Skip to main content

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 50))

  • 1034 Accesses

Abstract

This chapter provides a systematic overview of the distributed parameter system (DPS) modeling and its classification. Three different problems in DPS modeling are discussed, which includes model reduction for known DPS, parameter estimation for DPS, and system identification for unknown DPS. All approaches are classified into different categories with their limitations and advantages briefly discussed. This overview motivates us to develop new methods for DPS modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abel, M.: Nonparametric modeling and spatiotemporal dynamical systems. International Journal of Bifurcation and Chaos 14(6), 2027–2039 (2004)

    MathSciNet  MATH  Google Scholar 

  2. Adomaitis, R.A.: RTCVD model reduction: A collocation on empirical eigenfunctions approach. Technical Report T.R.95-64, University of Maryland, College Park, Maryland (1995)

    Google Scholar 

  3. Adomaitis, R.A.: A reduced-basis discretization method for chemical vapor deposition reactor simulation. Mathematical and Computer Modeling 38(1-2), 59–175 (2003)

    MathSciNet  Google Scholar 

  4. Adrover, A., Continillo, G., Crescitelli, S., Giona, M., Russo, L.: Construction of approximate inertial manifold by decimation of collocation equations of distributed parameter systems. Computers and Chemical Engineering 26(1), 113–123 (2002)

    Google Scholar 

  5. Adrover, A., Continillo, G., Crescitelli, S., Giona, M., Russo, L.: Wavelet-like collocation method for finite-dimensional reduction of distributed systems. Computers and Chemical Engineering 24(12), 2687–2703 (2000)

    Google Scholar 

  6. Aggelogiannaki, E., Sarimveis, H.: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models. Computers and Chemical Engineering 32(6), 1225–1237 (2008)

    Google Scholar 

  7. Aling, H., Banerjee, S., Bangia, A.K., Cole, V., Ebert, J., Emani-Naeini, A., Jensen, K.F., Kevrekidis, I.G., Shvartsman, S.: Nonlinear model reduction for simulation and control of rapid thermal processing. In: Proceedings of the 1977 American Control Conference, Albuquerque, New Mexico, pp. 2233–2238 (1997)

    Google Scholar 

  8. Armaou, A., Christofides, P.D.: Nonlinear feedback control of parabolic partial differential equation systems with time-dependent spatial domains. Journal of Mathematical Analysis & Applications 239(1), 124–157 (1999)

    MathSciNet  MATH  Google Scholar 

  9. Armaou, A., Christofides, P.D.: Finite-dimensional control of nonlinear parabolic PDE systems with time-dependent spatial domains using empirical eigenfunctions. International Journal of Applied Mathematics and Computer Science 11(2), 287–317 (2001a)

    MathSciNet  MATH  Google Scholar 

  10. Armaou, A., Christofides, P.D.: Robust control of parabolic PDE systems with time-dependent spatial domains. Automatica 37(1), 61–69 (2001b)

    MathSciNet  MATH  Google Scholar 

  11. Armaou, A., Christofides, P.D.: Computation of empirical eigenfunctions and order reduction for nonlinear parabolic PDE systems with time-dependent spatial domains. Nonlinear Analysis 47(4), 2869–2874 (2001c)

    MathSciNet  MATH  Google Scholar 

  12. Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)

    MathSciNet  MATH  Google Scholar 

  13. Baker, J., Christofides, P.D.: Output feedback control of parabolic PDE systems with nonlinear spatial differential operators. Industrial & Engineering Chemistry Research 38(11), 4372–4380 (1999)

    Google Scholar 

  14. Baker, J., Christofides, P.D.: Finite-dimensional approximation and control of non-linear parabolic PDE systems. International Journal of Control 73(5), 439–456 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Balas, M.J.: The Galerkin method and feedback control of linear distributed parameter systems. Journal of Mathematical Analysis and Applications 91(2), 527–546 (1983)

    MathSciNet  MATH  Google Scholar 

  16. Balas, M.J.: Finite dimensional control of distributed parameter systems by Galerkin approximation of infinite dimensional controller. Journal of Mathematical Analysis and Application 114, 17–36 (1986)

    MathSciNet  MATH  Google Scholar 

  17. Banerjee, S., Cole, J.V., Jensen, K.F.: Nonlinear model reduction strategies for rapid thermal processing systems. IEEE Transactions on Semiconductor Manufacturing 11(2), 266–275 (1998)

    Google Scholar 

  18. Banks, H.T., Daniel Lamm, P.K.: Estimation of variable coefficients in parabolic distributed systems. IEEE Transactions of Automatic Control 30(4), 386–398 (1985)

    MATH  Google Scholar 

  19. Banks, H.T., Kunisch, K.: Estimation techniques for distributed parameter systems. Birkhauser, Boston (1989)

    MATH  Google Scholar 

  20. Banks, H.T., Beeler, R.C., Kepler, G.M., Tran, H.T.: Reduced-order model modeling and control of thin film growth in a HPCVD reactor. SIAM Journal on Applied Mathematics 62(4), 1251–1280 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Banks, H.T., Crowley, J.M., Kunisch, K.: Cubic spline approximation techniques for parameter estimation in distributed systems. IEEE Transactions on Automatic Control 28(7), 773–786 (1983)

    MathSciNet  MATH  Google Scholar 

  22. Banks, H.T., del Rosario, R.C.H., Smith, R.C.: Reduced-order model feedback control design: Numerical implementation in a thin shell model. IEEE transactions on Automatic Control 45(7), 1312–1324 (2000)

    MATH  Google Scholar 

  23. Banks, H.T., Reich, S., Rosen, I.G.: Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems. Applied Mathematics and Optimization 24(3), 233–256 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Bär, M., Hegger, R., Kantz, H.: Fitting partial differential equations to space-time dynamics. Physical Review E 59(1), 337–342 (1999)

    Google Scholar 

  25. Bendersky, E., Christofides, P.D.: Optimization of transport-reaction processes using nonlinear model reduction. Chemical Engineering Science 55(19), 4349–4366 (2000)

    Google Scholar 

  26. Billings, S.A., Coca, D.: Identification of coupled map lattice models of deterministic distributed parameter systems. International Journal of Systems Science 33(8), 623–634 (2002)

    MathSciNet  Google Scholar 

  27. Boyd, J.P.: Chebyshev and Fourier spectral methods, 2nd edn. Dover Publications, New York (2000)

    Google Scholar 

  28. Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems 32(11), 1150–1161 (1985)

    MathSciNet  MATH  Google Scholar 

  29. Brenner, S.C., Ridgway Scott, L.: The mathematical theory of finite element methods. Springer, New York (1994)

    MATH  Google Scholar 

  30. Butkovskiy, A.G.: Green’s functions and transfer functions handbook, 1st edn. Ellis Horwood, Chichester (1982)

    MATH  Google Scholar 

  31. Canuto, C., et al.: Spectral methods in fluid dynamics. Springer, New York (1988)

    MATH  Google Scholar 

  32. Carotenuto, L., Raiconi, G.: Identifiability and identification of a Galerkin approximation for a class of distributed parameter-systems. International Journal of Systems Science 11(9), 1035–1049 (1980)

    MathSciNet  MATH  Google Scholar 

  33. Christofides, P.D.: Robust control of parabolic PDE systems. Chemical Engineering Science 53(16), 2949–2965 (1998)

    Google Scholar 

  34. Christofides, P.D.: Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes. Birkhäuser, Boston (2001b)

    MATH  Google Scholar 

  35. Christofides, P.D., Baker, J.: Robust output feedback control of quasi-linear parabolic PDE systems. Systems & Control Letters 36(5), 307–316 (1999)

    MathSciNet  MATH  Google Scholar 

  36. Christofides, P.D., Daoutidis, P.: Finite-dimensional control of parabolic PDE systems using approximate inertial manifolds. Journal of Mathematical Analysis and Applications 216(2), 398–420 (1997)

