Skip to main content

Parallel Computation Particle Methods for Multi-Phase Fluid Flow with Application Oil Reservoir Characterization

  • Chapter
  • First Online:
Particle-Based Methods

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 25))

Abstract

This contribution presents a strategy for programming mechanics simulations including particle methods on multi-core shared memory machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tiab, D., Donaldson, E.C., Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 2nd ed., Elsevier, San Diego, CA, 2003.

    Google Scholar 

  2. Johnson, E.F., Bossler, D.P., Naumann, V.O., Calculation of relative permeability from displacement experiments, petroleum transactions. AIME 216:370–372.8, 1959.

    Google Scholar 

  3. Taber, J.J., Dynamic and static forces required to remove a discontinuous oil phase from porous media containing both oil and water. SPE Journal 9:3–12, 1969.

    Google Scholar 

  4. Jones, S.C., Roszelle, W.O., Graphical techniques for determining relative permeability from displacement experiments. Journal of Petroleum Technology 30:807–817, 1978.

    Google Scholar 

  5. Kerig, P.D., Watson, A.T., Relative-permeability estimation from displacement experiments: An error analysis. SPE Reservoir Engineering 1:175–182, 1986.

    Article  Google Scholar 

  6. Teige, G.M.G., Hermanrud, C., Thomas, W.H., Wilson, O.B., Nordgard Bolas, H.M., Capillary resistance and trapping of hydrocarbons: A laboratory experiment. Petroleum Geoscience 11:125–129, 2005.

    Google Scholar 

  7. Roberts, J.N., Schwartz, L.M., Grain consolidation and electrical conductivity in porous media. Physical Review B 31:5990–5997, 1985.

    Article  Google Scholar 

  8. Schwartz, L.M.,Martys, N., Bentz, D.P., Garboczi, E.J., Torquato, S., Cross-property relations and permeability estimation in model porous media. Physical Review E 48:4584–4591, 1993.

    Article  Google Scholar 

  9. Adler, P.M., Jacquin, C.G., Quiblier, J.A., Flow in simulated porous media. International Journal of Multiphase Flow 16:691–712, 1990.

    Article  MATH  Google Scholar 

  10. Adler, P.M., Jacquin, C.G., Thovert, J.F., The formation factor of reconstructed porous media. Water Resources Research 28:1571–1576, 1992.

    Article  Google Scholar 

  11. Hazlett, R.D., Statistical characterization and stochastic modeling of pore networks in relation to fluid flow. Mathematical Geology 29:801–822, 1997.

    Article  Google Scholar 

  12. Yeong, C.L.Y., Torquato, S., Reconstructing random media. Physical Review E 57:495–506, 1998.

    Article  MathSciNet  Google Scholar 

  13. Yeong, C.L.Y., Torquato, S., Reconstructing random media. II. Three-dimensional media from two-dimensional cuts. Physical Review E 58:224–233, 1998.

    MathSciNet  Google Scholar 

  14. Flannery, B.P., Deckman, H.W., Roberge, W.G., D’Amico, K.L., Three-dimensional x-ray microtomography. Science 237:1439–1444, 1987.

    Article  Google Scholar 

  15. Dunsmuir, J.H., Ferguson, S.R., D’Amico, K.L., Stokes, J.P., X-ray microtomography: A new tool for the characterization of porous media. In: Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, pp. 22860-MS, 1991.

    Google Scholar 

  16. Spanne, P., Thovert, J.F., Jacquin, C.J., Lindquist, W.B., Jones, K.W., Adler, P.M., Synchrotron computed microtomography of porous media: Topology and transports. Physical Review Letters 73:2001–2004, 1994.

    Article  Google Scholar 

  17. Coles, M.E., Hazlett, R.D., Spanne, P., Soll, W.E., Muegge, E.L., Jones, K.W., Pore level imaging of fluid transport using synchrotron x-ray microtomography. Journal of Petroleum Science and Engineering 19:55–63, 1998.

    Article  Google Scholar 

  18. Schwartz, L.M., Auzerais, F., Dunsmuir, J., Martys, N., Bentz, D.P., Torquato, S., Transport and diffusion in three-dimensional composite media. Physics A 207:28–36, 1994.

    Article  Google Scholar 

  19. Arns, C.H., Sheppard, A.P., Sok, R.M., Knackstedt, M.A., NMR petrophysical predictions on digitized core images. In: SPWLA 46th Annual Logging Symposium, Society of Petrophysicists and Well Log Analysts, p. MMM, 2005.

    Google Scholar 

  20. Arns, C.H., Sheppard, A.P., Saadatfar, M., Knackstedt, M.A., Prediction of permeability from NMR response: Surface relaxivity heterogeneity. In: SPWLA 47th Annual Logging Symposium, Society of Petrophysicists and Well Log Analysts, p. GG, 2006.

    Google Scholar 

  21. Auzerais, F.M., Dunsmuir, J., Ferréol, B.B., Martys, N., Olson, J., Ramakrishnan, T.S., Rothman, D.H., Schwartz, L.M., Transport in sandstone: A study based on three dimensional microtomography. Geophysical Research Letters 23:705–708, 1996.

    Article  Google Scholar 

  22. Ryu, S., Zhao, W., Leu, G., Singer, P.M., Cho, H.J., Keehm, Y., Numerical modeling of complex porous media for borehole applications. ArXiv e-prints. [Online] Available: http://adsabs.harvard.edu/abs/2009arXiv0908.1962R, 2009.

  23. Zhan, X., Schwartz, L., Morgan, D., Smith, W., Toksöz, N., Numerical modeling of transport properties and comparison to laboratory measurements. Technical Report, Massachusetts Institute of Technology. [Online] Available: http://www-eaps.mit.edu/erl/Zhan_2008_final.pdf, 2008.

  24. Arns, C.H., Knackstedt, M.A., Pinczewski,W.V., Garboczi, E.J., Computation of linear elastic properties from microtomographic images: Methodology and agreement between theory and experiment Geophysics 67:1396–1405, 2002.

    Google Scholar 

  25. Knackstedt, M.A., Arns, C.H., Sok, R.M., Sheppard, A.P., 3D pore scale characterization of carbonate core: Relating pore types and interconnectivity to petrophysical and multiphase flow properties. In: International Petroleum Technology Conference, pp. 11775-MS.

    Google Scholar 

  26. Knackstedt, M.A., Arns, C.H., Sheppard, A.P., Senden, T.J., Sok, R.M., Cinar, Y., Pinczewski, W.V., Ioannidis, M., Padhy, G.S., Archie’s exponents in complex lithologies derived from 3D digital core analysis. In: SPWLA 48th Annual Logging Symposium, Society of Petrophysicists and Well Log Analysts, p. UU, 2007.

    Google Scholar 

  27. Zhao,W., Picard, G., Leu, G., Singer, P.M., Characterization of single-phase flow through carbonate rocks: Quantitative comparison of NMR flow propagator measurements with a realistic pore network model. Transport in Porous Media 81:305–315, 2010.

    Article  Google Scholar 

  28. Blunt, M.J., Jackson, M.D., Piri, M., Valvatne, P.H., Detailed physics, predictive capabilities and macroscopic consequences for pore-network models of multiphase flow. Advances in Water Resources 25:1069–1089, 2002.

    Article  Google Scholar 

  29. Sok, R.M., Arns, C.H., Knackstedt, M.A., Senden, T.J., Sheppard, A.P., Averdunk, H., Pinczewski, W.V., Okabe, H., Estimation of petrophysical parameters from 3D images of carbonate core. In: SPWLA Middle East Regional Symposium, Society of Petrophysicists and Well Log Analysts, 2007.

    Google Scholar 

  30. Ferréol, B., Rothman, D.H., Lattice-Boltzmann simulations of flow through Fontainebleau sandstone. Transport in Porous Media 20:3–20, 1995.

    Article  Google Scholar 

  31. Kameda, A., Dvorkin, J., Keehm, Y., Nur, A., Bosl,W., Permeability-porosity transforms from small sandstone fragments. Geophysics 71:N11–N19, 2006.

    Article  Google Scholar 

  32. Hazlett, R.D., Coles, M.E., Jones, K.W., Andrews, B., Dowd, B., Siddons, P., Peskin, A., Developments in synchrotron X-ray microtomography for application to flow in porous media. In: Proceedings of the 1996 Annual Technical Conference of the Society of Core Analysists, p. 9630, 1996.

    Google Scholar 

  33. Hazlett, R.D., Chen, S.Y., Soll,W.E.,Wettability and rate effects on immiscible displacement: Lattice Boltzmann simulation in microtomographic images of reservoir rocks. Journal of Petroleum Science and Engineering 20:167–175, 1998.

    Article  Google Scholar 

  34. Chen, S., Doolen, G.D., Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 30:329–364, 1998.

    Article  MathSciNet  Google Scholar 

  35. Zheng, H.W., Shu, C., Chew, Y.T., A lattice Boltzmann model for multiphase flows with large density ratio. Journal of Computational Physics 218:353–371, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  36. Huang, J.J., Shu, C., Chew, Y.T., Lattice Boltzmann study of droplet motion inside a grooved channel. Physics of Fluids 21:022103, 2009.

    Article  Google Scholar 

  37. Lucy, L.B., A numerical approach to the testing of the fusion hypothesis. Astronomical Journal 82:1013–1024, 1977.

    Article  Google Scholar 

  38. Gingold, R.A., Monaghan, J.J., Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society 181:375–389, 1977.

    MATH  Google Scholar 

  39. Monaghan, J.J., Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics 30:543–574, 1992.

    Article  Google Scholar 

  40. Hoover, W.G., Isomorphism linking smooth particles and embedded atoms. Physica A 260:244–254, doi: 10.1016/S0378-4371(98)00357-4, 1998.

    Google Scholar 

  41. Morris, J.P., Fox, P.J., Zhu, Y., Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics 136:214–226, doi: 10.1006/jcph.1997.5776, 1997.

    Google Scholar 

  42. Monaghan, J.J., Smoothed particle hydrodynamics. Reports on Progress in Physics 68:1703–1759, 2005.

    Article  MathSciNet  Google Scholar 

  43. Tartakovsky, A.M., Meakin, P., Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Advances in Water Resources 29:1464–1478, 2006.

    Article  Google Scholar 

  44. Liu, G.R., Liu, M.B., Smoothed Particle Hydrodynamics: A Meshfree Particle Method, World Scientific, Singapore, 2007.

    Google Scholar 

  45. Bui, H.H., Fukagawa, R., Sako, K., Ohno, S., Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. International Journal for Numerical and Analytical Methods in Geomechanics 32:1537–1570, 2008.

    Article  Google Scholar 

  46. Randles, P.W., Libersky, L.D., Smoothed particle hydrodynamics: Some recent improvements and applications. Computer Methods in Applied Mechanics and Engineering 139:375–408, 1996.

    Article  MATH  MathSciNet  Google Scholar 

  47. Liu, M., Meakin, P., Huang, H., Dissipative particle dynamics simulation of pore-scale multiphase fluid flow. Water Resources Research 43:W04411, 2007.

    Article  Google Scholar 

  48. Liu, M., Meakin, P., Huang, H., Dissipative particle dynamics simulations of multiphase fluid flow in microchannels and microchannel networks. Physics of Fluids 19:033302, 2007.

    Article  Google Scholar 

  49. Tartakovsky, A.M., Meakin, P., Simulation of unsaturated flow in complex fractures using smoothed particle hydrodynamics. Vandose Zone Journal 4:848–855, 2005.

    Article  Google Scholar 

  50. Tartakovsky, A.M.,Meakin, P.,Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Physical Review E 72:1–9, 2005.

    Article  Google Scholar 

  51. Hu, X.Y., Adams, N.A., A multi-phase SPH method for macroscopic and mesoscopic flowsl. Journal of Computational Physics 213:844–861, 2006.

    Article  MATH  MathSciNet  Google Scholar 

  52. Tartakovsky, A.M., Meakin, P., Ward, A.L., Smoothed particle hydrodynamics model of nonaqueous phase liquid flow and dissolution. Transport in Porous Media 76:11–34, 2009.

    Article  Google Scholar 

  53. Tartakovsky, A.M., Meakin, P., A smoothed particle hydrodynamics model for miscible flow in three-dimensional fractures and the two-dimensional Rayleigh–Taylor instability. Journal of Computational Physics 207:610–624, 2005.

    Article  MATH  Google Scholar 

  54. Tartakovsky, A.M.,Meakin, P., Scheibe, T.D.,West, R.M.E., Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. Journal of Computational Physics 222:654–672, 2007.

    Article  MATH  MathSciNet  Google Scholar 

  55. Monaghan, J.J., Kocharyan, A., SPH simulations of multi-phase flow. Computer Physics Communications 87:225–235, 1995.

    Article  MATH  Google Scholar 

  56. Cleary, P.W., Modelling confined multi-material heat and mass flows using SPH. Applied Mathematical Modelling 22:981–993, 1999.

    Article  Google Scholar 

  57. Jiang, F., Sousa, A.C.M., SPH numerical modeling for ballistic-diffusive heat conduction. Numerical Heat Transfer, Part B. Fundamentals 50:499–515, 2006.

    Google Scholar 

  58. Rook, R., Yildiz, M., Dost, S., Modeling transient heat transfer using SPH and implicit time integration, Numerical Heat Transfer, Part B. Fundamentals 51:1–23, 2007.

    Article  Google Scholar 

  59. Price, D.J., Modelling discontinuities and Kelvin–Helmholtz instabilities in SPH. Journal of Computational Physics 227:10040–10057, 2008.

    Article  MATH  MathSciNet  Google Scholar 

  60. Dolag, K., Bartelmann, M., Lesch, H., SPH simulations of magnetic fields in galaxy clusters. Astronomy and Astrophysics 348:351–363, 1999.

