Skip to main content

Generalizing Parikh’s Theorem

  • Chapter
  • First Online:
Games, Norms and Reasons

Part of the book series: Synthese Library ((SYLI,volume 353))

  • 849 Accesses

Abstract

R. Parikh’s celebrated theorem, first proved in [37], counts the number of occurrences of letters in words of a context-free languages L over an alphabet of k letters. For a given word w, the numbers of these occurrences is denoted by a vector \(n(w) \in {\mathbb N}^k\), and the theorem states

* Partially supported by the Israel Science Foundation for the project “Model Theoretic Interpretations of Counting Functions” (2007–2010) and the Grant for Promotion of Research by the Technion–Israel Institute of Technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In [32] a different definition is given, which attempts to capture the specific situation of directed graphs. But the original definition is the one which is used when dealing with hyper-graphs and general relational structures.

References

  1. H. Adler and I. Adler. A note on clique-width and tree-width on structures. Arxiv preprint arXiv:0806.0103v2, [cs.LO], 2008.

    Google Scholar 

  2. S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding embedding in a k–tree. SIAM Journal of Algebraic Discrete Methods, 8:277–284, 1987.

    Article  Google Scholar 

  3. L. Aceto, Z. Ésik, and A. Ingólfsdóttir. A fully equational proof of Parikh’s theorem. Informatique theéorique et applications, 36(2):129–153, 2002.

    Article  Google Scholar 

  4. H. Bodlaender. A tourist guide through tree width. Acta Cybernetica, 11:1–23, 1993.

    Google Scholar 

  5. H. Bodlaender. Treewidth: Algorithmic techniques and results. In I. Privara and P. Ruzicka, editors, Proceedings of the 22th International Symposium on the Mathematical Foundation of Computer Science, MFCS’97, volume 1295 of Lecture Notes in Computer Science, pages 29–36. Springer, Berlin, 1997.

    Google Scholar 

  6. B. Courcelle and J. Engelfriet. A logical characterization of the sets of hypergraphs defined by hyperedge replacement grammars. Mathematical Systems Theory, 28:515–552, 1995.

    Article  Google Scholar 

  7. B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting hypergraph grammars. Journal of Computer System Science, 46:218–270, 1993.

    Article  Google Scholar 

  8. D.G. Corneil, M. Habib, J.-M. Lanlignel, B. Reed, and U. Rotics. Polynomial time recognition of clique-width ⩽ 3 graphs. In Proceedings of LATIN’2000, volume 1776 of Lecture Notes in Computer Science, pages 126–134. Springer, Berlin, 2000.

    Google Scholar 

  9. B. Courcelle and J.A. Makowsky. Fusion on relational structures and the verification of monadic second order properties. Mathematical Structures in Computer Science, 12.2:203–235, 2002.

    Google Scholar 

  10. B. Courcelle and S. Olariu. Upper bounds to the clique–width of graphs. Discrete Applied Mathematics, 101:77–114, 2000.

    Article  Google Scholar 

  11. B. Courcelle. The monadic second-order logic of graphs I: Recognizable sets of finite graphs. Information and Computation, 85:12–75, 1990.

    Article  Google Scholar 

  12. B. Courcelle. Monadic second-order logic of graphs VII: Graphs as relational structures. Theoretical Computer Science, 101:3–33, 1992.

    Article  Google Scholar 

  13. B. Courcelle. Monadic second order graph transductions: A survey. Theoretical Computer Science, 126:53–75, 1994.

    Article  Google Scholar 

  14. B. Courcelle. Structural properties of context-free sets of graphs generated by vertex replacement. Information and computation, 116:275–293, 1995.

    Article  Google Scholar 

  15. B. Courcelle. The monadic second order logic of graphs, XIV: Uniformly sparse graphs and edge set quantification. Theoretical Computer Science, 299(1):1–36, 2003.

    Article  Google Scholar 

  16. A. Durand, R. Fagin, and B. Loescher. Spectra with only unary function symbols. In M. Nielsen and W. Thomas, editors, CSL’97, volume 1414 of Lecture Notes in Computer Science, pages 189–202. Springer, Berlin, 1997.

    Google Scholar 

  17. R. Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, Berlin, 1996.

    Google Scholar 

  18. A. Durand, N. Jones, J.A. Makowsky, and M. More. 50 years of the spectrum problem: Survey and new results, Available on the Arxiv: arXiv:0907.5495v1, 2009.

    Google Scholar 

  19. M. Doron and S. Shelah. Bounded m-ary patch-width are equivalent for \(m > 2\). Electronically available at arXiv:math/0607375v1, 2006.

    Google Scholar 

  20. H. Ebbinghaus and J. Flum. Finite Model Theory. Springer, Berlin, 1995.

    Google Scholar 

  21. J. Engelfriet and V. van Oostrom. Logical description of context-free graph-languages. Journal of Computer and System Sciences, 55:489–503, 1997.

    Article  Google Scholar 

  22. E. Fischer and J.A. Makowsky. Patch-width, a generalization of clique-width for relational structures. under preparation, 2010.

    Google Scholar 

  23. E. Fischer and J.A. Makowsky. On spectra of sentences of monadic second order logic with counting. Journal of Symbolic Logic, 69(3):617–640, 2004.

    Article  Google Scholar 

  24. M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider. Proving NP-hardness for clique width ii: Non-approximability of clique-width. Electronic Colloquium on Computational Complexity, 2005.

    Google Scholar 

  25. M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider. Clique-width minimization is np-hard. In STOC ’06: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory of Computing, pages 354–362. ACM, Seattle, WA, USA, May 21–23, 2006.

    Google Scholar 

  26. T. Feder and M. Vardi. The computational structure of monotone monadic SNP and constraint satisfaction: A study through Datalog and group theory. SIAM Journal on Computing, 28:57–104, 1999.

    Article  Google Scholar 

  27. A. Glikson and J.A. Makowsky. NCE graph grammars and clique-width. In H.L. Bodlaender, editor, Proceedings of the 29th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 2003), Elspeet (The Netherlands), volume 2880 of Lecture Notes in Computer Science, pages 237–248. Springer, Berlin, 2003.

    Chapter  Google Scholar 

  28. M.C. Golumbic and U. Rotics. On the clique-width of some perfect graph classes. Internation Journal of Foundations of Computer Science, 11:423–443, 2000.

    Article  Google Scholar 

  29. F. Gécseg and M. Steinby. Tree languages. In G. Rozenberg and A. Salomaa, editors, Handbook of Formal Languages, Vol. 3 : Beyond Words, pages 1–68. Springer, Berlin, 1997.

    Chapter  Google Scholar 

  30. Y. Gurevich and S. Shelah. Spectra of monadic second-order formulas with one unary function. In LICS’03, IEEE, pages 291–300, 2003.

    Google Scholar 

  31. F. Gurski and E. Wanke. The tree-width of clique-width bounded graphs without \({K}_{n,n}\). Lecture Notes in Computer Science, 1928:196–205, 2000.

    Article  Google Scholar 

  32. T. Johnson, N. Robertson, P. Seymour, and R. Thomas. Directed tree-width. Journal of Combinatorial Theory, Serie B, 81(1):138–154, 2001.

    Article  Google Scholar 

  33. J.A. Makowsky. Algorithmic uses of the Feferman-Vaught theorem. Annals of Pure and Applied Logic, 126.1-3:159–213, 2004.

    Article  Google Scholar 

  34. J.A. Makowsky and J.P. Mariño. Tree-width and the monadic quantifier hierarchy. Theoretical Computer Science, 303:157–170, 2003.

    Article  Google Scholar 

  35. J.A. Makowsky and Y. Pnueli. Arity vs. alternation in second order logic. Annals of Pure and Applied Logic, 78(2):189–202, 1996.

    Article  Google Scholar 

  36. J.A. Makowsky and U. Rotics. On the cliquewidth of graphs with few P 4’s. International Journal on Foundations of Computer Science, 10:329–348, 1999.

    Article  Google Scholar 

  37. R. Parikh. On context-free languages. JACM, 13:570–581, 1966.

    Article  Google Scholar 

  38. D.L. Pilling. Commutative regular equations and Parikh’s theorem. Journal of London Mathematical Society, 6:663–666, 1973.

    Article  Google Scholar 

  39. U. Rotics. Efficient Algorithms for Generally Intractable Graph Problems Restricted to Specific Classes of Graphs. PhD thesis, Technion- Israel Institute of Technology, 1998.

    Google Scholar 

  40. N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. Journal of Algorithms, 7:309–322, 1986.

    Article  Google Scholar 

  41. H. Scholz. Problem # 1: Ein ungelöstes Problem in der symbolischen Logik. Journal of Symbolic Logic, 17:160, 1952.

    Article  Google Scholar 

  42. S. Shelah. Spectra of monadic second order sentences. Paper No. 817, Electronically available at arXiv:math/0405158, 2004.

    Google Scholar 

Download references

Acknowledgments

Some passages are taken verbatim from [23] and from [18]. I would like to thank my co-authors A. Durand, E. Fischer, M. More and N. Jones for kindly allowing me to do so. I would like to thank B. Courcelle for valuable comments and references, and to I. Adler for making [1] available to me before it was posted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johann A. Makowsky* .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Makowsky*, J.A. (2011). Generalizing Parikh’s Theorem. In: van Benthem, J., Gupta, A., Pacuit, E. (eds) Games, Norms and Reasons. Synthese Library, vol 353. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0714-6_10

Download citation

Publish with us

Policies and ethics