Multi-channel Spatio-Temporal Modeling for Hammerstein Distributed Parameter Systems

  • Han-Xiong Li
  • Chenkun Qi
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 50)


A multi-channel spatio-temporal Hammerstein modeling approach is presented in this chapter. As a special case of the model described in Chapter 4, a spatio-temporal Hammerstein model is constructed with a static nonlinearity followed by a linear spatio-temporal kernel. When the model structure is matched with the system, a basic single-channel identification algorithm with the algorithm used in the Chapter 4 can work well. When there is unmodeled dynamics, a multi-channel modeling framework can provide a better performance, because more channels used can attract more information from the process. The modeling convergence can be guaranteed under noisy measurements. The simulation example and the experiment on snap curing oven are presented to show the effectiveness of this modeling method.


Model Predictive Control Distribute Parameter System Unmodeled Dynamic Hammerstein Model Laguerre Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Bai, E.W., Li, D.: Convergence of the iterative Hammerstein system identification algorithm. IEEE Transactions on Automatic Control 49(11), 1929–1940 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Campello, R.J.G.B., Favier, G., Amaral, W.C.: Optimal expansions of discrete-time Volterra models using Laguerre functions. Automatica 40(5), 815–822 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chen, H.F.: Pathwise convergence of recursive identification algorithms for Hammerstein systems. IEEE Transactions on Automatic Control 49(10), 1641–1649 (2004)CrossRefGoogle Scholar
  5. 5.
    Christofides, P.D.: Robust control of parabolic PDE systems. Chemical Engineering Science 53(16), 2949–2965 (1998)CrossRefGoogle Scholar
  6. 6.
    Christofides, P.D.: Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes. Birkhäuser, Boston (2001b)zbMATHGoogle Scholar
  7. 7.
    Cramér, H., Leadbetter, M.R.: Stationary and related stochastic processes. Wiely, New York (1967)zbMATHGoogle Scholar
  8. 8.
    Datta, K.B., Mohan, B.M.: Orthogonal functions in systems and control. World Scientific, Singapore (1995)zbMATHGoogle Scholar
  9. 9.
    Eskinat, E., Johnson, S., Luyben, W.: Use of Hammerstein models in identification of nonlinear systems. AIChE Journal 37(2), 255–268 (1991)CrossRefGoogle Scholar
  10. 10.
    Fruzzetti, K.P., Palazoglu, A., McDonald, K.A.: Nonlinear model predictive control using Hammerstein models. Journal of Process Control 7(1), 31–41 (1997)CrossRefGoogle Scholar
  11. 11.
    Golub, G., Van Loan, C.: Matrix computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  12. 12.
    Gómez, J.C., Baeyens, E.: Identification of block-oriented nonlinear systems using orthonormal bases. Journal of Process Control 14(6), 685–697 (2004)CrossRefGoogle Scholar
  13. 13.
    Greblicki, W.: Continuous-time Hammerstein system identification from sampled data. IEEE Transactions on Automatic Control 51(7), 1195–1200 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: A generalized orthonormal basis for linear dynamical systems. IEEE Transactions on Automatic Control 40(3), 451–465 (1995)zbMATHCrossRefGoogle Scholar
  15. 15.
    Ljung, L.: Convergence analysis of parametric identification methods. IEEE Transactions on Automatic Control 23(5), 770–783 (1978)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Ljung, L.: System identification: Theory for the user, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)Google Scholar
  17. 17.
    Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Transactions on Automatic Control 11(3), 546–550 (1966)CrossRefGoogle Scholar
  18. 18.
    Park, H.M., Cho, D.H.: Low dimensional modeling of flow reactors. International Journal of Heat and Mass Transfer 39(16), 3311–3323 (1996a)CrossRefGoogle Scholar
  19. 19.
    Park, H.M., Cho, D.H.: The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems. Chemical Engineering Science 51(1), 81–98 (1996b)CrossRefGoogle Scholar
  20. 20.
    Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: A unified approach. Automatica 31(12), 1691–1724 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Stoica, P.: On the convergence of an iterative algorithm used for Hammerstein system identification. IEEE Transactions on Automatic Control 26(4), 967–969 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Tanguy, N., Morvan, R., Vilbé, P., Calvez, L.C.: Online optimization of the time scale in adaptive Laguerre-based filters. IEEE Transactions on Signal Processing 48(4), 1184–1187 (2000)CrossRefGoogle Scholar
  23. 23.
    Wahlberg, B.: System identification using Laguerre models. IEEE Transactions on Automatic Control 36(5), 551–562 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Wahlberg, B.: System identification using Kautz models. IEEE Transactions on Automatic Control 39(6), 1276–1282 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Wang, L., Cluett, W.R.: Optimal choice of time-scaling factor for linear system approximation using Laguerre models. IEEE Transactions on Automatic Control 39(7), 1463–1467 (1995)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Vörös, J.: Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones. IEEE Transactions on Automatic Control 48(12), 2203–2206 (2003)CrossRefGoogle Scholar
  27. 27.
    Zervos, C.C., Dumont, G.A.: Deterministic adaptive control based on Laguerre series representation. International Journal of Control 48(6), 2333–2359 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Zhu, Y.C.: Identification of Hammerstein models for control using ASYM. International Journal of Control 73(18), 1692–1702 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Han-Xiong Li
    • Chenkun Qi

      There are no affiliations available

      Personalised recommendations