    MathSciNet  MATH  Google Scholar 

  37. Chung, H.Y., Sun, Y.Y.: Parameter identification of linear distributed systems via Taylor operational matrix. IEEE Transactions on Industrial Electronics 35(3), 413–416 (1988)

    MathSciNet  Google Scholar 

  38. Coca, D., Billings, S.A.: Direct parameter identification of distributed parameter systems. International Journal of Systems Science 31(1), 11–17 (2000)

    MATH  Google Scholar 

  39. Coca, D., Billings, S.A.: Identification of coupled map lattice models of complex spatio-temporal patterns. Physics Letters A 287(1-2), 65–73 (2001)

    MathSciNet  MATH  Google Scholar 

  40. Coca, D., Billings, S.A.: Identification of finite dimensional models of infinite dimensional dynamical systems. Automatica 38(11), 1851–1865 (2002)

    MathSciNet  MATH  Google Scholar 

  41. Cruz, P., Mendes, A., Magalhaes, F.D.: Using wavelets for solving PDEs: an adaptive collocation method. Chemical Engineering Science 56(10), 3305–3309 (2001)

    Google Scholar 

  42. Deane, A.E., Kevrekidis, I.G., Karniadakis, G.E., Orszag, S.A.: Low dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Fluids Physics A 3(10), 2337–2354 (1991)

    MATH  Google Scholar 

  43. Demetriou, M.A., Rosen, I.G.: Adaptive identification of second-order distributed parameter systems. Inverse Problems 10(2), 261–294 (1994)

    MathSciNet  MATH  Google Scholar 

  44. Deng, H., Li, H.-X., Chen, G.: Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Transactions on Control Systems Technology 13(5), 686–700 (2005)

    Google Scholar 

  45. Ding, L., Gustafsson, T., Johansson, A.: Model parameter estimation of simplified linear models for a continuous paper pulp digester. Journal of Process Control 17(2), 115–127 (2007)

    Google Scholar 

  46. Dochain, D., Babary, J.P., Tali-Maamar, N.: Modelling and adaptive control of nonlinear distributed parameter bioreactors via orthogonal collocation. Automatica 28(5), 873–883 (1992)

    MATH  Google Scholar 

  47. Dong, D., McAvoy, T.J.: Nonlinear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering 20(1), 65–78 (1996)

    Google Scholar 

  48. Doumanidis, C.C., Fourligkas, N.: Temperature distribution control in scanned thermal processing of thin circular parts. IEEE Transactions on Control Systems Technology 9(5), 708–717 (2001)

    Google Scholar 

  49. Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model-based control using second-order Volterra Models. Automatica 31(5), 697–714 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Dubljevic, S., Christofides, P.D., Kevrekidis, I.G.: Distributed nonlinear control of diffusion-reaction processes. International Journal of Robust and Nonlinear Control 14(2), 133–156 (2004)

    MathSciNet  MATH  Google Scholar 

  51. Dür, A.: On the optimality of the discrete Karhunen-Loève expansion. SIAM Journal on Control and Optimization 36(6), 1937–1939 (1998)

    MathSciNet  MATH  Google Scholar 

  52. El-Farra, N.H., Christofides, P.D.: Coordinating feedback and switching for control of spatially distributed processes. Computers and Chemical Engineering 28(1-2), 111–128 (2004)

    Google Scholar 

  53. El-Farra, N.H., Armaou, A., Christofides, P.D.: Analysis and control of parabolic PDE systems with input constraints. Automatica 39(4), 715–725 (2003)

    MathSciNet  MATH  Google Scholar 

  54. Fernandez-Berdaguer, E.M., Santos, J.E., Sheen, D.: An iterative procedure for estimation of variable coefficients in a hyperbolic system. Applied Mathematics and Computation 76(2-3), 213–250 (1996)

    MathSciNet  MATH  Google Scholar 

  55. Fletcher, C.A.J.: Computational Galerkin methods, 1st edn. Springer, New York (1984)

    MATH  Google Scholar 

  56. Foias, C., Temam, R.: Algebraic approximation of attractors: The finite dimensional case. Physica D 32(2), 163–182 (1988)

    MathSciNet  MATH  Google Scholar 

  57. Foias, C., Jolly, M.S., Kevrikidis, I.G., Sell, G.R., Titi, E.S.: On the computation of inertial manifolds. Physics Letters A 131(7-8), 433–436 (1988)

    MathSciNet  Google Scholar 

  58. Gay, D.H., Ray, W.H.: Identification and control of distributed parameter systems by means of the singular value decomposition. Chemical Engineering Science 50(10), 1519–1539 (1995)

    Google Scholar 

  59. Ghosh, A., Ravi Kumar, V., Kulkarni, B.D.: Parameter estimation in spatially extended systems: The Karhunen-Loève and Galerkin multiple shooting approach. Physical Review E 64(5), 56222 (2001)

    Google Scholar 

  60. Gómez, J.C., Baeyens, E.: Identification of block-oriented nonlinear systems using orthonormal bases. Journal of Process Control 14(6), 685–697 (2004)

    Google Scholar 

  61. Gonzalez-Garcia, R., Rico-Martinez, R., Kevredidis, I.G.: Identification of distributed parameter systems: A neural net based approach. Computers and Chemical Engineering 22, S965–S968 (1998)

    Google Scholar 

  62. Graham, M.D., Kevrekidis, I.G.: Alternative approaches to the Karhunen-Loève decomposition for model reduction and data analysis. Computers and Chemical Engineering 20(5), 495–506 (1996)

    Google Scholar 

  63. Guo, L.Z., Billings, S.A.: Identification of partial differential equation models for continuous spatio-temporal dynamical systems. IEEE Transactions on Circuits and Systems - II: Express Briefs 53(8), 657–661 (2006)

    Google Scholar 

  64. Guo, L.Z., Billings, S.A.: Sate-space reconstruction and spatio-temporal prediction of lattice dynamical systems. IEEE Transactions on Automatic Control 52(4), 622–632 (2007)

    MathSciNet  Google Scholar 

  65. Guo, L.Z., Billings, S.A., Wei, H.L.: Estimation of spatial derivatives and identification of continuous spatio-temporal dynamical systems. International Journal of Control 79(9), 1118–1135 (2006)

    MathSciNet  MATH  Google Scholar 

  66. Hagenblad, A., Ljung, L.: Maximum likelihood identification of Wiener models with a linear regression initialization. In: Proceedings of the 37th IEEE Conference Decision & Control, Tampa, Fourida, USA, pp. 712–713 (1998)

    Google Scholar 

  67. Höllig, K.: Finite element methods with B-splines. Society Industrial and Applied Mathematics, Philadelphia (2003)

    MATH  Google Scholar 

  68. Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, coherent structures, dynamical systems, and symmetry. Cambridge University Press, New York (1996)

    MATH  Google Scholar 

  69. Hoo, K.A., Zheng, D.: Low-order control-relevant models for a class of distributed parameter systems. Chemical Engineering Science 56(23), 6683–6710 (2001)

    Google Scholar 

  70. Horng, I.-R., Chou, J.-H., Tsai, C.-H.: Analysis and identification of linear distributed systems via Chebyshev series. International Journal of Systems Science 17(7), 1089–1095 (1986)

    MATH  Google Scholar 

  71. Hsieh, W.W.: Nonlinear principal component analysis by neural networks. Tellus Series A - Dynamic Meteorology and Oceanography 53(5), 599–615 (2001)

    Google Scholar 

  72. Kirby, M., Miranda, R.: The nonlinear reduction of high-dimensional dynamical systems via neural networks. Physical Review Letter 72(12), 1822–1825 (1994)

    Google Scholar 

  73. Ko, J., Kurdila, A.J., Pilant, M.S.: A class of finite element methods based on orthonormal compactly supported wavelets. Computational Mechanics 16(4), 235–244 (1995)

    MathSciNet  MATH  Google Scholar 

  74. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37(2), 233–243 (1991)

    Google Scholar 

  75. Kubrusly, C.S.: Distributed parameter system identification - a survey. International Journal of Control 26(4), 509–535 (1977)

    MathSciNet  MATH  Google Scholar 

  76. Kubrusly, C.S., Curtain, R.F.: Identification of noisy distributed parameter systems using stochastic approximation. International Journal of Control 25(3), 441–455 (1977)

    MathSciNet  MATH  Google Scholar 

  77. Lee, T.-T., Chang, Y.-F.: Analysis and identification of linear distributed systems via double general orthogonal polynomials. International Journal of Control 44(2), 395–405 (1986)

    MATH  Google Scholar 

  78. Lefèvre, L., Dochain, D., Feyo de Azevedo, S., Magnus, A.: Optimal selection of orthogonal polynomials applied to the integration of chemical reactor equations by collocation methods. Computers and Chemical Engineering 24(12), 2571–2588 (2000)

    Google Scholar 

  79. Li, H.-X., Deng, H., Zhong, J.: Model-based integration of control and supervision for one kind of curing process. IEEE Transactions on Electronics Packaging Manufacturing 27(3), 177–186 (2004)

    Google Scholar 

  80. Mahadevan, N., Hoo, K.A.: Wavelet-based model reduction of distributed parameter systems. Chemical Engineering Science 55(19), 4271–4290 (2000)

    Google Scholar 

  81. Mandelj, S., Grabec, I., Govekar, E.: Statistical approach to modeling of spatiotemporal dynamics. International Journal of Bifurcation and Chaos 11(11), 2731–2738 (2001)

    Google Scholar 

  82. Mandelj, S., Grabec, I., Govekar, E.: Nonparametric statistical modeling approach of spatiotemporal dynamics based on recorded data. International Journal of Bifurcation and Chaos 14(6), 2011–2025 (2004)

    MathSciNet  MATH  Google Scholar 

  83. Maner, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica 32(9), 1285–1301 (1996)

    MathSciNet  MATH  Google Scholar 

  84. Marion, M., Temam, R.: Nonlinear Galerkin methods: The finite elements case. Numerische Mathematik 57(1), 205–226 (1990)

    MathSciNet  MATH  Google Scholar 

  85. Mitchell, A.R., Griffiths, D.F.: The finite difference method in partial differential equations. Wiley, Chichester (1980)

    MATH  Google Scholar 

  86. Mohan, B.M., Datta, K.B.: Identification via Fourier series for a class of lumped and distributed parameter systems. IEEE Transactions on Circuits and Systems 36(11), 1454–1458 (1989)

    MathSciNet  Google Scholar 

  87. Mohan, B.M., Datta, K.B.: Linear time-invariant distributed parameter system identification via orthogonal functions. Automatica 27(2), 409–412 (1991)

    MathSciNet  MATH  Google Scholar 

  88. Müller, T.G., Timmer, J.: Parameter identification techniques for partial differential equations. International Journal of Bifurcation and Chaos 14(6), 2053–2060 (2004)

    Google Scholar 

  89. Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Transactions on Automatic Control 11(3), 546–550 (1966)

    Google Scholar 

  90. Newman, A.J.: Model reduction via the Karhunen-Loève expansion part I: An exposition. Technical Report T.R.96-32, University of Maryland, College Park, Maryland (1996a)

    Google Scholar 

  91. Newman, A.J.: Model reduction via the Karhunen-Loève expansion part II: Some elementary examples. Technical Report T.R.96-33, University of Maryland, College Park, Maryland (1996b)

    Google Scholar 

  92. Omatu, S., Matumoto, K.: Parameter identification for distributed systems and its application to air pollution estimation. International Journal of Systems Science 22(10), 1993–2000 (1991)

    MathSciNet  Google Scholar 

  93. Paraskevopoulos, P.N., Bounas, A.C.: Distributed parameter system identification via Walsh-functions. International Journal of Systems Science 9(1), 75–83 (1978)

    MathSciNet  MATH  Google Scholar 

  94. Park, H.M., Cho, D.H.: Low dimensional modeling of flow reactors. International Journal of Heat and Mass Transfer 39(16), 3311–3323 (1996a)

    Google Scholar 

  95. Park, H.M., Cho, D.H.: The use of the Karhunen-Loève decomposition for the modeling of distributed parameter systems. Chemical Engineering Science 51(1), 81–98 (1996b)

    Google Scholar 

  96. Park, H.M., Kim, T.H., Cho, D.H.: Estimation of parameters in flow reactors using the Karhunen-Loève decomposition. Computers and Chemical Engineering 23(1), 109–123 (1998)

    Google Scholar 

  97. Parker, R.S., Heemstra, D., Doyle III, F.J., Pearson, R.K., Ogunnaike, B.A.: The identification of nonlinear models for process control using tailored “plant-friendly” input sequences. Journal of Process Control 11(2), 237–250 (2001)

    Google Scholar 

  98. Parlitz, U., Merkwirth, C.: Prediction of spatiotemporal time series based on reconstructed local states. Physical Review Letters 84(9), 1890–1893 (2000)

    Google Scholar 

  99. Polis, M.P., Goodson, R.E.: Parameter identification in distributed systems: A synthesizing overview. Proceedings of the IEEE 64(1), 45–61 (1976)

    MathSciNet  Google Scholar 

  100. Powers, D.L.: Boundary value problems, 4th edn. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  101. Ranganathan, V., Jha, A.N., Rajamani, V.S.: Identification of linear distributed systems via Laguerre-polynomials. International Journal of Systems Science 15(10), 1101–1106 (1984)

    MathSciNet  MATH  Google Scholar 

  102. Ranganathan, V., Jha, A.N., Rajamani, V.S.: Identification of non-linear distributed systems via a Laguerre-polynomial approach. International Journal of Systems Science 17(2), 241–249 (1986)

    MATH  Google Scholar 

  103. Rannacher, R., Vexler, B.: A priori error estimates for the finite element discretization of elliptic parameter identification problems with pointwise measurements. SIAM Journal on Control and Optimization 44(5), 1844–1863 (2005)

    MathSciNet  Google Scholar 

  104. Ray, W.H.: Advanced process control. McGraw-Hill, New York (1981)

    Google Scholar 

  105. Romijn, R., Özkan, L., Weiland, S., Ludlage, J., Marquardt, W.: A grey-box modeling approach for the reduction of nonlinear systems. Journal of Process Control 18(9), 906–914 (2008)

    Google Scholar 

  106. Rugh, W.: Nonlinear system theory: The Volterral/Wiener approach. Johns Hopkins University Press, Baltimore (1981)

    Google Scholar 

  107. Sahan, R.A., Koc-Sahan, N., Albin, D.C., Liakopoulos, A.: Artificial neural network-based modeling and intelligent control of transitional flows. In: Proceeding of the 1997 IEEE International Conference on Control Applications, Hartford, CT, pp. 359–364 (1997)

    Google Scholar 

  108. Schetzen, M.: The Volterra and Wiener theories of nonlinear systems. Wiley, New York (1980)

    MATH  Google Scholar 

  109. Schiesser, W.E.: The numerical method of lines: Integration of partial differential equations. Academic Press, San Diego (1991)

    MATH  Google Scholar 

  110. Shvartsman, S.Y., Kevrikidis, I.G.: Nonlinear model reduction for control of distributed systems: A computer-assisted study. AIChE Journal 44(7), 1579–1594 (1998)

    Google Scholar 

  111. Sirovich, L.: Turbulence and the dynamics of coherent structures parts I-III. Quarterly of Applied Mathematics 45(3), 561–590 (1987)

    MathSciNet  MATH  Google Scholar 

  112. Smaoui, N.: Linear versus nonlinear dimensionality reduction of high-dimensional dynamical systems. SIAM Journal on Scientific Computing 25(6), 2107–2125 (2004)

    MathSciNet  MATH  Google Scholar 

  113. Smaoui, N., Al-Enezi, S.: Modelling the dynamics of nonlinear partial differential equations using neural networks. Journal of Computational and Applied Mathematics 170(1), 27–58 (2004)

