Skip to main content

Development of Imine Derivative Ligands for the Exocyclic Activation of Late Transition Metal Polymerization Catalysts

  • Chapter
  • First Online:
Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II

Part of the book series: Catalysis by Metal Complexes ((CMCO,volume 36))

Abstract

Transition metal complexes bearing imine and imine derivative ligands represent a growing number of polymerization catalysts in development. The ease of synthesis and large number of structural variations which are readily accessible make these systems of great interest both academically and industrially. One subset of imine-based complexes are those which bear exocyclic functionality which can interact with Lewis acids. These systems are particularly interesting as the activation of the complex occurs remotely, away from the active center, and that the activation can proceed using stoichiometric concentrations of activators. In addition, the presence of the exocyclic functionality may present an effective method to heterogenize polymerization catalysts. In this chapter, the development of such systems and in particular ?-iminocarboxamide nickel catalysts and derivative species are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Keep in consideration that solvent effects can greatly change the chemical shifts of these groups and in particular the protons associated with the imine/alcohol, however, the absolute trend should remain consistent.

  2. 2.

    A “better” ligand is normally one which is more compatible with the metal cation, as described by the hardness/softness of the metal and the ligand. Particularly, those which are multidentate ligands.

Abbreviations

Acac:

Acetylacetone

Ar:

Aryl

ArF:

Aryl group containing fluoro-atoms

B:

Lewis base

BCF:

Tris(pentafluorophenyl)borane

bipy:

2,2?-Bipyridyl

Bz:

Benzyl

Cn :

Complex

COD:

1,5-Cyclooctadiene

Dipp:

Diisopropylphenyl

dme:

Dimetoxiethane (ethylene glycol dimethylether)

en:

1,2-Diaminoethane

Et:

Ethyl

Ln :

Ligand

Ls :

Ligand salt

Lut:

Lutidine (2,6-dimethyl pyridine)

M:

Metal

MAO:

Methylaluminoxane

Me:

Methyl

NacNacH:

1,3-Diketimines

Px :

Metal precursor

Ph:

Phenyl

Py:

Pyridine

r.t.:

Room temperature

THF:

Tetrahydrofuran

Ts-CN:

Para-toluenesulfonylcyanide

tmeda:

N,N,N?,N?-tetramethylethylenediamine

X:

Halogen or other anionic group

Y:

Alkyl or functional groups

Z?Z?:

Bidentate ligand (where Z is the coordinating atom)

References

  1. Kaminsky W (2008) Trends in polyolefin chemistry. Macromol Chem Phys 209(5):459–466

    CAS  Google Scholar 

  2. Moulijn JA, Leeuwen PWNM, Santen RA (1993) Catalysis: an integrated approach to homogeneous, heterogeneous and industrial catalysis. In: Studies in surface science and catalysis, vol 79. Elsevier, Amsterdam, pp 15–16

    Google Scholar 

  3. Tuchbreiter A, Mülhaupt R (2001) The polyolefin challenges: catalyst and process design, tailor-made materials, high-throughput development and data mining. Macromol Symp 173(1):1–20

    CAS  Google Scholar 

  4. Coates GW (2000) Precise control of polyolefin stereochemistry using single-site metal catalysts. Chem Rev 100(4):1223–1252

    CAS  Google Scholar 

  5. Ribour D, Monteil V, Spitz R (2008) Detitanation of MgCl2 supported Ziegler Natta catalysts for the study of active sites organization. J Polym Sci Part A 46(16):5461–5470

    CAS  Google Scholar 

  6. Britovsek GJP, Gibson VC, Wass DF (1999) The search for new-generation olefin polymerization catalysts: life beyond metallocenes. Angew Chem Int Ed 38(4):428–447

    CAS  Google Scholar 

  7. Busico V (2007) Catalytic olefin polymerization is a mature field. Isn’t it? Macromol Chem Phys 208(1):26–29

    CAS  Google Scholar 

  8. Ittel SD, Johnson LK, Brookhart M (2000) Late-metal catalysts for ethylene homo- and copolymerization. Chem Rev 100(4):1169–1204

    CAS  Google Scholar 

  9. Britovsek GJP, Baugh SPD, Hoarau O, Gibson VC, Wass DF, White AJP, Williams DJ (2003) The role of bulky substituents in the polymerization of ethylene using late transition metal catalysts: a comparative study of nickel and iron catalyst systems. Inorg Chim Acta 345:279–291

    CAS  Google Scholar 

  10. Mecking S (2001) Olefin polymerization by late transition metal complexes—a root of ziegler catalysts gains new ground. Angew Chem Int Ed 40(3):534–540

    CAS  Google Scholar 

  11. Britovsek GJP, Gibson VC, McTavish SJ, Solan GA, White AJP, Williams DJ, Kimberley BS, Maddox PJ (1998) Novel olefin polymerization catalysts based on iron and cobalt. Chem Commun 1998(7):849–850

    Google Scholar 

  12. Takeuchi D (2010) Recent progress in olefin polymerization catalyzed by transition metal complexes: new catalysts and new reactions. Dalton Trans 39(2):311–328

    CAS  Google Scholar 

  13. Anselment TMJ, Vagin SI, Rieger B (2008) Activation of late transition metal catalysts for olefin polymerizations and olefin/CO copolymerizations. Dalton Trans (34):4537–4548

    Google Scholar 

  14. Keim W, Kowaldt FH, Goddard R, Krüger C (1978) Novel coordination of (benzoylmethylene)triphenylphosphorane in a nickel oligomerization catalyst. Angew Chem Int Ed 17(6):466–467

    Google Scholar 

  15. Peuckert M, Keim W (1983) A new nickel complex for the oligomerization of ethylene. Organometallics 2(5):594–597

    CAS  Google Scholar 

  16. Deng L, Woo TK, Cavallo L, Margl PM, Ziegler T (1997) The role of bulky substituents in brookhart-type Ni(II) diimine catalyzed olefin polymerization: a combined density functional theory and molecular mechanics study. J Am Chem Soc 119(26):6177–6186

    CAS  Google Scholar 

  17. Johnson LK, Killian CM, Brookhart M (1995) New Pd(II)- and Ni(II)-based catalysts for polymerization of ethylene and ?-olefins. J Am Chem Soc 117(23):6414–6415

    CAS  Google Scholar 

  18. Johnson LK, Mecking S, Brookhart M (1996) Copolymerization of ethylene and propylene with functionalized vinyl monomers by palladium(II) catalysts. J Am Chem Soc 118(1):267–268

    CAS  Google Scholar 

  19. Camacho DH, Salo EV, Ziller JW, Guan Z (2004) Cyclophane-based highly active late-transition-metal catalysts for ethylene polymerization. Angew Chem Int Ed 43(14):1821–1825

    CAS  Google Scholar 

  20. Michalak A, Ziegler T (2000) DFT studies on substituent effects in palladium-catalyzed olefin polymerization. Organometallics 19(10):1850–1858

    CAS  Google Scholar 

  21. Wang C, Friedrich S, Younkin TR, Li RT, Grubbs RH, Bansleben DA, Day MW (1998) Neutral nickel(II)-based catalysts for ethylene polymerization. Organometallics 17(15):3149–3151

    CAS  Google Scholar 

  22. Lee BY, Bazan GC, Vela J, Komon ZJA, Bu X (2001) ?-Iminocarboxamidato nickel(II) ethylene polymerization catalysts. J Am Chem Soc 123(22):5352–5353

    CAS  Google Scholar 

  23. Bazan GC, Rojas R (2007) Single component, phosphine-free, initiators for ethylene homopolymerization and copolymerization with functionalized co-monomers. USA Patent 11/649,949

    Google Scholar 

  24. Rojas RS, Galland GB, Wu G, Bazan GC (2007) Single-component ?-iminocarboxamide nickel ethylene polymerization and copolymerization initiators. Organometallics 26(22):5339–5345

    CAS  Google Scholar 

  25. Kim YH, Kim TH, Lee BY, Woodmansee D, Bu X, Bazan GC (2002) ?-Iminoenamido ligands: a novel structure for transition-metal activation. Organometallics 21(15):3082–3084

    CAS  Google Scholar 

  26. Scott SL, Peoples BC, Yung C, Rojas RS, Khanna V, Sano H, Suzuki T, Shimizu F (2008) Highly dispersed clay-polyolefin nanocomposites free of compatibilizers, via the in situ polymerization of ?-olefins by clay-supported catalysts. Chem Commun 35:4186–4188

    Google Scholar 

  27. Rojas RS, Wasilke JC, Wu G, Ziller JW, Bazan GC (2005) ?-Iminocarboxamide nickel complexes: synthesis and uses in ethylene polymerization. Organometallics 24(23):5644–5653

    CAS  Google Scholar 

  28. Malkov AV, VrankovaÌ K, Stoncius S, KocovskyÌ P (2009) Asymmetric reduction of imines with trichlorosilane, catalyzed by sigamide, an amino acid-derived formamide: scope and limitations. J Org Chem 74(16):5839–5849

    CAS  Google Scholar 

  29. Prieur D, El Kazzi A, Kato T, Gornitzka H, Baceiredo A (2008) Novel N-phosphonio imine-catalyzed epoxidation reactions. Org Lett 10(11):2291–2294

    CAS  Google Scholar 

  30. Tseng CH, Chen YL, Yang SH, Peng SI, Cheng CM, Han CH, Lin SR, Tzeng CC (2010) Synthesis and antiproliferative evaluation of certain iminonaphtho[2, 3-b]furan derivatives. Bioorg Med Chem 18(14):5172–5182

    CAS  Google Scholar 

  31. Müller P, Gilabert DM (1988) Oxidation of amines to imines with hypervalent iodine. Tetrahedron 44(23):7171–7175

    Google Scholar 

  32. Takanashi K, Yamamoto K (2007) Divergent approach for synthesis and terminal modifications of dendritic polyphenylazomethines. Org Lett 9(25):5151–5154

    CAS  Google Scholar 

  33. Satoh N, Yamamoto K (2009) Self-assembled monolayers of metal-assembling dendron thiolate formed from dendrimers with a disulfide core. Org Lett 11(8):1729–1732

    CAS  Google Scholar 

  34. Suzuki M, Nakajima R, Tsuruta M, Higuchi M, Einaga Y, Yamamoto K (2006) Synthesis of ferrocene-modified phenylazomethine dendrimers possessing redox switching. Macromolecules 39(1):64–69

    CAS  Google Scholar 

  35. Higuchi M, Otsuka Y, Shomura R, Kurth DG (2008) Syntheses of novel bis-terpyridine and cyclic phenylazomethine as organic modules in organic-metallic hybrid materials. Thin Solid Films 516(9):2416–2420

    CAS  Google Scholar 

  36. Gopalakrishnan M, Sureshkumar P, Kanagarajan V, Thanusu J (2007) New environmentally-friendly solvent-free synthesis of imines using calcium oxide under microwave irradiation. Res Chem Intermed 33(6):541–548

    CAS  Google Scholar 

  37. Carlini C, De Luise V, Martinelli M, Galletti AMR, Sbrana G (2006) Homo- and copolymerization of methyl methacrylate with ethylene by novel Ziegler-Natta-type nickel catalysts based on N, O-nitro-substituted chelate ligands. J Polym Sci Part A 44(1):620–633

    CAS  Google Scholar 

  38. Azoulay J, Rojas R, Serrano A, Ohtaki H, Galland G, Wu G, Bazan G (2009) Nickel ?-keto-?-diimine initiators for olefin polymerization. Angew Chem Int Ed 48(6):1089–1092

    CAS  Google Scholar 

  39. Yokota S, Tachi Y, Itoh S (2002) Oxidative degradation of ?-diketiminate ligand in copper(II) and zinc(II) complexes. Inorg Chem 41(6):1342–1344

    CAS  Google Scholar 

  40. Allen SD, Moore DR, Lobkovsky EB, Coates GW (2003) Structure and reactivity of mono—and dinuclear diiminate zinc alkyl complexes. J Organomet Chem 683(1):137–148

    CAS  Google Scholar 

  41. Chen Y, Wu G, Bazan GC (2005) Remote activation of nickel catalysts for ethylene oligomerization. Angew Chem Int Ed 44(7):1108–1112

    CAS  Google Scholar 

  42. Gong S, Ma H (2008) ?-Diketiminate aluminium complexes: synthesis, characterization and ring-opening polymerization of cyclic esters. Dalton Trans (25):3345–3357

    Google Scholar 

  43. Gong S, Ma H, Huang J (2008) Zirconium complexes with versatile ?-diketiminate ligands: synthesis, structure, and ethylene polymerization. J Organomet Chem 693(23):3509–3518

    CAS  Google Scholar 

  44. Macho V, Králik M, Hudec J, Cingelova J (2004) One stage preparation of Schiff’s bases from nitroarenes, aldehydes and carbon monoxide at presence of water. J Mol Catal A 209(1–2):69–73

    CAS  Google Scholar 

  45. Rahim M, Taylor NJ, Xin S, Collins S (1998) Synthesis and structure of acyclic bis(ketenimine) complexes of zirconium. Organometallics 17(7):1315–1323

    CAS  Google Scholar 

  46. Cheng M, Moore DR, Reczek JJ, Chamberlain BM, Lobkovsky EB, Coates GW (2001) Single-site ?-diiminate zinc catalysts for the alternating copolymerization of CO2 and epoxides: catalyst synthesis and unprecedented polymerization activity. J Am Chem Soc 123(36):8738–8749

    CAS  Google Scholar 

  47. Spencer DJE, Reynolds AM, Holland PL, Jazdzewski BA, Duboc-Toia C, Le Pape L, Yokota S, Tachi Y, Itoh S, Tolman WB (2002) Copper chemistry of ?-diketiminate ligands: monomer/dimer equilibria and a new class of bis(?-oxo)dicopper compounds. Inorg Chem 41(24):6307–6321

    CAS  Google Scholar 

  48. Vitanova DV, Hampel F, Hultzsch KC (2005) Synthesis and structural characterisation of novel linked bis(-diketiminato) rare earth metal complexes. Dalton Trans (9):1565–1566

    Google Scholar 

  49. Lee SY, Na SJ, Kwon HY, Lee BY, Kang SO (2004) Syntheses and structures of a macrocyclic ?-diketimine and its zinc and copper complexes. Organometallics 23(23):5382–5385

    CAS  Google Scholar 

  50. Pilz MF, Limberg C, Ziemer B (2006) Xanthene-based ligand with two adjacent ?-diiminato binding sites. J Org Chem 71(12):4559–4564

    CAS  Google Scholar 

  51. Boardman BM, Valderrama JM, Munoz F, Wu G, Bazan GC, Rojas R (2008) Remote activation of nickel complexes by coordination of B(C6F5)3 to an exocyclic carbonitrile functionality. Organometallics 27(8):1671–1674

    CAS  Google Scholar 

  52. Song D-P, Ye W-P, Wang Y-X, Liu J-Y, Li Y-S (2009) Highly active neutral nickel(II) catalysts for ethylene polymerization bearing modified ?-ketoiminato ligands. Organometallics 28(19):5697–5704

    CAS  Google Scholar 

  53. Lee BY, Kwon HY, Lee SY, Na SJ, Han SI, Yun H, Lee H, Park Y-W (2005) Bimetallic anilido-aldimine zinc complexes for epoxide/CO2 copolymerization. J Am Chem Soc 127(9):3031–3037

    CAS  Google Scholar 

  54. Song D-P, Wu J-Q, Ye W-P, Mu H-L, Li Y-S (2009) Accessible, highly active single-component ?-ketiminato neutral nickel(II) catalysts for ethylene polymerization. Organometallics 29(10):2306–2314

    Google Scholar 

  55. Lippe K, Gerlach D, Kroke E, Wagler J (2008) N-(o-Aminophenyl)-2-oxy-4-methoxybenzophenoneimine—Si-chelation by a tridentate ONN ligand system versus benzimidazoline formation. Inorg Chem Commun 11(5):492–496

    CAS  Google Scholar 

  56. Pearson RG (1963) Hard and soft acids and bases. J Am Chem Soc 85(22):3533–3539

    CAS  Google Scholar 

  57. Pearson RG, Songstad J (1967) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89(8):1827–1836

    CAS  Google Scholar 

  58. Bauers FM, Mecking S (2001) High molecular mass polyethylene aqueous latexes by catalytic polymerization. Angew Chem Int Ed 40(16):3020–3022

    CAS  Google Scholar 

  59. Zuideveld MA, Wehrmann P, Röhr C, Mecking S (2004) Remote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes. Angew Chem Int Ed 43(7):869–873

    CAS  Google Scholar 

  60. Schroder DL, Keim W, Zuideveld MA, Mecking S (2002) Ethylene polymerization by novel, easily accessible catalysts based on nickel(II) diazene complexes. Macromolecules 35(16):6071–6073

    Google Scholar 

  61. Gibson VC, Spitzmesser SK (2002) Advances in non-metallocene olefin polymerization catalysis. Chem Rev 103(1):283–316

    Google Scholar 

  62. Gibson VC, Tomov A, Wass DF, White AJP, Williams DJ (2002) Ethylene polymerisation by a copper catalyst bearing-diimine ligands. J Chem Soc Dalton Trans 11:2261–2262

    Google Scholar 

  63. Feldman J, McLain SJ, Parthasarathy A, Marshall WJ, Calabrese JC, Arthur SD (1997) Electrophilic metal precursors and a ?-diimine ligand for nickel(II)- and palladium(II)-catalyzed ethylene polymerization. Organometallics 16(8):1514–1516

    CAS  Google Scholar 

  64. Caris R, Peoples BC, Valderrama M, Wu G, Rojas R (2009) Mono and bimetallic nickel bromide complexes bearing azolate-imine ligands: Synthesis, structural characterization and ethylene polymerization studies. J Organomet Chem 694(12):1795–1801

    CAS  Google Scholar 

  65. Valdebenito C, Garland MT, Quijada R, Rojas R (2009) Acetamidine complexes as catalysts for ethylene polymerization. J Organomet Chem 694(5):717–725

    CAS  Google Scholar 

  66. Li J, Song H, Cui C (2010) Synthesis of 2-(N-arylimino)pyrrolide nickel complexes and polymerization of methyl methacrylate. Appl Organomet Chem 24(2):82–85

    Google Scholar 

  67. Bourget-Merle L, Lappert MF, Severn JR (2002) The chemistry of ?-diketiminatometal complexes. Chem Rev 102(9):3031–3066

    CAS  Google Scholar 

  68. Green SP, Jones C, Stasch A (2007) Stable magnesium(I) compounds with Mg–Mg bonds. Science 318(5857):1754–1757

    CAS  Google Scholar 

  69. Badiei Y, Dinescu A, Dai X, Palomino R, Heinemann F, Cundari T, Warren T (2008) Copper–nitrene complexes in catalytic C–H amination. Angew Chem Int Ed 47(51):9961–9964

    CAS  Google Scholar 

  70. Dugan TR, Holland PL (2009) New routes to low-coordinate iron hydride complexes: the binuclear oxidative addition of H2. J Organomet Chem 694(17):2825–2830

    CAS  Google Scholar 

  71. Chai J, Zhu H, Stuckl AC, Roesky HW, Magull J, Bencini A, Caneschi A, Gatteschi D (2005) Synthesis and reaction of [{HC(CMeNAr)2}Mn]2 (Ar = 2, 6-iPr2C6H3): the complex containing three-coordinate manganese(I) with a Mn–Mn bond exhibiting unusual magnetic properties and electronic structure. J Am Chem Soc 127(25):9201–9206

    CAS  Google Scholar 

  72. Wang L, Johnson LK, Ionkin AS (2001) Polymerization of olefins. WO 01092348

    Google Scholar 

  73. Azoulay JD, Itigaki K, Wu G, Bazan GC (2008) Influence of steric and electronic perturbations on the polymerization activities of ?-iminocarboxamide nickel complexes. Organometallics 27(10):2273–2280

    CAS  Google Scholar 

  74. Hillier AC, Grasa GA, Viciu MS, Lee HM, Yang C, Nolan SP (2002) Catalytic cross-coupling reactions mediated by palladium/nucleophilic carbene systems. J Organomet Chem 653(1–2):69–82

    CAS  Google Scholar 

  75. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95(7):2457–2483

    CAS  Google Scholar 

  76. Suzuki A (1982) Organoborates in new synthetic reactions. Acc Chem Res 15(6):178–184

    CAS  Google Scholar 

  77. Wolfe JP, Wagaw S, Marcoux J-Fo, Buchwald SL (1998) Rational development of practical catalysts for aromatic carbon nitrogen bond formation. Acc Chem Res 31(12):805–818

    CAS  Google Scholar 

  78. Gassman PG, Drewes HR (1978) The ortho functionalization of aromatic amines. Benzylation, formylation, and vinylation of anilines. J Am Chem Soc 100(24):7600–7610

    CAS  Google Scholar 

  79. Turner SS, Collison D, Mabbs FE, Halliwell M (1997) Preparation, magnetic properties and crystal structure of bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II). J Chem Soc Dalton Trans (7):1117–1118

    Google Scholar 

  80. Chen B, Fronczek FR, Maverick AW (2003) Solvent-dependent 44 square grid and 64.82 NbO frameworks formed by Cu(Pyac)2 (bis[3-(4-pyridyl)pentane-2,4-dionato]copper(II)). Chem Commun 17:2166–2167

    Google Scholar 

  81. Tayyari SF, Reissi H, Milani-Nejad F, Butler IS (2001) Vibrational assignment of ?-cyanoacetylacetone. Vib Spectrosc 26(2):187–199

    CAS  Google Scholar 

  82. Tsiamis C, Tzavellas LC, Stergiou A, Anesti V (1996) Variable coordination and conformation of the 3-cyano-2, 4-pentanedionato anion in a mixed-ligand binuclear copper(II) Chelate. Inorg Chem 35(17):4984–4988

    CAS  Google Scholar 

  83. Thambidurai S, Jeyasubramanian K, Ramalingam SK (1996) Bis(benzotriazol-1-yl) methylimine as a novel cyanating agent for labile ?-diketonates. Polyhedron 15(22):4011–4014

    CAS  Google Scholar 

  84. Angelova O, Matsichek I, Atanasov M, Petrov G (1991) Chelating modes of 3-substituted 2, 4-pentanediones. Crystal and electronic structure of bis(3-cyano-2, 4-pentanedionato)cobalt(II). Inorg Chem 30(8):1943–1949

    CAS  Google Scholar 

  85. Bansleben DA, Friedrich SK, Younkin TR, Grubbs RH, Wang C, Li RT (1998) Catalyst compostitions and processes for olefin polymers and copolymers. PCT/US1998/003165

    Google Scholar 

  86. Wiberg E, Wiberg N, Holleman AF (2001) Inorganic chemistry. Academic Press, San Diego

    Google Scholar 

  87. Keim W, Appel R, Storeck A, Krüger C, Goddard R (1981) Novel nickel- and palladium-complexes with aminobis(imino)phosphorane ligands for the polymerization of ethylene. Angew Chem Int Ed 20(1):116–117

    Google Scholar 

  88. Möhring VM, Fink G (1985) Novel polymerization of ?-olefins with the catalyst system nickel/aminobis(imino)phosphorane. Angew Chem Int Ed 24(11):1001–1003

    Google Scholar 

  89. Ostoja Starzewski KA, Witte J (1987) Control of the molecular weight of polyethene in syntheses with bis(ylide)nickel catalysts. Angew Chem Int Ed 26(1):63–64

    Google Scholar 

  90. Kurtev K, Tomov A (1994) Ethene polymerization by binuclear nickel–ylide complexes. J Mol Catal A 88(2):141–150

    CAS  Google Scholar 

  91. Desjardins SY, Cavell KJ, Jin H, Skelton BW, White AH (1996) Insertion into the nickel–carbon bond of N–O chelated arylnickel(II) complexes. The development of single component catalysts for the oligomerisation of ethylene. J Organomet Chem 515(1–2):233–243

    CAS  Google Scholar 

  92. Desjardins SY, Cavell KJ, Hoare JL, Skelton BW, Sobolev AN, White AH, Keim W (1997) Single component N–O chelated arylnickel(II) complexes as ethene polymerisation and CO/ethene copolymerisation catalysts. Examples of ligand induced changes to the reaction pathway. J Organomet Chem 544(2):163–174

    CAS  Google Scholar 

  93. Cámpora J, Del Mar Conejo M, Mereiter K, Palma P, Pérez C, Reyes ML, Ruiz C (2003) Synthesis of dialkyl, diaryl and metallacyclic complexes of Ni and Pd containing pyridine, [alpha]-diimines and other nitrogen ligands: crystal structures of the complexes cis-NiR2py2 (R = benzyl, mesityl). J Organomet Chem 683(1):220–239

    Google Scholar 

  94. Cámpora J, López JA, Maya C, Palma P, Carmona E, Valerga P (2002) Synthesis and reactivity studies on alkyl-aryloxo complexes of nickel containing chelating diphosphines: cyclometallation and carbonylation reactions. J Organomet Chem 643–644:331–341

    Google Scholar 

  95. Klein HF, Karsch HH (1972) Chem Ber 105

    Google Scholar 

  96. Wilke G, Herrmann G (1966) Stabilisierte Nickeldialkyle. Angew Chem 78(11):591

    CAS  Google Scholar 

  97. Wilke G, Herrmann G (1966) Stabilized dialkylnickel compounds. Angew Chem Int Ed 5(6):581–582

    CAS  Google Scholar 

  98. Greiser T, Kopf J, Thoennes D, Weiss E (1980) Über metallalkyl—und—arylverbindungen: XXV. Die kristallstruktur von dimethyl(N, N, N?, N?-tetramethylethylendiamin)magnesium. J Organomet Chem 191(1):1–6

    CAS  Google Scholar 

  99. Kaschube W, Poerschke K-R, Angermund K, Kruger C, Wilke G (1988) Chem Ber 121

    Google Scholar 

  100. Kaschube W, Pörschke KR, Wilke G (1988) tmeda-Nickel-Komplexe, : III. (N, N, N?, N?-Tetramethylethylendiamin)-(dimethyl)nickel(II). J Organomet Chem 355(1–3):525–532

    CAS  Google Scholar 

  101. Wilke G, Bogdanovi B, Hardt P, Heimbach P, Keim W, Kröner M, Oberkirch W, Tanaka K, Steinrücke E, Walter D, Zimmermann H (1966) Allyl-transition metal systems. Angew Chem Int Ed 5(2):151–164

    CAS  Google Scholar 

  102. Wilke G, Bogdanovic B, Hardt P, Heimbach P, Keim W, Kröner M, Oberkirch W, Tanaka K, Steinrücke E, Walter D, Zimmermann H (1966) Allyl-Übergangsmetall-Systeme. Angew Chem 78(3):157–172

    Google Scholar 

  103. Schunn RA, Ittel SD, Cushing MA, Baker R, Gilbert RJ, Madden DP (2007) Bis(1,5-Cyclooctadiene)Nickel(0). In: Robert JA (ed) Inorganic syntheses. Wiley, NY, pp 94–98

    Google Scholar 

  104. Mabbott DJ, Mann BE, Maitlis PM (1977) Cationic (?-3-allylic)(4-diene)-palladium and—platinum complexes. J Chem Soc Dalton Trans (3):294–299. doi:10.1039/DT9770000294

  105. Pardy RBA, Tkatchenko I (1981) Synthesis of (3-allyl)(4-cyclo-octa-1,5-diene) nickel cations: valuable catalysts for the oligomerization of alkenes. J Chem Soc Chem Commun 49–50

    Google Scholar 

  106. White DA, Doyle JR, Lewis H (2007) Cationic diene Complexes of palladium (II) and platinum (II). In: Cotton FA (ed) Inorganic syntheses. Wiley, NY, pp 55–65

    Google Scholar 

  107. Carmona E, Paneque M, Poveda ML (1989) Synthesis and characterization of some new organometallic complexes of nickel(II) containing trimethylphosphine. Polyhedron 8(3):285–291

    CAS  Google Scholar 

  108. Carmona E, Marin JM, Paneque M, Poveda ML (1987) New nickel o-methylbenzyl complexes. Crystal and molecular structures of Ni(?3-CH2C6H4-o-Me)Cl(PMe3) and Ni (?1-CH2C6H4-o-Me)4(PMe3)2(?3-OH)2. Organometallics 6(8):1757–1765

    CAS  Google Scholar 

  109. Carlini C, Martinelli M, Raspolli Galletti AM, Sbrana G (2003) Homopolymerization of methyl methacrylate by novel salicylaldiminate-nickel/methylaluminoxane catalysts obtained by oxidative addition of the chelate ligand to a nickel(0) precursor. J Polym Sci Part A 41(11):1716–1724

    CAS  Google Scholar 

  110. Carlini C, Martinelli M, Passaglia E, Raspolli Galletti A, Sbrana G (2001) Homopolymerization of methyl methacrylate by novel ziegler-natta-type catalysts based on bis(chelate)–nickel(II) complexes and methylaluminoxane. Macromol Rapid Commun 22(9):664–668

    CAS  Google Scholar 

  111. Carlini C, Martinelli M, Raspolli Galletti AM, Sbrana G (2002) Copolymerization of ethylene with methyl methacrylate by Ziegler-Natta-type catalysts based on nickel salicylaldiminate/methylalumoxane systems. Macromol Chem Phys 203(10–11):1606–1613. doi:10.1002/15213935(200207)

    CAS  Google Scholar 

  112. Ceder RM, Muller G, Ordinas M, Font-Bardia M, Solans X (2003) Nickelacycles with anionic C-N-N terdentate ?-diimine based ligands. Reaction with ethylene. Dalton Trans (15):3052–3059

    Google Scholar 

  113. Hu WQ, Sun XL, Wang C, Gao Y, Tang Y, Shi LP, Xia W, Sun J, Dai HL, Li XQ, Yao XL, Wang XR (2004) Synthesis and characterization of novel tridentate [NOP] titanium complexes and their application to copolymerization and polymerization of ethylene. Organometallics 23:1684–1688

    Google Scholar 

  114. Bellabarba RM, Gomes PT, Pascu SI (2003) Synthesis of allyl- and aryl-iminopyrrolyl complexes of nickel. Dalton Trans 23:4431–4436

    Google Scholar 

  115. Lee BY, Bu X, Bazan GC (2001) Pyridinecarboxamidato nickel(II) complexes. Organometallics 20(25):5425–5431

    CAS  Google Scholar 

  116. Boardman BM, Wu G, Rojas R, Bazan GC (2009) Binding modes of a dimethyliminopentanone ligand on nickel pre-catalysts toward olefin polymerization. J Organomet Chem 694(9–10):1380–1384

    CAS  Google Scholar 

  117. Okada M, Nakayama Y, Ikeda T, Shiono T (2006) Synthesis of uniquely branched polyethylene by anilinonaphthoquinone ligated nickel complex activated with tris(pentafluorophenyl)borane. Macromol Rapid Commun 27(17):1418–1423

    CAS  Google Scholar 

  118. Shim CB, Kim YH, Lee BY, Dong Y, Yun H (2003) [2-(Alkylideneamino)benzoato]nickel(II) complexes:active catalysts for ethylene polymerization. Organometallics 22(21):4272–4280

    CAS  Google Scholar 

  119. Rojas R, Frohlich R, Erker G, Kehr G (2010) Exocyclic activation of allyl nickel complexes based on Nacnac derivatives

    Google Scholar 

  120. Sacconi L, Ciampolini M (1963) The occurrence of paramagnetic tetrahedral forms of N-arylsalicylaldiminonickel (II) complexes in solution at elevated temperatures. J Am Chem Soc 85(12):1750–1753

    CAS  Google Scholar 

  121. Chen EY-X, Marks TJ (2000) Cocatalysts for metal-catalyzed olefin polymerization: activators, activation processes, and structure activity relationships. Chem Rev 100(4):1391–1434

    CAS  Google Scholar 

  122. Focante F, Mercandelli P, Sironi A, Resconi L (2006) Complexes of tris(pentafluorophenyl)boron with nitrogen-containing compounds: synthesis, reactivity and metallocene activation. Coord Chem Rev 250(1–2):170–188

    CAS  Google Scholar 

  123. Jacobsen H, Berke H, Doring S, Kehr G, Erker G, Frohlich R, Meyer O (1999) Lewis acid properties of tris(pentafluorophenyl)borane. structure and bonding in L–B(C6F5)3 complexes. Organometallics 18(9):1724–1735

    CAS  Google Scholar 

  124. Piers WE, Chivers T (1997) Pentafluorophenylboranes: from obscurity to applications. Chem Soc Rev 26(5):345–354

    CAS  Google Scholar 

  125. Younkin TR, Connor EF, Henderson JI, Friedrich SK, Grubbs RH, Bansleben DA (2000) Neutral, single-component nickel (II) polyolefin catalysts that tolerate heteroatoms. Science 287(5452):460–462

    CAS  Google Scholar 

  126. Boffa LS, Novak BM (2000) Copolymerization of polar monomers with olefins using transition–metal complexes. Chem Rev 100(4):1479–1494

    CAS  Google Scholar 

  127. Diamanti SJ, Khanna V, Hotta A, Coffin RC, Yamakawa D, Kramer EJ, Fredrickson GH, Bazan GC (2006) Tapered block copolymers containing ethylene and a functionalized comonomer. Macromolecules 39(9):3270–3274

    CAS  Google Scholar 

  128. Diamanti SJ, Ghosh P, Shimizu F, Bazan GC (2003) Ethylene homopolymerization and copolymerization with functionalized 5-norbornen-2-yl monomers by a novel nickel catalyst system. Macromolecules 36:9731–9735

    CAS  Google Scholar 

  129. Diamanti SJ, Khanna V, Hotta A, Yamakawa D, Shimizu F, Kramer EJ, Fredrickson GH, Bazan GC (2004) Synthesis of block copolymer segments containing different ratios of ethylene and 5-norbornen-2-yl acetate. J Am Chem Soc 126(34):10528–10529

    CAS  Google Scholar 

  130. Carone CLP, Bisatto R, Galland GB, Rojas R, Bazan G (2008) Ethylene polymerization and copolymerization with a polar monomer using an ?-iminocarboxamide nickel complex activated by trimethylaluminum. J Polym Sci Part A 46(1):54–59

    CAS  Google Scholar 

  131. Guan Z, Cotts PM, McCord EF, McLain SJ (1999) Chain walking: a new strategy to control polymer topology. Science 283(5410):2059–2062

    CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge the kind assistance of M. Valderrama, V. Dougnac and M. Deij in the preparation of this work. New x-ray structures were supplied via collaboration with Professors G. Erker and R. Frölich (Organisch-Chemisches Institut, Universtät Münster). Partial funding was provided through FONDECYT 1100286 and the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René S. Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Peoples, B.C., Rojas, R.S. (2011). Development of Imine Derivative Ligands for the Exocyclic Activation of Late Transition Metal Polymerization Catalysts. In: CAMPORA, J., GIAMBASTIANI, G. (eds) Olefin Upgrading Catalysis by Nitrogen-based Metal Complexes II. Catalysis by Metal Complexes, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0696-5_2

Download citation

Publish with us

Policies and ethics