Advertisement

Spatio-Temporal Volterra Modeling for a Class of Nonlinear DPS

  • Han-Xiong Li
  • Chenkun Qi
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 50)

Abstract

To model the nonlinear distributed parameter system (DPS), a spatio-temporal Volterra model is presented with a series of spatio-temporal kernels. It can be considered as a nonlinear generalization of Green’s function or a spatial extension of the traditional Volterra model. To obtain a low-order model, the Karhunen-Loève (KL) method is used for the time/space separation and dimension reduction. Then the model can be estimated with a least-squares algorithm with the convergence guaranteed under noisy measurements. The simulation and experiment are conducted to demonstrate the effectiveness of the presented modeling method.

Keywords

Model Predictive Control Distribute Parameter System Volterra Series Volterra Model Laguerre Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems 32(11), 1150–1161 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Butkovskiy, A.G.: Green’s functions and transfer functions handbook, 1st edn. Ellis Horwood, Chichester (1982)zbMATHGoogle Scholar
  3. 3.
    Christofides, P.D.: Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes. Birkhäuser, Boston (2001b)zbMATHGoogle Scholar
  4. 4.
    Cramér, H., Leadbetter, M.R.: Stationary and related stochastic processes. Wiely, New York (1967)zbMATHGoogle Scholar
  5. 5.
    Datta, K.B., Mohan, B.M.: Orthogonal functions in systems and control. World Scientific, Singapore (1995)zbMATHGoogle Scholar
  6. 6.
    Doumanidis, C.C., Fourligkas, N.: Temperature distribution control in scanned thermal processing of thin circular parts. IEEE Transactions on Control Systems Technology 9(5), 708–717 (2001)CrossRefGoogle Scholar
  7. 7.
    Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model-based control using second-order Volterra Models. Automatica 31(5), 697–714 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gay, D.H., Ray, W.H.: Identification and control of distributed parameter systems by means of the singular value decomposition. Chemical Engineering Science 50(10), 1519–1539 (1995)CrossRefGoogle Scholar
  9. 9.
    Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: A generalized orthonormal basis for linear dynamical systems. IEEE Transactions on Automatic Control 40(3), 451–465 (1995)zbMATHCrossRefGoogle Scholar
  10. 10.
    Ljung, L.: Convergence analysis of parametric identification methods. IEEE Transactions on Automatic Control 23(5), 770–783 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Ljung, L.: System identification: Theory for the user, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  12. 12.
    Maner, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica 32(9), 1285–1301 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Park, H.M., Cho, D.H.: Low dimensional modeling of flow reactors. International Journal of Heat and Mass Transfer 39(16), 3311–3323 (1996a)CrossRefGoogle Scholar
  14. 14.
    Park, H.M., Cho, D.H.: The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems. Chemical Engineering Science 51(1), 81–98 (1996b)CrossRefGoogle Scholar
  15. 15.
    Parker, R.S., Heemstra, D., Doyle III, F.J., Pearson, R.K., Ogunnaike, B.A.: The identification of nonlinear models for process control using tailored “plant-friendly” input sequences. Journal of Process Control 11(2), 237–250 (2001)CrossRefGoogle Scholar
  16. 16.
    Rugh, W.: Nonlinear system theory: The Volterral/Wiener approach. Johns Hopkins University Press, Baltimore (1981)Google Scholar
  17. 17.
    Schetzen, M.: The Volterra and Wiener theories of nonlinear systems. Wiley, New York (1980)zbMATHGoogle Scholar
  18. 18.
    Wahlberg, B.: System identification using Laguerre models. IEEE Transactions on Automatic Control 36(5), 551–562 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Wahlberg, B.: System identification using Kautz models. IEEE Transactions on Automatic Control 39(6), 1276–1282 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Wahlberg, B., Mäkilä, P.M.: Approximation of stable linear dynamical systems using Laguerre and Kautz functions. Automatica 32(5), 693–708 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Wang, L.: Discrete model predictive controller design using Laguerre functions. Journal of Process Control 14(2), 131–142 (2004)CrossRefGoogle Scholar
  22. 22.
    Zervos, C.C., Dumont, G.A.: Deterministic adaptive control based on Laguerre series representation. International Journal of Control 48(6), 2333–2359 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Zheng, D., Hoo, K.A.: Low-order model identification for implementable control solutions of distributed parameter system. Computers and Chemical Engineering 26(7-8), 1049–1076 (2002)CrossRefGoogle Scholar
  24. 24.
    Zheng, D., Hoo, K.A.: System identification and model-based control for distributed parameter systems. Computers and Chemical Engineering 28(8), 1361–1375 (2004)Google Scholar
  25. 25.
    Zheng, D., Hoo, K.A., Piovoso, M.J.: Low-order model identification of distributed parameter systems by a combination of singular value decomposition and the Karhunen-Loève expansion. Industrial & Engineering Chemistry Research 41(6), 1545–1556 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Han-Xiong Li
    • Chenkun Qi

      There are no affiliations available

      Personalised recommendations