    Google Scholar 

  61. Borve, S., Omang, M., Trulsen, J., Regularized smoothed particle hydrodynamics: A new approach to simulating magneto-hydrodynamic shocks. The Astrophysical Journal 561:82–93, 2001.

    Article  Google Scholar 

  62. Holmes, D.W.,Williams, J.R., Tilke, P., An events based algorithm for distributing concurrent tasks on multi-core architectures. Computer Physics Communications 181:341–354, 2010.

    Article  MATH  Google Scholar 

  63. Gropp, W., Lusk, E., Skjellum, A., Using MPI: Portable Parallel Programming with the Message-Passing Interface, MIT Press, Cambridge, 1999.

    Google Scholar 

  64. Eadline, D., MPI on multicore, an OpenMP alternative? Linux Magazine. [Online] Available: http://www.linux-mag.com/id/4608, 2007.

  65. Leiserson, C.E., Mirman, I.B., How to Survive the Multicore Software Revolution (or at Least Survive the Hype), Cilk Arts, Cambridge, 2008.

    Google Scholar 

  66. Strikwerda, J.C., Finite Difference Schemes and Partial Differential Equations, Wadsworth and Brooks/Cole, Pacific Grove, CA, 1989.

    Google Scholar 

  67. Chen, S., Doolen, G.D., Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 30:329–364, 1998.

    Article  MathSciNet  Google Scholar 

  68. Zienkiewicz, O.C., Taylor, R.L, The Finite Element Method, 4th ed., McGraw-Hill, London, 1991.

    Google Scholar 

  69. Liu, H., Shi, P., Meshfree particle method. In: Proceedings of the Ninth IEEE International Conference on Computer Vision (ICCV’03), Vol. 1, IEEE Computer Society, Los Alamitos, CA, USA, pp. 289–296, 2003.

    Google Scholar 

  70. Koplik, J., Banavar, J.R., Willemsen, J.F., Molecular dynamics of fluid flow at solid surfaces, Physics of Fluids A. Fluid Dynamics 1:781–794, 1989.

    Article  Google Scholar 

  71. Cundall, P.A., Strack, O.D.L., A discrete numerical model for granular assemblies. Geotechnique 29:47–65, 1979.

    Article  Google Scholar 

  72. Williams, J.R., O’Connor, R., Discrete element simulation and the contact problem. Archives of Computational Methods in Engineering 6(4):279–304, 1999.

    Article  MathSciNet  Google Scholar 

  73. Williams, J.R., Perkins, E., Cook, B.K., A contact algorithm for partitioning N arbitrary sized objects, International Journal of Computer Aided Methods in Engineering – Engineering Computations 21(2–4):235–248, 2004.

    Google Scholar 

  74. Keaveny, E.E., Pivkin, I.V., Maxey, M., Karniadakis, G.E., A comparative study between dissipative particle dynamics and molecular dynamics for simple- and complex-geometry flows. The Journal of Chemical Physics 123:104107, 2005.

    Article  Google Scholar 

  75. Hasimoto, H., On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres. Journal of Fluid Mechanics 5(2):317–328, doi: 10.1017/S0022112059000222, 1959.

    Google Scholar 

  76. Zick, A.A., Homsy, G.M., Stokes flow through periodic arrays of spheres. Journal of Fluid Mechanics 115:13–26, doi: 10.1017/S0022112082000627, 1982.

    Google Scholar 

  77. Sangani, A.S., Acrivos, A., Slow flow through a periodic arrays of spheres. International Journal of Multiphase Flow 8(4):343–360, doi: 10.1016/0301-9322(82)90047-7, 1982.

    Google Scholar 

  78. Larson, R.E., Higdon, J.J.L., A periodic grain consolidation model of porous media. Physics of Fluids A 1(1):38–46, doi: 10.1063/1.857545, 1989.

    Google Scholar 

  79. Schwartz, L.M.,Martys, N., Bentz, D.P., Garboczi, E.J., Torquato, S., Cross-property relations and permeability estimation inmodel porous media. Physical Review E 48(6):4584–4591, doi: 10.1103/PhysRevE.48.4584, 1993.

    Google Scholar 

  80. Holmes, D.W., Williams, J.R., Tilke, P., Smooth particle hydrodynamics simulations of low Reynolds number flows through porous media. International Journal for Numerical and Analytical Methods in Geomechanics, 2010.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Williams, J.R., Holmes, D., Tilke, P. (2011). Parallel Computation Particle Methods for Multi-Phase Fluid Flow with Application Oil Reservoir Characterization. In: Oñate, E., Owen, R. (eds) Particle-Based Methods. Computational Methods in Applied Sciences, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0735-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0735-1_4

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0734-4

  • Online ISBN: 978-94-007-0735-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics