Skip to main content

Detection of Anatomic Structures in Retinal Images

  • Chapter
  • First Online:
Book cover Topics in Medical Image Processing and Computational Vision

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 8))

Abstract

A retinal image presents three important structures in a healthy eye: optic disk, fovea and blood vessels. These are diseases associated with changes in each of these structures. Some parameters should be extracted in order to evaluate if an eye is healthy. For example, the level of imperfection of the optic disk’s circle contour is related with glaucoma. Furthermore, the proximity of the lesion in the retina to the fovea (structure responsible for the central vision) induces loss of vision. Advanced stages of diabetic retinopathy cause the formation of micro blood vessels that increase the risk of detachment of the retina or prevent light from reaching the fovea. On the other hand, the arterio-venous ratio calculated through the thickness of the central vein and artery of the retina, is a parameter extracted from the vessels segmentation. In image processing, each structure detected has special importance to detect the others, since each one can be used as a landmark to the others. Moreover, often masking the optic disk is crucial to reach good results with algorithms to detect other structures. The performance of the detection algorithms is highly related with the quality of the image and with the existence of lesions. These issues are discussed below.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jelinek HF, Cree MJ (2009) Automated image detection of retinal pathology. CRC Press, Boca Raton

    Book  Google Scholar 

  2. Davis H, Russell S, Barriga E, Abràmoff MD, Soliz P (2009) Vision-based, real-time retinal image quality assessment. Russell J Bertrand Russell Archives, pp 1–6

    Google Scholar 

  3. Fleming AD, Philip S, Goatman KA, Olson JA, Sharp PF (2006) Automated assessment of diabetic retinal image quality based on clarity and field definition. Invest Ophthalmol Vis Sci 47:1120–1125

    Article  Google Scholar 

  4. Boucher MCC, Gresset JA, Angioi K, Olivier S (2003) Effectiveness and safety of screening for diabetic retinopathy with two nonmydriatic digital images compared with the seven standard stereoscopic photographic fields. Can J Ophthalmol. J canadien d’ophtalmologie. 38:557–568

    Google Scholar 

  5. Olson JA, Sharp PF, Fleming AD, Philip S (2008) Evaluation of a System for automatic detection of diabetic retinopathy from color fundus photographs in a large population of patients with diabetes. Diabetes Care 31:e63

    Article  Google Scholar 

  6. Zimmer-Galler I, Zeimer R (2006) Results of implementation of the DigiScope for diabetic retinopathy assessment in the primary care environment. Telemed J e-health Off J Am Telemed Assoc 12:89–98

    Article  Google Scholar 

  7. Philip S, Cowie LM, Olson JA (2005) The impact of the health technology board for Scotland’s grading model on referrals to ophthalmology services. Br J ophthalmol 89:891–896

    Article  Google Scholar 

  8. Heaven CJ, Cansfield J, Shaw KM (1993) The quality of photographs produced by the non-mydriatic fundus camera in a screening programme for diabetic retinopathy: a 1 year prospective study. Eye London England 7(Pt 6):787–790

    Article  Google Scholar 

  9. Abràmoff MD, Suttorp-Schulten MSA (2005) Web-based screening for diabetic retinopathy in a primary care population: the EyeCheck project. Telemed J ehealth Off J Am Telemed Assoc 11:668–674

    Article  Google Scholar 

  10. Department of Ophthalmology and Visual Sciences of the University of Wisconsin-Madison, F.P.R.C.: ARIC Grading Protocol. http://eyephoto.ophth.wisc.edu/researchareas/hypertension/lbox/LTBXPROT_995.html

  11. Lee SC, Wang Y (1999) Automatic retinal image quality assessment and enhancement. In: Proceedings of SPIE, p 1581

    Google Scholar 

  12. Lalonde M, Gagnon L, Boucher MCC (2001) Automatic visual quality assessment in optical fundus images. In: Proceedings of Vision Interface 2001, pp 259–264

    Google Scholar 

  13. Bartling H, Wanger P, Martin L (2009) Automated quality evaluation of digital fundus photographs. Acta Ophthalmol 87:643–647

    Article  Google Scholar 

  14. Acharya T, Ray AK (2005) Image processing: principles and applications. Wiley, Hoboken

    Google Scholar 

  15. Hunter A, Lowell JA, Habib M, Ryder B, Basu A, Steel D (2011) An automated retinal image quality grading algorithm. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society conference, pp 5955–5958

    Google Scholar 

  16. Nirmala SR, Dandapat S, Bora PK (2011) Performance evaluation of distortion measures for retinal images. Int J Comput Appl 17:17

    Google Scholar 

  17. Niemeijer M, Abràmoff MD, van Ginneken B (2006) Image structure clustering for image quality verification of color retina images in diabetic retinopathy screening. Med Image Anal 10:888–898

    Article  Google Scholar 

  18. Giancardo L, Abràmoff MD, Chaum E, Karnowski TP, Meriaudeau F, Tobin KW (2008) Elliptical local vessel density: a fast and robust quality metric for retinal images. In: Proceedings of the international conference on IEEE engineering in medicine and biology society, pp 3534–3537

    Google Scholar 

  19. Paulus J, Meier J, Bock R, Hornegger J, Michelson G (2010) Automated quality assessment of retinal fundus photos. Int J Comput Assist Radiol Surg 5:557–564

    Article  Google Scholar 

  20. Smith RT, Nagasaki T, Sparrow JR, Barbazetto I, Klaver CC, Chan JK (2003) A method of drusen measurement based on the geometry of fundus reflectance. Biomed Eng Online 2:10

    Article  Google Scholar 

  21. Soliz P, Wilson MP, Nemeth SC, Nguyen P (2002) Computer-aided methods for quantitative assessment of longitudinal changes in retinal images presenting with maculopathy. In: Medical Imaging 2002: visualization, image-guided procedures, and display, SPIE, San Diego, pp 159–170

    Google Scholar 

  22. Phillips RP, Spencer T, Ross PG, Sharp PF, Forrester JV (1991) Quantification of diabetic maculopathy by digital imaging of the fundus. Eye 5(Pt 1):130–137

    Article  Google Scholar 

  23. Jagoe JR, Blauth CI, Smith PL, Arnold JV, Taylor KM, Wootton R (1990) Quantification of retinal damage during cardiopulmonary bypass: comparison of computer and human assessment. In: Proceedings of the IEE communications, speech and vision I(137):170–175

    Article  Google Scholar 

  24. Rapantzikos K, Zervakis M, Balas K (2003) Detection and segmentation of drusen deposits on human retina: potential in the diagnosis of age-related macular degeneration. Med Image Anal 7:95–108

    Article  Google Scholar 

  25. Gonzalez R, Woods R (1993) Digital image processing. Addison Wesley Publishing, New York

    Google Scholar 

  26. Mora AD, Vieira PM, Manivannan A, Fonseca JM (2011) Automated drusen detection in retinal images using analytical modelling algorithms. Biomed Eng Online 10:59

    Google Scholar 

  27. Culpin D (1986) Calculation of cubic smoothing splines for equally spaced data. Numer Math 48:627–638

    Article  MathSciNet  MATH  Google Scholar 

  28. Smith RT, Chan JK, Nagasaki T, Ahmad UF, Barbazetto I, Sparrow J, Figueroa M, Merriam J (2005) Automated detection of macular drusen using geometric background leveling and threshold selection. Arch Ophthalmol 123:200–206

    Article  Google Scholar 

  29. Shlens J (2005) A tutorial on principal component analysis. Measurement 51:52

    Google Scholar 

  30. Newsom RS, Sinthanayothin C, Boyce J, Casswell AG, Williamson TH (2000) Clinical evaluation of “local contrast enhancement” for oral fluorescein angiograms. Eye (London, England) 14 (Pt 3A):318–23

    Google Scholar 

  31. Jobson DJ, Rahman Z, Woodell GA (1997) A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans Image Process Publ IEEE Signal Process Soc 6:965–976

    Article  Google Scholar 

  32. Majumdar J, Nandi M, Nagabhushan P (2011) Retinex algorithm with reduced halo artifacts. Def Sci J 61:559–566

    Google Scholar 

  33. Land EH, McCann JJ (1971) Lightness and retinex theory. J Opt Soc Am 61:1–11

    Article  Google Scholar 

  34. Foracchia M, Grisan E, Ruggeri A, Member S (2004) Detection of optic disc in retinal images by means of a geometrical model of vessel structure. IEEE Trans Med Imaging 2004(23):1189–1195

    Article  Google Scholar 

  35. Hoover A, Goldbaum M (2003) Locating the optic nerve in a retinal image using the fuzzy convergence of the blood vessels. IEEE Trans Med Imaging 22:951–958

    Article  Google Scholar 

  36. Lalonde M, Beaulieu M, Gagnon L (2001) Fast and robust optic disc detection using pyramidal decomposition and Hausdorff-based template matching. IEEE Trans Med Imaging 20:1193–1200

    Article  Google Scholar 

  37. Youssif AR, Ghalwash AZ, Ghoneim AR (2008) Optic disc detection from normalized digital fundus images by means of a vessels’ direction matched filter. IEEE Trans Med Imaging 27:11–18

    Google Scholar 

  38. Mendels F, Heneghan C, Thiran JP (1999) Identification of the optic disk boundary in retinal images using active contours. In: Proceedings of the Irish machine vision and image processing conference. Citeseer, pp 103–115

    Google Scholar 

  39. Osareh A, Mirmehdi M, Thomas B, Markham R (2002) Colour morphology and snakes for optic disc localisation. In: Proceedings of the 6th medical image understanding and analysis conference, pp 21–24

    Google Scholar 

  40. Sinthanayothin C, Boyce JF, Cook HL, Williamson TH (1999) Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images. Br J Ophthalmol 83:902–910

    Article  Google Scholar 

  41. Li H (2003) Boundary detection of optic disk by a modified ASM method. Pattern Recogn 36:2093–2104

    Article  MATH  Google Scholar 

  42. Kavitha D, Devi SS (2005) Automatic detection of optic disc and exudates in retinal images. In: Proceedings of 2005 international conference on intelligent sensing and information processing, pp 501–506

    Google Scholar 

  43. Sekhar S, Al-Nuaimy W, Nandi A (2008) Automated localisation of retinal optic disk using hough transform. In: Proceedings of the 5th IEEE international symposium on biomedical imaging from Nano to Macro. ISBI 2008, pp 1577–1580

    Google Scholar 

  44. Zhu X, Rangayyan RM (2008) Detection of the optic disc in images of the retina using the Hough transform. In: Proceedings of the Annual International Conference on the IEEE engineering in medicine and biology society, pp 3546–3549

    Google Scholar 

  45. Cootes T (1995) Active shape models-their training and application. Comput Vis Image Underst 61:38–59

    Article  Google Scholar 

  46. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66

    Article  Google Scholar 

  47. Gonzalez R, Woods R (2002) Digital image processing. Prentice Hall, Upper Saddle River

    Google Scholar 

  48. Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8:679–698

    Google Scholar 

  49. Pinão J, Oliveira CM (2011) Fovea and optic disc detection in retinal images. In: Tavares JM, Natal Jorge RS (eds) Computational vision and medical image processing VIPIMAGE 2011. CRC Press, pp 149–153

    Google Scholar 

  50. ter Haar F (2005) Automatic localization of the optic disc in digital colour images of the human retina. Utrecht University, The Netherlands

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Pinão .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pinão, J., Oliveira, C.M., Mora, A., Dias, J. (2013). Detection of Anatomic Structures in Retinal Images. In: Tavares, J., Natal Jorge, R. (eds) Topics in Medical Image Processing and Computational Vision. Lecture Notes in Computational Vision and Biomechanics, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0726-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0726-9_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0725-2

  • Online ISBN: 978-94-007-0726-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics