Skip to main content

Tracking Red Blood Cells in Microchannels: A Comparative Study Between an Automatic and a Manual Method

  • Chapter
  • First Online:
Topics in Medical Image Processing and Computational Vision

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 8))

Abstract

Image analysis is extremely important to obtain crucial information about the blood phenomena in microcirculation. The current study proposes an automatic method for segmentation and tracking red blood cells (RBCs) flowing through a 100 μm glass capillary. The original images were obtained by means of a confocal system and then processed in MatLab using the Image Processing Toolbox. The automatic measurements with the proposed automatic method are compared with a manual tracking method performed by ImageJ. The comparison of the two methods is performed using a statistical Bland–Altman analysis. The numerical results have shown a good agreement between the two methods. Additionally, no significant difference was found between the two methods and as a result the proposed automatic method is demonstrated to be a rapid and accurate way to track RBCs in microchannels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Maeda N (1996) Erythrocyte rheology in microcirculation. Jpn J Physiol 46:1–14

    Article  Google Scholar 

  2. Pries A, Secomb T (1994) Resistance to blood flow in microvessels in vivo. Circ Res 75:904–915

    Article  Google Scholar 

  3. Suzuki Y, Tateishi N, Soutani M, Maeda N (1996) Deformation of erythrocytes in microvessels and glass capillaries: effects of erythrocyte deformability. Microcirculation 3:49–57

    Article  Google Scholar 

  4. Fujiwara H, Ishikawa T et al (2009) Red blood cell motions in high-hematocrit blood flowing through a stenosed microchannel. J Biomech 42:838–843

    Article  Google Scholar 

  5. Goldsmith H, Turitto V (1986) Rheological aspects of thrombosis and haemostasis: basic principles and applications. ICTH-Report-Subcommittee on Rheology of the International Committee on thrombosis and haemostasis. Thromb Haemost 55:415–435

    Google Scholar 

  6. Lima R, Wada S et al (2006) Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel. Meas Sci Tech 17:797–808

    Article  Google Scholar 

  7. Lima R, Ishikawa T et al (2009) Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system. Ann Biomed Eng 37:1546–1559

    Article  Google Scholar 

  8. Lima R, Ishikawa T et al (2010) Blood flow behavior in microchannels: advances and future trends. In: Single and two-phase flows on chemical and biomedical engineering. Bentham

    Google Scholar 

  9. Pinho D, Pereira A, Lima R (2010) Measurement of the red blood cell (RBC) dispersion in microchannels: the effect of the temperature. In: Proceedings of the 6th World congress of biomechanics, p 471

    Google Scholar 

  10. Nakano A, Sugii Y, Minamiyama M, Niimi H (2003) Measurement of red cell velocity in microvessels using particle image velocimetry (PIV). Clin Hemorheol Micro 29:445–455

    Google Scholar 

  11. Sugii Y, Okuda R, Okamoto K, Madarame H (2005) Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique. Meas Sci Technol 16:1126–1130

    Article  Google Scholar 

  12. Vennemann P, Kiger K, Lindken R, Groenendijk B, Stekelenburg-de Vos S, Hagen T, Ursem N, Rpoelmann R, Westerweel J, Hierk B (2006) In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart. J Biomech 39:1191–1200

    Article  Google Scholar 

  13. Wereley ST, Meinhart CD (2010) Recent advances in micro-particle image velocimetry. Annu Rev Fluid Mech 42:557–576

    Article  Google Scholar 

  14. Adrian R (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Article  Google Scholar 

  15. Sbalzarini IF, Koumoutsakos P (2005) Feature point tracking and trajectory analysis for video imaging in cell biology. J Struct Bio1 151(2):182–195

    Article  Google Scholar 

  16. Lima R, Ishikawa T, Imai Y, Yamaguchi T (2012) Confocal micro-PIV/PTV measurements of the blood flow in micro-channels. In: Collins MW, Koenig CS (eds) Nano and micro flow systems for bioanalysis. Springer

    Google Scholar 

  17. Lima R (2007) Analysis of the blood flow behavior through microchannels by a confocal micro-PIV/PTV system. PhD (Eng), Bioengineering and robotics Department, Tohoku University, Sendai

    Google Scholar 

  18. Lima R, Ishikawa T, Imai Y, Yamaguchi T (2012) Blood flow behavior in microchannels: advances and future trends, In: Dias et al (eds) Single and two-phase flows on chemical and biomedical engineering, Bentham Science Publishers

    Google Scholar 

  19. Pinho D, Pereira A, Lima R (2010) Red blood cells motion in a glass microchannel. Numer Anal Appl Math 1281:963–966

    Google Scholar 

  20. Machin M, Santomaso A, Mazzucato M, Cozzi MR, Battiston M, Marco L, Canu P (2006) Single particle tracking across sequences of microscopical images: application to platelet adhesion under flow. Ann Biomed Eng 34(5) 833–846. doi:10.1007/s10439-006-9086-8

    Google Scholar 

  21. Acton ST, Wethmar K, Ley K (2002) Brief communication: automatic tracking of rolling leukocytes in Vivo. Microvasc Res 63:139–148. doi:10.1006/mvre.2001.2373

    Google Scholar 

  22. Lima R, Wada S, Tsubota K, Yamaguchi T (2006) Confocal micro-PIV measurements of three dimensional profiles of cell suspension flow in a square microchannel. Meas Sci Technol 17:797–808

    Article  Google Scholar 

  23. Lima R, Wada S, Takeda M, Tsubota K, Yamaguchi T (2007) In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the haematocrit on instantaneous velocity profiles. J Biomech 40:2752–2757

    Article  Google Scholar 

  24. Lima R, Ishikawa T, Imai Y, Takeda M, Wada S, Yamaguchi T (2008) Radial dispersion of red blood cells in blood flowing through glass capillaries: role of heamatocrit and geometry. J Biomech 44:2188–2196

    Article  Google Scholar 

  25. Lima R, Wada S, Tanaka S, Takeda M, Ishikawa T, Tsubota K, Imai Y, Yamaguchi T (2008) In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system. Biomed Microdevices 10(2):153–167

    Article  Google Scholar 

  26. Lima R, Oliveira MSN, Ishikawa T, Kaji H, Tanaka S, Nishizawa M, Yamaguchi T (2009) Axisymmetric PDMS microchannels for in vitro haemodynamics studies. Biofabrication 1(3):035005

    Article  Google Scholar 

  27. Yaginuma T, Oliveira MSN, Lima R, Ishikawa T, Yamaguchi T (2011) Red blood cell deformation in flows through a PDMS hyperbolic microchannel. In: Proceedings of techconnect world 2011—microtech conference and expo, vol 2. Boston, p 505

    Google Scholar 

  28. Yaginuma T, Oliveira MSN, Lima R, Dias R, Ishikawa T, Imai Y, Yamaguchi T (2012) Flow visualization of trace particles and red blood cells in a microchannel with a diverging and converging bifurcation. In: Proceedings of the ECCOMAS thematic conference on computational vision and medical image processing, pp 209–211

    Google Scholar 

  29. Leble V, Lima R, Dias R, Fernandes C, Ishikawa T, Imai Y, Yamaguchi T (2011) Asymmetry of red blood cell motions in a microchannel with a diverging and converging bifurcation. Biomicrofluidics 5:044120

    Article  Google Scholar 

  30. Lima R, Fernandes C, Dias R, Ishikawa T, Imai Y, Yamaguchi T (2011) Microscale flow dynamics of red blood cells in microchannels: an experimental and numerical analysis. In: Tavares, Jorge (eds) Computational vision and medical image processing: recent trends, vol 19. Springer, pp 297–309

    Google Scholar 

  31. Acharya T, Ray AK (2005) Image processing principles and applications. John Wiley & Sons, Inc, Hoboken

    Book  Google Scholar 

  32. Goshtasby AA (2005) 2-D and 3-D image registration. John Wiley & Sons, Inc, Hoboken

    Google Scholar 

  33. Eddins SL, Gonzalez RC, Woods RE (2002) Digital image processing using Matlab. Prentice-Hall, Upper Saddle River

    Google Scholar 

  34. Al Bovik (2009) The essential Guide to Image Processing. Elsevier

    Google Scholar 

  35. Pinho D (2011) Determination and characterization of red blood cells trajectories: a semi-automatic method, master in biomedical technology. Polytechnic Institute of Bragança, Portugal (in portuguese)

    Google Scholar 

  36. Pinho D, Lima R, Pereira AI, Gayubo F (2012) Automatic tracking of labeled red blood cells in microchannels. International Journal for Numerical Methods in Biomedical Engineering. doi:10.1002/cnm.2526

  37. Meijering E, Smal I, Danuser G (2006) Tracking in molecular bioimaging. IEEE Signal Process Mag 23:46–53

    Article  Google Scholar 

  38. Abramoff M, Magelhaes P, Ram S (2004) Image processing with image. J Biophotonics Int 11:36–42

    Google Scholar 

  39. MatLab (2010) The MathWorks Inc, version 7.11. Image processing toolbox version 7.1 user’s guide

    Google Scholar 

  40. Chan RH, Ho CW, Nikolova M (2005) Salt-pepper noise removal by median-type noise detectors and detail-preserving regularization. IEEE Trans Image Process 14:1479–1485

    Article  Google Scholar 

  41. Horn BKP, Schunck BG (1981) Determining optical flow. Artif Intell 17:185–203

    Article  Google Scholar 

  42. MedCalc Software, Version 12.1.4 Broekstraat 52, 9030 Mariakerke, Belgium

    Google Scholar 

  43. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet i:307–310

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by: Student Mobility Placements with the program Lifelong Learning (Erasmus Program), PTDC/SAU-BEB/108728/2008, PTDC/SAU-BEB/105650/2008, PTDC/EME-MFE/099109/2008 and PTDC/SAU-ENB/116929/2010 from FCT (Science and Technology Foundation), COMPETE, QREN and European Union (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Lima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pinho, D., Lima, R., Pereira, A.I., Gayubo, F. (2013). Tracking Red Blood Cells in Microchannels: A Comparative Study Between an Automatic and a Manual Method. In: Tavares, J., Natal Jorge, R. (eds) Topics in Medical Image Processing and Computational Vision. Lecture Notes in Computational Vision and Biomechanics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0726-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0726-9_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0725-2

  • Online ISBN: 978-94-007-0726-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics