Skip to main content

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 50))

Abstract

For Wiener distributed parameter systems (DPS), a spatio-temporal Wiener model (a linear DPS followed by a static nonlinearity) is constructed in this chapter. After the time/space separation, it can be represented by the traditional Wiener system with a set of spatial basis functions. To achieve a low-order model, the Karhunen-Loève (KL) method is used for the time/space separation and dimension reduction. Finally, unknown parameters of the Wiener system are estimated with the least-squares estimation and the instrumental variables method to achieve consistent estimation under noisy measurements. The simulation on the catalytic rod and the experiment on snap curing oven are presented to illustrate the effectiveness of this modeling method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Armaou, A., Christofides, P.D.: Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chemical Engineering Science 57(24), 5083–5114 (2002)

    Article  Google Scholar 

  2. Baker, J., Christofides, P.D.: Finite-dimensional approximation and control of non-linear parabolic PDE systems. International Journal of Control 73(5), 439–456 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bloemen, H.H.J., Chou, C.T., van den Boom, T.J.J., Verdult, V., Verhaegen, M., Backx, T.C.: Wiener model identification and predictive control for dual composition control of a distillation column. Journal of Process Control 11(6), 601–620 (2001)

    Article  Google Scholar 

  4. Campello, R.J.G.B., Favier, G., Amaral, W.C.: Optimal expansions of discrete-time Volterra models using Laguerre functions. Automatica 40(5), 815–822 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cervantes, A.L., Agamennoni, O.E., Figueroa, J.L.: A nonlinear model predictive control system based on Wiener piecewise linear models. Journal of Process Control 13(7), 655–666 (2003)

    Article  Google Scholar 

  6. Christofides, P.D.: Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes. Birkhäuser, Boston (2001b)

    MATH  Google Scholar 

  7. Christofides, P.D., Daoutidis, P.: Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. Journal of Mathematical Analysis and Applications 216(2), 398–420 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Coca, D., Billings, S.A.: Identification of finite dimensional models of infinite dimensional dynamical systems. Automatica 38(11), 1851–1865 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  9. Deng, H., Li, H.-X., Chen, G.: Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Transactions on Control Systems Technology 13(5), 686–700 (2005)

    Article  Google Scholar 

  10. Dierckx, P.: Curve and surface fitting with splines. Clarendon, Oxford (1993)

    MATH  Google Scholar 

  11. Fu, Y., Dumont, G.A.: An optimum time scale for discrete Laguerre network. IEEE Transactions on Automatic Control 38(6), 934–938 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gerksic, S., Juricic, D., Strmcnik, S., Matko, D.: Wiener model based nonlinear predictive control. International Journal of Systems Science 31(2), 189–202 (2000)

    Article  MATH  Google Scholar 

  13. Gómez, J.C.: Analysis of dynamic system identification using rational orthonormal bases. PhD Thesis, The University of Newcastle, Australia (1998)

    Google Scholar 

  14. Gómez, J.C., Baeyens, E.: Identification of block-oriented nonlinear systems using orthonormal bases. Journal of Process Control 14(6), 685–697 (2004)

    Article  Google Scholar 

  15. Gómez, J.C., Jutan, A., Baeyens, E.: Wiener model identification and predictive control of a pH neutralisation process. IEE Proceedings-Control Theory and Applications 151(3), 329–338 (2004)

    Article  Google Scholar 

  16. Greblicki, W.: Nonparametric identification of Wiener systems by orthogonal series. IEEE Transactions on Automatic Control 39(10), 2077–2086 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hagenblad, A.: Aspects of the identification of Wiener models. Thesis No.793, Linköping University, Sweden (1999)

    Google Scholar 

  18. Hagenblad, A., Ljung, L.: Maximum likelihood identification of Wiener models with a linear regression initialization. In: Proceedings of the 37th IEEE Conference Decision & Control, Tampa, Fourida, USA, pp. 712–713 (1998)

    Google Scholar 

  19. Hagenblad, A., Ljung, L.: Maximum likelihood estimation of Wiener models. Report no.: LiTH-ISY-R-2308, Linköping University, Sweden (2000)

    Google Scholar 

  20. Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: A generalized orthonormal basis for linear dynamical systems. IEEE Transactions on Automatic Control 40(3), 451–465 (1995)

    Article  MATH  Google Scholar 

  21. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, coherent structures, dynamical systems, and symmetry. Cambridge University Press, New York (1996)

    Book  MATH  Google Scholar 

  22. Janczak, A.: Instrumental variables approach to identification of a class of MIMO Wiener systems. Nonlinear Dynamics 48(3), 275–284 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Jeong, B.-G., Yoo, K.-Y., Rhee, H.-K.: Nonlinear model predictive control using a Wiener model of a continuous methyl methacrylate polymerization reactor. Industrial and Engineering Chemistry Research 40(25), 5968–5977 (2001)

    Article  Google Scholar 

  24. Lacy, S.L., Bernstein, D.S.: Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities. International Journal of Control 76(15), 1500–1507 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lancaster, P., Salkauskas, K.: Curve and surface fitting: An introduction. Academic Press, London (1986)

    MATH  Google Scholar 

  26. Newman, A.J.: Model reduction via the Karhunen-Loève expansion part I: An exposition. Technical Report T.R.96-32, University of Maryland, College Park, Maryland (1996a)

    Google Scholar 

  27. Newman, A.J.: Model reduction via the Karhunen-Loève expansion part II: Some elementary examples. Technical Report T.R.96-33, University of Maryland, College Park, Maryland (1996b)

    Google Scholar 

  28. Pawlak, M., Hasiewicz, Z., Wachel, P.: On nonparametric identification of Wiener systems. IEEE Transactions on Signal Processing 55(2), 482–492 (2007)

    Article  MathSciNet  Google Scholar 

  29. Raich, R., Zhou, G.T., Viberg, M.: Subspace based approaches for Wiener system identification. IEEE Transactions on Automatic Control 50(10), 1629–1634 (2005)

    Article  MathSciNet  Google Scholar 

  30. Sahan, R.A., Koc-Sahan, N., Albin, D.C., Liakopoulos, A.: Artificial neural network-based modeling and intelligent control of transitional flows. In: Proceeding of the 1997 IEEE International Conference on Control Applications, Hartford, CT, pp. 359–364 (1997)

    Google Scholar 

  31. Shikin, E.V., Plis, A.I.: Handbook on splines for the user. CRC Press, Boca Raton (1995)

    MATH  Google Scholar 

  32. Sirovich, L.: New perspectives in turbulence, 1st edn. Springer, New York (1991)

    MATH  Google Scholar 

  33. Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: A unified approach. Automatica 31(12), 1691–1724 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  34. Strikwerda, J.C.: Finite difference schemes and partial differential equations. Wads. & Brooks/Cole Adv. Bks. & S.W., Pacific Grove (1989)

    MATH  Google Scholar 

  35. Wahlberg, B.: System identification using Laguerre models. IEEE Transactions on Automatic Control 36(5), 551–562 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  36. Wahlberg, B.: System identification using Kautz models. IEEE Transactions on Automatic Control 39(6), 1276–1282 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  37. Westwick, D., Verhaegen, M.: Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing 52(2), 235–258 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Wigren, T.: Recursive prediction error identification using the nonlinear Wiener model. Automatica 29(4), 1011–1025 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  39. Wigren, T.: Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model. IEEE Transactions on Automatic Control 39(11), 2191–2206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zhu, Y.C.: Estimation of an N-L-N Hammerstein-Wiener model. Automatica 38(9), 1607–1614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Li, HX., Qi, C. (2011). Spatio-Temporal Modeling for Wiener Distributed Parameter Systems. In: Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems. Intelligent Systems, Control and Automation: Science and Engineering, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0741-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0741-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0740-5

  • Online ISBN: 978-94-007-0741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics