Skip to main content

From Unary to Binary Inductive Logic

  • Chapter
  • First Online:
Games, Norms and Reasons

Part of the book series: Synthese Library ((SYLI,volume 353))

Abstract

Suppose you lived in a world of individuals \(a_1,a_2,a_3, \ldots\) (which exhaust the universe) and a finite set of predicates \(P(x), P_1(x),P_2(x), R(x,y), \ldots\) but no other constants or function symbols. You observe that \(P(a_1)\) and \(P(a_2)\) hold, and nothing else. In that case what probability, \(w(P(a_3))\) say, in terms of willingness to bet, should you assign to \(P(a_3)\) also holding?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We shall put aside the problem of what to do if \(w(\varphi)=0\), in what follows that difficulty will not arise. (For a thorough consideration of this problem see [5].)

  2. 2.

    In [26] the spectrum was defined as the vector \(\langle s_1, s_2, \ldots, s_r \rangle\) where the s i are the sizes of equivalence classes in non-increasing order. Clearly the two versions are equivalent.

  3. 3.

    Again in [26] we adopted the equivalent formulation in terms the vector of the s i in non-decreasing order.

  4. 4.

    The principle applies equally to a formula \(\varphi(x)\) in place of \(\alpha(x)\).

  5. 5.

    Nevertheless some of it’s ‘natural generalizations’ have surprising consequences, see [25]

References

  1. R. Carnap. Logical Foundations of Probability. University of Chicago Press and Routledge & Kegan Paul Ltd., Chicago, IL, and London, 1950.

    Google Scholar 

  2. R. Carnap. The Continuum of Inductive Methods. University of Chicago Press, Chicago, IL, 1952.

    Google Scholar 

  3. R. Carnap. A basic system of inductive logic. In R.C. Jeffrey, editors, Studies in Inductive Logic and Probability, volume 2, pages 7–155. University of California Press, Berkeley, CA, 1980.

    Google Scholar 

  4. R. Carnap. Replies and systematic expositions. In P.A. Schlipp, editors, The Philosophy of Rudolf Carnap. La Salle, IL, Open Court, 1963.

    Google Scholar 

  5. G. Coletti and R. Scozzafava. Probabilistic Logic in a Coherent Setting, Trends in Logic, volume 15. Kluwer Academic Press, London, Dordrecht, 2002.

    Book  Google Scholar 

  6. B. De Finetti. La prevision: ses lois logiques, ses sources subjetive. Annales de l’Institut Henri Poincaré, 7:1–68, 1937.

    Google Scholar 

  7. B. De Finetti. On the condition of partial exchangeability. In R.C. Jeffrey, Studies in Inductive Logic and Probability, volume 2. University of California Press, Berkley, CA and Los Angeles, CA, 1980.

    Google Scholar 

  8. B. de Finetti. Theory of Probability, volume 1, Wiley, New York, NY, 1974.

    Google Scholar 

  9. H. Gaifman. Concerning measures on first order calculi. Israel Journal of Mathematics, 2:1–18, 1964.

    Article  Google Scholar 

  10. N. Goodman. A query on confirmation. Journal of Philosophy, 43:383–385, 1946.

    Article  Google Scholar 

  11. N. Goodman. On infirmities in confirmation-theory. Philosophy and Phenomenology Research, 8:149–151, 1947.

    Article  Google Scholar 

  12. M.J. Hill, J.B. Paris, and G.M. Wilmers. Some observations on induction in predicate probabilistic reasoning. Journal of Philosophical Logic, 31(1):43–75, 2002.

    Article  Google Scholar 

  13. D.N. Hoover. Relations on Probability Spaces and Arrays of Random Variables. Preprint, Institute of Advanced Study, Princeton, NJ, 1979.

    Google Scholar 

  14. W.E. Johnson. Probability: The deductive and inductive problems. Mind, 41(164):409–423, 1932.

    Article  Google Scholar 

  15. O. Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, New York, NY, ISBN-10: 0-387-25115-4, 2005.

    Google Scholar 

  16. O. Kallenberg. The Ottawa Workshop, http://www.mathstat.uottawa.ca/~givanoff/ wskallenberg.pdf

  17. J.G. Kemeny. Carnap’s theory of probability and induction. In ed. P.A. Schilpp, The Philosophy of Rudolf Carnap, pages 711–738. La Salle, IL, Open Court, 1963.

    Google Scholar 

  18. P.H. Krauss. Representation of symmetric probability models. Journal of Symbolic Logic, 34(2):183–193, 1969.

    Article  Google Scholar 

  19. J. Landes. The Principle of spectrum exchangeability within inductive logic. Ph.D. dissertation, University of Manchester, Manchester, April 2009.

    Google Scholar 

  20. P. Maher. Probabilities for two properties. Erkenntnis, 52:63–91, 2000.

    Article  Google Scholar 

  21. P. Maher. Probabilities for multiple properties: The models of Hesse, Carnap and Kemeny. Erkenntnis, 55:183–216, 2001.

    Article  Google Scholar 

  22. F. Matúš. Block-factor fields of Bernoulli shifts. Proceedings of Prague Stochastics’98, volume 2. 383–389, 1998.

    Google Scholar 

  23. D. Miller. Popper’s qualitative theory of versimilitude. British Journal for the Philosophy of Science, 25:166–177, 1974.

    Article  Google Scholar 

  24. C.J. Nix. Probabilistic Induction in the Predicate Calculus Doctorial Thesis, Manchester University, Manchester, UK, 2005. See http://www.maths.man.ac.uk/~jeff/#students

  25. C.J. Nix and J.B. Paris. A continuum of inductive methods arising from a generalized principle of instantial relevance. Journal of Philosophical Logic, 35(1):83–115, 2006.

    Article  Google Scholar 

  26. C.J. Nix and J.B. Paris. A note on binary inductive logic. Journal of Philosophical Logic, 36(6):735–771, 2007.

    Article  Google Scholar 

  27. J.B. Paris. The Uncertain Reasoner’s Companion. Cambridge University Press, Cambridge, 1994.

    Google Scholar 

  28. A. Vencovská. Binary Induction and Carnap’s Continuum. Proceedings of the 7th Workshop on Uncertainty Processing (WUPES), Mikulov, 2006. See http://mtr.utia.cas.cz/wupes06/articles/data/vencovska.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeff B. Paris .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Paris, J.B., Vencovská, A. (2011). From Unary to Binary Inductive Logic. In: van Benthem, J., Gupta, A., Pacuit, E. (eds) Games, Norms and Reasons. Synthese Library, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0714-6_12

Download citation

Publish with us

Policies and ethics