This chapter is an introduction of the book. Starting from typical examples of distributed parameter systems (DPS) encountered in the real-world, it briefly introduces the background and the motivation of the research, and finally the contributions and organization of the book.


Distribute Parameter System Volterra Model Hammerstein Model Nonlinear Principal Component Analysis NARX Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aggelogiannaki, E., Sarimveis, H.: Nonlinear model predictive control for distributed parameter systems using data driven artificial neural network models. Computers and Chemical Engineering 32(6), 1225–1237 (2008)CrossRefGoogle Scholar
  2. 2.
    Bai, E.W.: An optimal two-stage identification algorithm for Hammerstein-Wiener nonlinear systems. Automatica 34(3), 333–338 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Banks, H.T., Kunisch, K.: Estimation techniques for distributed parameter systems. Birkhauser, Boston (1989)zbMATHGoogle Scholar
  4. 4.
    Boyd, J.P.: Chebyshev and Fourier spectral methods, 2nd edn. Dover Publications, New York (2000)Google Scholar
  5. 5.
    Boyd, S., Chua, L.O.: Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE Transactions on Circuits and Systems 32(11), 1150–1161 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Brenner, S.C., Ridgway Scott, L.: The mathematical theory of finite element methods. Springer, New York (1994)zbMATHGoogle Scholar
  7. 7.
    Canuto, C., et al.: Spectral methods in fluid dynamics. Springer, New York (1988)zbMATHGoogle Scholar
  8. 8.
    Christofides, P.D.: Robust control of parabolic PDE systems. Chemical Engineering Science 53(16), 2949–2965 (1998)CrossRefGoogle Scholar
  9. 9.
    Christofides, P.D.: Control of nonlinear distributed process systems: Recent developments and challenges. AIChE Journal 47(3), 514–518 (2001a)CrossRefGoogle Scholar
  10. 10.
    Christofides, P.D.: Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes. Birkhäuser, Boston (2001b)zbMATHGoogle Scholar
  11. 11.
    Christofides, P.D., Armaou, A. (eds.): Control of multiscale and distributed process systems - Preface. Computers and Chemical Engineering 29(4), 687–688 (2005)CrossRefGoogle Scholar
  12. 12.
    Christofides, P.D., Wang, X.Z. (eds.): Special issue on ‘control of particulate processes’. Chemical Engineering Science 63(5), 1155 (2008)CrossRefGoogle Scholar
  13. 13.
    Christofides, P.D. (ed.): Special volume on ‘control of distributed parameter systems’. Computers and Chemical Engineering 26(7-8), 939–940 (2002)CrossRefGoogle Scholar
  14. 14.
    Christofides, P.D. (ed.): Special issue on ‘control of complex process systems’. International Journal of Robust and Nonlinear Control 14(2), 87–88 (2004)CrossRefGoogle Scholar
  15. 15.
    Coca, D., Billings, S.A.: Direct parameter identification of distributed parameter systems. International Journal of Systems Science 31(1), 11–17 (2000)zbMATHCrossRefGoogle Scholar
  16. 16.
    Coca, D., Billings, S.A.: Identification of finite dimensional models of infinite dimensional dynamical systems. Automatica 38(11), 1851–1865 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Demetriou, M.A., Rosen, I.G.: Adaptive identification of second-order distributed parameter systems. Inverse Problems 10(2), 261–294 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Deng, H., Li, H.-X., Chen, G.: Spectral-approximation-based intelligent modeling for distributed thermal processes. IEEE Transactions on Control Systems Technology 13(5), 686–700 (2005)CrossRefGoogle Scholar
  19. 19.
    Dochain, D., Dumont, G., Gorinevsky, D., Ogunnaike, T. (eds.): Special issue on ‘control of industrial spatially distributed processes’. IEEE Transactions on Control Systems Technology 11(5), 609–611 (2003)CrossRefGoogle Scholar
  20. 20.
    Dong, D., McAvoy, T.J.: Nonlinear principal component analysis-based on principal curves and neural networks. Computers and Chemical Engineering 20(1), 65–78 (1996)CrossRefGoogle Scholar
  21. 21.
    Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model-based control using second-order Volterra Models. Automatica 31(5), 697–714 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Gay, D.H., Ray, W.H.: Identification and control of distributed parameter systems by means of the singular value decomposition. Chemical Engineering Science 50(10), 1519–1539 (1995)CrossRefGoogle Scholar
  23. 23.
    Gómez, J.C., Jutan, A., Baeyens, E.: Wiener model identification and predictive control of a pH neutralisation process. IEE Proceedings-Control Theory and Applications 151(3), 329–338 (2004)CrossRefGoogle Scholar
  24. 24.
    Gonzalez-Garcia, R., Rico-Martinez, R., Kevredidis, I.G.: Identification of distributed parameter systems: A neural net based approach. Computers and Chemical Engineering 22, S965–S968 (1998)CrossRefGoogle Scholar
  25. 25.
    Guo, L.Z., Billings, S.A.: Sate-space reconstruction and spatio-temporal prediction of lattice dynamical systems. IEEE Transactions on Automatic Control 52(4), 622–632 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Hagenblad, A., Ljung, L.: Maximum likelihood estimation of Wiener models. Report no.: LiTH-ISY-R-2308, Linköping University, Sweden (2000)Google Scholar
  27. 27.
    Holmes, P., Lumley, J.L., Berkooz, G.: Turbulence, coherent structures, dynamical systems, and symmetry. Cambridge University Press, New York (1996)zbMATHCrossRefGoogle Scholar
  28. 28.
    Hsieh, W.W.: Nonlinear principal component analysis by neural networks. Tellus Series A - Dynamic Meteorology and Oceanography 53(5), 599–615 (2001)Google Scholar
  29. 29.
    Kirby, M., Miranda, R.: The nonlinear reduction of high-dimensional dynamical systems via neural networks. Physical Review Letter 72(12), 1822–1825 (1994)CrossRefGoogle Scholar
  30. 30.
    Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE Journal 37(2), 233–243 (1991)CrossRefGoogle Scholar
  31. 31.
    Li, H.-X., Qi, C.K.: Incremental modeling of nonlinear distributed parameter processes via spatio-temporal kernel series expansion. Industrial & Engineering Chemistry Research 48(6), 3052–3058 (2009)CrossRefGoogle Scholar
  32. 32.
    Li, H.-X., Qi, C.K., Yu, Y.G.: A spatio-temporal Volterra modeling approach for a class of nonlinear distributed parameter processes. Journal of Process Control 19(7), 1126–1142 (2009)CrossRefGoogle Scholar
  33. 33.
    Maner, B.R., Doyle III, F.J., Ogunnaike, B.A., Pearson, R.K.: Nonlinear model predictive control of a simulated multivariable polymerization reactor using second-order Volterra models. Automatica 32(9), 1285–1301 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Mitchell, A.R., Griffiths, D.F.: The finite difference method in partial differential equations. Wiley, Chichester (1980)zbMATHGoogle Scholar
  35. 35.
    Narendra, K., Gallman, P.: An iterative method for the identification of nonlinear systems using a Hammerstein model. IEEE Transactions on Automatic Control 11(3), 546–550 (1966)CrossRefGoogle Scholar
  36. 36.
    Newman, A.J.: Model reduction via the Karhunen-Loève expansion part I: An exposition. Technical Report T.R.96-32, University of Maryland, College Park, Maryland (1996a)Google Scholar
  37. 37.
    Parker, R.S., Heemstra, D., Doyle III, F.J., Pearson, R.K., Ogunnaike, B.A.: The identification of nonlinear models for process control using tailored “plant-friendly” input sequences. Journal of Process Control 11(2), 237–250 (2001)CrossRefGoogle Scholar
  38. 38.
    Qi, C.K., Li, H.-X.: Hybrid Karhunen-Loève/neural modeling for a class of distributed parameter systems. International Journal of Intelligent Systems Technologies and Applications 4(1-2), 141–160 (2008a)CrossRefGoogle Scholar
  39. 39.
    Qi, C.K., Li, H.-X.: A Karhunen-Loève decomposition based Wiener modeling approach for nonlinear distributed parameter processes. Industrial & Engineering Chemistry Research 47(12), 4184–4192 (2008b)CrossRefGoogle Scholar
  40. 40.
    Qi, C.K., Li, H.-X.: A time/space separation based Hammerstein modeling approach for nonlinear distributed parameter. Computers & Chemical Engineering 33(7), 1247–1260 (2009a)CrossRefGoogle Scholar
  41. 41.
    Qi, C.K., Li, H.-X.: Nonlinear dimension reduction based neural modeling for spatio-temporal processes. Chemical Engineering Science 64(19), 4164–4170 (2009b)CrossRefGoogle Scholar
  42. 42.
    Qi, C.K., Zhang, H.-T., Li, H.-X.: A multi-channel spatio-temporal Hammerstein modeling approach for nonlinear distributed parameter processes. Journal of Process Control 19(1), 85–99 (2009)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Romijn, R., Özkan, L., Weiland, S., Ludlage, J., Marquardt, W.: A grey-box modeling approach for the reduction of nonlinear systems. Journal of Process Control 18(9), 906–914 (2008)CrossRefGoogle Scholar
  44. 44.
    Rugh, W.: Nonlinear system theory: The Volterral/Wiener approach. Johns Hopkins University Press, Baltimore (1981)Google Scholar
  45. 45.
    Sahan, R.A., Koc-Sahan, N., Albin, D.C., Liakopoulos, A.: Artificial neural network-based modeling and intelligent control of transitional flows. In: Proceeding of the 1997 IEEE International Conference on Control Applications, Hartford, CT, pp. 359–364 (1997)Google Scholar
  46. 46.
    Schetzen, M.: The Volterra and Wiener theories of nonlinear systems. Wiley, New York (1980)zbMATHGoogle Scholar
  47. 47.
    Sirovich, L.: Turbulence and the dynamics of coherent structures parts I-III. Quarterly of Applied Mathematics 45(3), 561–590 (1987)MathSciNetzbMATHGoogle Scholar
  48. 48.
    Smaoui, N.: Linear versus nonlinear dimensionality reduction of high-dimensional dynamical systems. SIAM Journal on Scientific Computing 25(6), 2107–2125 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  49. 49.
    Smaoui, N., Al-Enezi, S.: Modelling the dynamics of nonlinear partial differential equations using neural networks. Journal of Computational and Applied Mathematics 170(1), 27–58 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Stoica, P., Söderström, T.: Instrumental-variable methods for identification of Hammerstein systems. International Journal of Control 35(3), 459–476 (1982)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Webb, A.R.: An approach to non-linear principal components analysis using radially symmetric kernel functions. Journal Statistics and Computing 6(2), 159–168 (1996)CrossRefGoogle Scholar
  52. 52.
    Westwick, D., Verhaegen, M.: Identifying MIMO Wiener systems using subspace model identification methods. Signal Processing 52(2), 235–258 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Wilson, D.J.H., Irwin, G.W., Lightbody, G.: RBF principal manifolds for process monitoring. IEEE Transactions on Neural Networks 10(6), 1424–1434 (1999)CrossRefGoogle Scholar
  54. 54.
    Zheng, D., Hoo, K.A., Piovoso, M.J.: Low-order model identification of distributed parameter systems by a combination of singular value decomposition and the Karhunen-Loève expansion. Industrial & Engineering Chemistry Research 41(6), 1545–1556 (2002)CrossRefGoogle Scholar
  55. 55.
    Zhou, X.G., Liu, L.H., Dai, Y.C., Yuan, W.K., Hudson, J.L.: Modeling of a fixed-bed reactor using the KL expansion and neural networks. Chemical Engineering Science 51(10), 2179–2188 (1996)CrossRefGoogle Scholar
  56. 56.
    Zhu, Y.C.: Identification of Hammerstein models for control using ASYM. International Journal of Control 73(18), 1692–1702 (2000)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Netherlands 2011

Authors and Affiliations

  • Han-Xiong Li
    • Chenkun Qi

      There are no affiliations available

      Personalised recommendations