Spatio-Temporal Modeling for Wiener Distributed Parameter Systems

  • Han-Xiong Li
  • Chenkun Qi
Part of the Intelligent Systems, Control and Automation: Science and Engineering book series (ISCA, volume 50)


For Wiener distributed parameter systems (DPS), a spatio-temporal Wiener model (a linear DPS followed by a static nonlinearity) is constructed in this chapter. After the time/space separation, it can be represented by the traditional Wiener system with a set of spatial basis functions. To achieve a low-order model, the Karhunen-Loève (KL) method is used for the time/space separation and dimension reduction. Finally, unknown parameters of the Wiener system are estimated with the least-squares estimation and the instrumental variables method to achieve consistent estimation under noisy measurements. The simulation on the catalytic rod and the experiment on snap curing oven are presented to illustrate the effectiveness of this modeling method.


Instrumental Variable Model Predictive Control Distribute Parameter System Transfer Function Matrix Instrumental Variable Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Armaou, A., Christofides, P.D.: Dynamic optimization of dissipative PDE systems using nonlinear order reduction. Chemical Engineering Science 57(24), 5083–5114 (2002)CrossRefGoogle Scholar
  2. 2.
    Baker, J., Christofides, P.D.: Finite-dimensional approximation and control of non-linear parabolic PDE systems. International Journal of Control 73(5), 439–456 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Bloemen, H.H.J., Chou, C.T., van den Boom, T.J.J., Verdult, V., Verhaegen, M., Backx, T.C.: Wiener model identification and predictive control for dual composition control of a distillation column. Journal of Process Control 11(6), 601–620 (2001)CrossRefGoogle Scholar
  4. 4.
    Campello, R.J.G.B., Favier, G., Amaral, W.C.: Optimal expansions of discrete-time Volterra models using Laguerre functions. Automatica 40(5), 815–822 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cervantes, A.L., Agamennoni, O.E., Figueroa, J.L.: A nonlinear model predictive control system based on Wiener piecewise linear models. Journal of Process Control 13(7), 655–666 (2003)CrossRefGoogle Scholar
  6. 6.
    Christofides, P.D.: Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes. Birkhäuser, Boston (2001b)zbMATHGoogle Scholar
  7. 7.
    Christofides, P.D., Daoutidis, P.: Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. Journal of Mathematical Analysis and Applications 216(2), 398–420 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Coca, D., Billings, S.A.: Identification of finite dimensional models of infinite dimensional dynamical systems. Automatica 38(11), 1851–1865 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Deng, H., Li, H.-X., Chen, G.: Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Transactions on Control Systems Technology 13(5), 686–700 (2005)CrossRefGoogle Scholar
  10. 10.
    Dierckx, P.: Curve and surface fitting with splines. Clarendon, Oxford (1993)zbMATHGoogle Scholar
  11. 11.
    Fu, Y., Dumont, G.A.: An optimum time scale for discrete Laguerre network. IEEE Transactions on Automatic Control 38(6), 934–938 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gerksic, S., Juricic, D., Strmcnik, S., Matko, D.: Wiener model based nonlinear predictive control. International Journal of Systems Science 31(2), 189–202 (2000)zbMATHCrossRefGoogle Scholar
  13. 13.
    Gómez, J.C.: Analysis of dynamic system identification using rational orthonormal bases. PhD Thesis, The University of Newcastle, Australia (1998)Google Scholar
  14. 14.
    Gómez, J.C., Baeyens, E.: Identification of block-oriented nonlinear systems using orthonormal bases. Journal of Process Control 14(6), 685–697 (2004)CrossRefGoogle Scholar
  15. 15.
    Gómez, J.C., Jutan, A., Baeyens, E.: Wiener model identification and predictive control of a pH neutralisation process. IEE Proceedings-Control Theory and Applications 151(3), 329–338 (2004)CrossRefGoogle Scholar
  16. 16.
    Greblicki, W.: Nonparametric identification of Wiener systems by orthogonal series. IEEE Transactions on Automatic Control 39(10), 2077–2086 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Hagenblad, A.: Aspects of the identification of Wiener models. Thesis No.793, Linköping University, Sweden (1999)Google Scholar
  18. 18.
    Hagenblad, A., Ljung, L.: Maximum likelihood identification of Wiener models with a linear regression initialization. In: Proceedings of the 37th IEEE Conference Decision & Control, Tampa, Fourida, USA, pp. 712–713 (1998)Google Scholar
  19. 19.
    Hagenblad, A., Ljung, L.: Maximum likelihood estimation of Wiener models. Report no.: LiTH-ISY-R-2308, Linköping University, Sweden (2000)Google Scholar
  20. 20.
    Heuberger, P.S.C., Van den Hof, P.M.J., Bosgra, O.H.: A generalized orthonormal basis for linear dynamical systems. IEEE Transactions on Automatic Control 40(3), 451–465 (1995)zbMATHCrossRefGoogle Scholar
  21. 21.
    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, coherent structures, dynamical systems, and symmetry. Cambridge University Press, New York (1996)zbMATHCrossRefGoogle Scholar
  22. 22.
    Janczak, A.: Instrumental variables approach to identification of a class of MIMO Wiener systems. Nonlinear Dynamics 48(3), 275–284 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Jeong, B.-G., Yoo, K.-Y., Rhee, H.-K.: Nonlinear model predictive control using a Wiener model of a continuous methyl methacrylate polymerization reactor. Industrial and Engineering Chemistry Research 40(25), 5968–5977 (2001)CrossRefGoogle Scholar
  24. 24.
    Lacy, S.L., Bernstein, D.S.: Identification of FIR Wiener systems with unknown, non-invertible, polynomial non-linearities. International Journal of Control 76(15), 1500–1507 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Lancaster, P., Salkauskas, K.: Curve and surface fitting: An introduction. Academic Press, London (1986)zbMATHGoogle Scholar
  26. 26.
    Newman, A.J.: Model reduction via the Karhunen-Loève expansion part I: An exposition. Technical Report T.R.96-32, University of Maryland, College Park, Maryland (1996a)Google Scholar
  27. 27.
    Newman, A.J.: Model reduction via the Karhunen-Loève expansion part II: Some elementary examples. Technical Report T.R.96-33, University of Maryland, College Park, Maryland (1996b)Google Scholar
  28. 28.
    Pawlak, M., Hasiewicz, Z., Wachel, P.: On nonparametric identification of Wiener systems. IEEE Transactions on Signal Processing 55(2), 482–492 (2007)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Raich, R., Zhou, G.T., Viberg, M.: Subspace based approaches for Wiener system identification. IEEE Transactions on Automatic Control 50(10), 1629–1634 (2005)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Sahan, R.A., Koc-Sahan, N., Albin, D.C., Liakopoulos, A.: Artificial neural network-based modeling and intelligent control of transitional flows. In: Proceeding of the 1997 IEEE International Conference on Control Applications, Hartford, CT, pp. 359–364 (1997)Google Scholar
  31. 31.
    Shikin, E.V., Plis, A.I.: Handbook on splines for the user. CRC Press, Boca Raton (1995)zbMATHGoogle Scholar
  32. 32.
    Sirovich, L.: New perspectives in turbulence, 1st edn. Springer, New York (1991)zbMATHGoogle Scholar
  33. 33.
    Sjöberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., Hjalmarsson, H., Juditsky, A.: Nonlinear black-box modeling in system identification: A unified approach. Automatica 31(12), 1691–1724 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Strikwerda, J.C.: Finite difference schemes and partial differential equations. Wads. & Brooks/Cole Adv. Bks. & S.W., Pacific Grove (1989)zbMATHGoogle Scholar
  35. 35.
    Wahlberg, B.: System identification using Laguerre models. IEEE Transactions on Automatic Control 36(5), 551–562 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Wahlberg, B.: System identification using Kautz models. IEEE Transactions on Automatic Control 39(6), 1276–1282 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Westwick, D., Verhaegen, M.: Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing 52(2), 235–258 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Wigren, T.: Recursive prediction error identification using the nonlinear Wiener model. Automatica 29(4), 1011–1025 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Wigren, T.: Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model. IEEE Transactions on Automatic Control 39(11), 2191–2206 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Zhu, Y.C.: Estimation of an N-L-N Hammerstein-Wiener model. Automatica 38(9), 1607–1614 (2002)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Han-Xiong Li
    • Chenkun Qi

      There are no affiliations available

      Personalised recommendations