    MathSciNet  MATH  Google Scholar 

  114. Stoica, P., Söderström, T.: Instrumental-variable methods for identification of Hammerstein systems. International Journal of Control 35(3), 459–476 (1982)

    MathSciNet  MATH  Google Scholar 

  115. Temam, R.: Infinite-dimensional dynamical systems in mechanics and physics. Springer, New York (1988)

    MATH  Google Scholar 

  116. Theodoropoulou, A., Adomaitis, R.A., Zafiriou, E.: Model reduction for optimization of rapid thermal chemical vapor deposition systems. IEEE Transactions on Semiconductor Manufacturing 11(1), 85–98 (1998)

    Google Scholar 

  117. Uciński, D., Korbicz, J.: Parameter identification of two-dimensional distributed systems. International Journal of Systems Science 21(12), 2441–2456 (1990)

    MathSciNet  MATH  Google Scholar 

  118. Uciński, D., Korbicz, J.: Parameter identification of two-dimensional distributed systems. International Journal of Systems Science 21(12), 2441–2456 (1990)

    MathSciNet  MATH  Google Scholar 

  119. Vande Wouwer, A., Renotte, C., Queinnec, I., Bogaerts, P.H.: Transient analysis of a wastewater treatment biofilter - Distributed parameter modelling and state estimation. Mathematical and Computer Modelling of Dynamical Systems 12(5), 423–440 (2006)

    MATH  Google Scholar 

  120. Varshney, A., Armaou, A.: Low-order ODE approximations and receding horizon control of surface roughness during thin-film growth. Chemical Engineering Science 63(5), 1246–1260 (2008)

    Google Scholar 

  121. Voss, H., Bünner, M.J., Abel, M.: Identification of continuous, spatiotemporal systems. Physical Review E 57(3), 2820–2823 (1998)

    Google Scholar 

  122. Webb, A.R.: An approach to non-linear principal components analysis using radially symmetric kernel functions. Journal Statistics and Computing 6(2), 159–168 (1996)

    Google Scholar 

  123. Westwick, D., Verhaegen, M.: Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing 52(2), 235–258 (1996)

    MathSciNet  MATH  Google Scholar 

  124. Wilson, D.J.H., Irwin, G.W., Lightbody, G.: RBF principal manifolds for process monitoring. IEEE Transactions on Neural Networks 10(6), 1424–1434 (1999)

    Google Scholar 

  125. Zheng, D., Hoo, K.A.: Low-order model identification for implementable control solutions of distributed parameter system. Computers and Chemical Engineering 26(7-8), 1049–1076 (2002)

    Google Scholar 

  126. Zheng, D., Hoo, K.A.: System identification and model-based control for distributed parameter systems. Computers and Chemical Engineering 28(8), 1361–1375 (2004)

    Google Scholar 

  127. Zheng, D., Hoo, K.A., Piovoso, M.J.: Low-order model identification of distributed parameter systems by a combination of singular value decomposition and the Karhunen-Loève expansion. Industrial & Engineering Chemistry Research 41(6), 1545–1556 (2002)

    Google Scholar 

  128. Zhou, X.G., Liu, L.H., Dai, Y.C., Yuan, W.K., Hudson, J.L.: Modeling of a fixed-bed reactor using the KL expansion and neural networks. Chemical Engineering Science 51(10), 2179–2188 (1996)

    Google Scholar 

  129. Zhu, Y.C.: Identification of Hammerstein models for control using ASYM. International Journal of Control 73(18), 1692–1702 (2000)

    MathSciNet  MATH  Google Scholar 

  130. Zill, D.G., Cullen, M.R.: Differential equations with boundary-value problems, 5th edn. Brooks/Cole Thomson Learning, Pacific Grove, CA, Australia (2001)

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Li, HX., Qi, C. (2011). Modeling of Distributed Parameter Systems: Overview and Classification. In: Spatio-Temporal Modeling of Nonlinear Distributed Parameter Systems. Intelligent Systems, Control and Automation: Science and Engineering, vol 50. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0741-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0741-2_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0740-5

  • Online ISBN: 978-94-007-0741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics