1955

    PubMed  Google Scholar 

  99. Meissner A, Mikkelsen TS, Gu H et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:766–770

    PubMed  CAS  Google Scholar 

  100. Ooi SK, Bestor TH (2008) The colorful history of active DNA demethylation. Cell 133:1145–1148

    PubMed  CAS  Google Scholar 

  101. Morgan HD, Dean W, Coker HA et al (2004) Activation-induced cytidine deaminase deaminates 5-methylcytosine in DNA and is expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol Chem 279:52353–52360

    PubMed  CAS  Google Scholar 

  102. Rai K, Huggins IJ, James SR et al (2008) DNA demethylation in zebrafish involves the coupling of a deaminase, a glycosylase, and gadd45. Cell 135:1201–1212

    PubMed  CAS  Google Scholar 

  103. Gehring M, Reik W, Henikoff S (2009) DNA demethylation by DNA repair. Trends Genet 25:82–90

    PubMed  CAS  Google Scholar 

  104. Ringrose L, Paro R (2004) Epigenetic regulation of cellular memory by the Polycomb and Trithorax group proteins. Annu Rev Genet 38:413–443

    PubMed  CAS  Google Scholar 

  105. Chamberlain SJ, Yee D, Magnuson T (2008) Polycomb repressive complex 2 is dispensable for maintenance of embryonic stem cell pluripotency. Stem Cells 26:1496–1505

    PubMed  CAS  Google Scholar 

  106. Faust C, Schumacher A, Holdener B et al (1995) The eed mutation disrupts anterior mesoderm production in mice. Development 121:273–285

    PubMed  CAS  Google Scholar 

  107. O’Carroll D, Erhardt S, Pagani M et al (2001) The polycomb-group gene Ezh2 is required for early mouse development. Mol Cell Biol 21:4330–4336

    PubMed  Google Scholar 

  108. Pasini D, Bracken AP, Hansen JB et al (2007) The polycomb group protein Suz12 is required for embryonic stem cell differentiation. Mol Cell Biol 27:3769–3779

    PubMed  CAS  Google Scholar 

  109. Boyer LA, Lee TI, Cole MF et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    PubMed  CAS  Google Scholar 

  110. Lee TI, Jenner RG, Boyer LA et al (2006) Control of developmental regulators by Polycomb in human embryonic stem cells. Cell 125:301–313

    PubMed  CAS  Google Scholar 

  111. Yang J, Chai L, Fowles TC et al (2008) Genome-wide analysis reveals Sall4 to be a major regulator of pluripotency in murine-embryonic stem cells. Proc Natl Acad Sci USA 105:19756–19761

    PubMed  CAS  Google Scholar 

  112. Azuara V, Perry P, Sauer S et al (2006) Chromatin signatures of pluripotent cell lines. Nat Cell Biol 8:532–538

    PubMed  CAS  Google Scholar 

  113. Bernstein BE, Mikkelsen TS, Xie X et al (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:315–326

    PubMed  CAS  Google Scholar 

  114. Bernstein E, Duncan EM, Masui O et al (2006) Mouse polycomb proteins bind differentially to methylated histone H3 and RNA and are enriched in facultative heterochromatin. Mol Cell Biol 26:2560–2569

    PubMed  CAS  Google Scholar 

  115. Boyer LA, Plath K, Zeitlinger J et al (2006) Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:349–353

    PubMed  CAS  Google Scholar 

  116. Pereira CF, Piccolo FM, Tsubouchi T et al (2010) ESCs Require PRC2 to Direct the Successful Reprogramming of Differentiated Cells toward Pluripotency. Cell Stem Cell 6:547–556

    PubMed  CAS  Google Scholar 

  117. Ma DK, Chiang CH, Ponnusamy K et al (2008) G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells 26:2131–2141

    PubMed  CAS  Google Scholar 

  118. Wright WE (1984) Control of differentiation in heterokaryons and hybrids involving differentiation-defective myoblast variants. J Cell Biol 98:436–443

    PubMed  CAS  Google Scholar 

  119. Darlington GJ, Bernard HP, Ruddle FH (1974) Human serum albumin phenotype activation in mouse hepatoma–human leukocyte cell hybrids. Science 185:859–862

    PubMed  CAS  Google Scholar 

  120. Aurade F, Pinset C, Chafey P et al (1994) Myf5, MyoD, myogenin and MRF4 myogenic derivatives of the embryonic mesenchymal cell line C3H10T1/2 exhibit the same adult muscle phenotype. Differentiation 55:185–192

    PubMed  CAS  Google Scholar 

  121. Choi J, Costa ML, Mermelstein CS et al (1990) MyoD converts primary dermal fibroblasts, chondroblasts, smooth muscle, and retinal pigmented epithelial cells into striated mononucleated myoblasts and multinucleated myotubes. Proc Natl Acad Sci USA 87:7988–7992

    PubMed  CAS  Google Scholar 

  122. Davis C, Kannan MS (1987) Sympathetic innervation of human tracheal and bronchial smooth muscle. Respir Physiol 68:53–61

    PubMed  CAS  Google Scholar 

  123. Weintraub H, Tapscott SJ, Davis RL et al (1989) Activation of muscle-specific genes in pigment, nerve, fat, liver, and fibroblast cell lines by forced expression of MyoD. Proc Natl Acad Sci USA 86:5434–5438

    PubMed  CAS  Google Scholar 

  124. Lluis F, Perdiguero E, Nebreda AR et al (2006) Regulation of skeletal muscle gene expression by p38 MAP kinases. Trends Cell Biol 16:36–44

    PubMed  CAS  Google Scholar 

  125. Xie H, Ye M, Feng R et al (2004) Stepwise reprogramming of B cells into macrophages. Cell 117:663–676

    PubMed  CAS  Google Scholar 

  126. Bussmann LH, Schubert A, Vu Manh TP et al (2009) A robust and highly efficient immune cell reprogramming system. Cell Stem Cell 5:554–566

    PubMed  CAS  Google Scholar 

  127. Vierbuchen T, Ostermeier A, Pang ZP et al (2010) Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463:1035–1041

    PubMed  CAS  Google Scholar 

  128. Tapscott SJ, Davis RL, Thayer MJ et al (1988) MyoD1:a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science 242:405–411

    PubMed  CAS  Google Scholar 

  129. Pomerantz JH, Mukherjee S, Palermo AT et al (2009) Reprogramming to a muscle fate by fusion recapitulates differentiation. J Cell Sci 122:1045–1053

    PubMed  CAS  Google Scholar 

  130. Blau HM (1989) How fixed is the differentiated state? Lessons from heterokaryons. Trends Genet 5:268–272

    PubMed  CAS  Google Scholar 

  131. Deisseroth A, Hendrick D (1979) Activation of phenotypic expression of human globin genes from nonerythroid cells by chromosome-dependent transfer to tetraploid mouse erythroleukemia cells. Proc Natl Acad Sci USA 76:2185–2189

    PubMed  CAS  Google Scholar 

  132. Willing MC, Nienhuis AW, Anderson WF (1979) Selective activation of human beta-but not gamma-globin gene in human fibroblast x mouse erythroleukaemia cell hybrids. Nature 277:534–538

    PubMed  CAS  Google Scholar 

  133. Papayannopoulou T, Enver T, Takegawa S et al (1988) Activation of developmentally mutated human globin genes by cell fusion. Science 242:1056–1058

    PubMed  CAS  Google Scholar 

  134. Dupuy-Coin AM, Ege T, Bouteille M et al (1976) Ultrastructure of chick erythrocyte nuclei undergoing reactivation in heterokaryons and enucleated cells. Exp Cell Res 101:355–369

    PubMed  CAS  Google Scholar 

  135. Chiu CP, Blau HM (1984) Reprogramming cell differentiation in the absence of DNA synthesis. Cell 37:879–887

    PubMed  CAS  Google Scholar 

  136. Chiu CP, Blau HM (1985) 5-Azacytidine permits gene activation in a previously noninducible cell type. Cell 40:417–424

    PubMed  CAS  Google Scholar 

  137. Palermo A, Doyonnas R, Bhutani N et al (2009) Nuclear reprogramming in heterokaryons is rapid, extensive, and bidirectional. Faseb J 23:1431–1440

    PubMed  CAS  Google Scholar 

  138. Lanfranchi G, Linder S, Ringertz NR (1984) Globin synthesis in heterokaryons formed between chick erythrocytes and human K562 cells or rat L6 myoblasts. J Cell Sci 66:309–319

    PubMed  CAS  Google Scholar 

  139. Brown DD (1984) The role of stable complexes that repress and activate eucaryotic genes. Cell 37:359–365

    PubMed  CAS  Google Scholar 

  140. Smale ST, Fisher AG (2002) Chromatin structure and gene regulation in the immune system. Annu Rev Immunol 20:427–462

    PubMed  CAS  Google Scholar 

  141. Orlando V (2003) Polycomb, epigenomes, and control of cell identity. Cell 112:599–606

    PubMed  CAS  Google Scholar 

  142. Terranova R, Pereira CF, Du Roure C et al (2006) Acquisition and extinction of gene expression programs are separable events in heterokaryon reprogramming. J Cell Sci 119:2065–2072

    PubMed  CAS  Google Scholar 

  143. Ferrari G, Cusella-De Angelis G, Coletta M et al (1998) Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279:1528–1530

    PubMed  CAS  Google Scholar 

  144. Petersen BE, Bowen WC, Patrene KD et al (1999) Bone marrow as a potential source of hepatic oval cells. Science 284:1168–1170

    PubMed  CAS  Google Scholar 

  145. Mezey E, Chandross KJ, Harta G et al (2000) Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow. Science 290:1779–1782

    PubMed  CAS  Google Scholar 

  146. Krause DS, Theise ND, Collector MI et al (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105:369–377

    PubMed  CAS  Google Scholar 

  147. LaBarge MA, Blau HM (2002) Biological progression from adult bone marrow to mononucleate muscle stem cell to multinucleate muscle fiber in response to injury. Cell 111:589–601

    PubMed  CAS  Google Scholar 

  148. Terada N, Hamazaki T, Oka M et al (2002) Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature 416:542–545

    PubMed  CAS  Google Scholar 

  149. Weimann JM, Charlton CA, Brazelton TR et al (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100:2088–2093

    PubMed  CAS  Google Scholar 

  150. Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425:968–973

    PubMed  CAS  Google Scholar 

  151. Eglitis MA, Mezey E (1997) Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA 94:4080–4085

    PubMed  CAS  Google Scholar 

  152. Weimann JM, Johansson CB, Trejo A et al (2003) Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat Cell Biol 5:959–966

    PubMed  CAS  Google Scholar 

  153. Johansson CB, Youssef S, Koleckar K et al (2008) Extensive fusion of haematopoietic cells with Purkinje neurons in response to chronic inflammation. Nat Cell Biol 10:575–583

    PubMed  CAS  Google Scholar 

  154. Vassilopoulos G, Wang PR, Russell DW (2003) Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–904

    PubMed  CAS  Google Scholar 

  155. Herzog EL, Van Arnam J, Hu B et al (2007) Lung-specific nuclear reprogramming is accompanied by heterokaryon formation and Y chromosome loss following bone marrow transplantation and secondary inflammation. FASEB J 21:2592–2601

    PubMed  CAS  Google Scholar 

  156. Gibson AJ, Karasinski J, Relvas J et al (1995) Dermal fibroblasts convert to a myogenic lineage in mdx mouse muscle. J Cell Sci 108 (Pt 1):207–214

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Pia Cosma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Sanges*, D., Lluis*, F., Cosma, M.P. (2011). Cell-Fusion-Mediated Reprogramming: Pluripotency or Transdifferentiation? Implications for Regenerative Medicine. In: Dittmar, T., Zänker, K.S. (eds) Cell Fusion in Health and Disease. Advances in Experimental Medicine and Biology, vol 713. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0763-4_9

Download citation

Publish with us

Policies and ethics