Skip to main content

Some Consideration on Derivative Approximation of Particle Methods

  • Chapter
  • First Online:
  • 2456 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 25))

Abstract

In this paper, the accuracy of the derivative approximation of the particle methods is discussed. Especially, we show that the issue of decreasing accuracy on a boundary area in the SPH method is due to the lack of the boundary integration. Through some numerical examples, the convergence of error norm of energy obtained by the SPH and the MPS methods is studied.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zienkiewicz, O.C., Taylor, R.L., Finite Element Method, 5th ed., Vol. 1, Butterworth-Heinemann, Oxford, 2000.

    Google Scholar 

  2. Oñate, E., Idelsohn, S.R., Celiguetaa,M.A., Rossia, R., Advances in the particle finite element method for the analysis of fluid-multibody interaction and bed erosion in free surface flows, Computer Methods in Applied Mechanics and Engineering, 197(15):1777–1800, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  3. Yagawa, G., Node-by-node parallel finite elements, a virtually meshless method, International Journal for Numerical Methods in Engineering 60(1):69–102, 2004.

    Article  MATH  Google Scholar 

  4. Matsubara, H., Yagawa, G., Convergence studies for Enriched Free Mesh Method and its application to fracture mechanics, Interaction and Multiscale Mechanics: An International Journal 2(3):277–293, 2009.

    Google Scholar 

  5. Yagawa, G., Matsubara, H., Enriched free mesh method: An accuracy improvement for nodebased FEM, Computational Plasticity 7:207–219, 2007.

    Article  Google Scholar 

  6. Tian, R., Matsubara, H., Yagawa, G., Advanced 4-node tetrahedrons, International Journal for Numerical Methods in Engineering 68(12):1209–1231, 2006.

    Article  MATH  Google Scholar 

  7. Li, S., Liu, W.K., Meshfree Particle Methods, Springer, Heidelberg, 2007.

    Google Scholar 

  8. Lucy, L.B., A numerical approach to the testing of the fission hypothesis, The Astronomical Journal 82:1013–1024, 1977.

    Article  Google Scholar 

  9. Gingold, R.A.,Monaghan, J.J., Smoothed particle hydrodynamics: Theory and application to non-spherical stars, Mon. Not. R. Astr. Soc. 181:375–389, 1977.

    MATH  Google Scholar 

  10. Li, S, Liu, W.K., Meshfree and particle methods and their applications, Applied Mechanics Review 55(1):1–34, 2002.

    Article  Google Scholar 

  11. Monaghan, J.J., Simulating free surface flows with SPH, Journal of Computational Physics 110:399–406, 1994.

    Article  MATH  Google Scholar 

  12. Belytschko, T., Krograuz, Y., Organ, D., Fleming, M., Krysl, P., Meshless methods: An overview and recent developments, Computer Methods in Applied Mechanics and Engineering 139:3–47, 1996.

    Article  MATH  Google Scholar 

  13. Libersky, L.D., Petschek, A.G., Smooth particle hydrodynamics with strength of materials. In Advances in the Free-Lagrange Method, H.E. Trease, M.J. Fritts, W.P. Crowley (eds.), Lecture Notes in Physics, Vol. 395, pp. 248–257, Springer, 1993.

    Google Scholar 

  14. Randles, P.W., Libersky, L.D., Smoothed particle hydrodynamics: Some recent improvements and applications, Computer Methods in Applied Mechanics and Engineering 139:375–408, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  15. Chen, J.K., Beraun, J.E., Jih, C.J., An improvement for tensile instability in smoothed particle hydrodynamics, Computational Mechanics 23:279–287, 1999.

    Article  MATH  Google Scholar 

  16. Chen, J.K., Beraun, J.E., Jih, C.J., Completeness of corrective smoothed particle method for linear elastodynamics, Computational Mechanics 24:273–285, 1999.

    Article  MATH  Google Scholar 

  17. Chen, J.K., Beraun, J.E., Carney, T.C., A corrective smoothed particle method for boundary value problems in heat conduction, International Journal for Numerical Methods in Engineering 46:231–252, 1999.

    Article  MATH  Google Scholar 

  18. Koshizuka, S., Oka, Y., Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear Science and Engineering 123:421–434, 1996.

    Google Scholar 

  19. Chikazawa, Y., Koshizuka, S., Oka, Y., Numerical analysis of three dimensional sloshing in an elastic cylindrical tank using moving particle semi-implicit method, Computational Fluid Dynamics 9:376–383, 2001.

    Google Scholar 

  20. Koshizuka, K., Nobe, A., Oka, Y., Numerical analysis of breaking waves using the moving particle semi-implicit method, International Journal for Numerical Methods in Fluids 26(7):751–769, 1998.

    Article  MATH  Google Scholar 

  21. Iribe, T., Fujisawa, T., Koshizuka, S., Reduction of communication between nodes on largescale simulation of the particle method, Transactions of JSCES, No. 20080020, 2008.

    Google Scholar 

  22. Swegle, J.W., Attaway, S.W., Heinstein, M.W., Mello, F.J., Hicks, D.L., An analysis of smoothed particle hydrodynamics, SANDIA Report SAND93-2513, 1994.

    Book  Google Scholar 

  23. Timoshenko, S.P., Goodier, J.N., Theory of Elasticity, McGraw-Hill, New York, 1979.

    Google Scholar 

  24. Augarde, C.E., Deeks, A.J., The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis, Finite Elements in Analysis and Design 44:595–601, 2008.

    Article  Google Scholar 

  25. Lancaster, P., Salkauskas, K., Surfaces generated by moving least squares methods, Mathematics of Computation 37(155):141–158, 1981.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Matsubara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Matsubara, H., Iraha, S., Yagawa, G., Song, D. (2011). Some Consideration on Derivative Approximation of Particle Methods. In: Oñate, E., Owen, R. (eds) Particle-Based Methods. Computational Methods in Applied Sciences, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0735-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0735-1_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0734-4

  • Online ISBN: 978-94-007-0735-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics