This chapter summarizes all the methods introduced in the book, and discusses future challenges in this area.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barenthin, M., Hjalmarsson, H.: Identification and control: Joint input design and H-infinity state feedback with ellipsoidal parametric uncertainty via LMIs. Automatica 44(2), 543–551 (2008)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bombois, X., Scorletti, G., Gevers, M., Van den Hof, P.M.J., Hildebrand, R.: Least costly identification experiment for control. Automatica 42(10), 1651–1662 (2006)zbMATHCrossRefGoogle Scholar
  3. 3.
    Ding, L., Johansson, A., Gustafsson, T.: Application of reduced models for robust control and state estimation of a distributed parameter system. Journal of Process Control 19(3), 539–549 (2009)CrossRefGoogle Scholar
  4. 4.
    Forssell, U., Ljung, L.: Closed-loop identification revisited. Automatica 35(7), 1215–1241 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Forssell, U., Ljung, L.: Some results on optimal experiment design. Automatica 36(5), 749–756 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Helmicki, A.J., Jacobson, C.A., Nett, C.N.: Control-oriented modeling and identification of distributed parameter systems. In: Chen, G., et al. (eds.) New Trends and Applications of Distributed Parameter Control Systems - Proceedings of the 1989 IMA Workshop on Control of Distributed Parameter Systems, ch. 10. Marcel-Dekker, New York (1990)Google Scholar
  7. 7.
    Helmicki, A.J., Jacobson, C.A., Nett, C.N.: Control-oriented modeling of distributed parameter systems. Journal of Dynamic Systems, Measurement, and Control 144(3), 339–346 (1992)CrossRefGoogle Scholar
  8. 8.
    Hildebrand, R., Solari, G.: Identification for control: Optimal input intended to identify a minimum variance controller. Automatica 43(5), 758–767 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hjalmarsson, H.: From experiment design to closed-loop control. Automatica 41(3), 393–438 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Pronzato, L.: Optimal experimental design and some related control problems. Automatica 44(2), 303–325 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Qureshi, Z.H., Ng, T.S., Goodwin, G.C.: Optimum experimental design for identification of distributed parameter systems. International Journal of Control 31(1), 21–29 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Rafajłowicz, E.: Optimal experiment design for identification of linear distributed parameter systems: Frequency domain approach. IEEE Transactions on Automatic Control 28(7), 806–808 (1983)zbMATHCrossRefGoogle Scholar
  13. 13.
    Zhu, Y.C., Butoyi, F.: Case studies on closed-loop identification for MPC. Control Engineering Practice 10(4), 403–417 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Han-Xiong Li
    • Chenkun Qi

      There are no affiliations available

      Personalised recommendations