Skip to main content

Polymeric Materials

  • Chapter
  • First Online:
Book cover Materials Chemistry
  • 8480 Accesses

Abstract

Plastics represent one of the most pervasive types of materials in our society. This chapter describes the structure, formation mechanisms, and nomenclature of various classes of polymers. The applications described in this chapter span biomaterials (e.g., biodegradable medical stents, contact lenses, drug delivery), lithography, conductive polymers, polymer additives, and self-healing plastics. Though not entirely organic-based, materials used for molecular-magnet applications are also described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Mulhaupt, R. Angew. Chem. Int. Ed. 2004, 43, 1054.

  2. 2.

    Outlook for Automotive Plastics Coatings: An Analysis of the North American Market may be accessed online at: http://www.chemquest.com/PDF-files/Outlook%20for%20Auto%20Plastics%20Coating%20(SA%20%20MB)%205-99.pdf

  3. 3.

    http://www2.dupont.com/Automotive/en_US/applications/caseStudies/case140.html

  4. 4.

    http://www2.dupont.com/Automotive/en_US/applications/caseStudies/case048.html

  5. 5.

    http://www2.dupont.com/Automotive/en_US/applications/caseStudies/case043.html

  6. 6.

    http://www2.dupont.com/Automotive/en_US/applications/caseStudies/case033.html

  7. 7.

    http://www2.dupont.com/Automotive/en_US/applications/caseStudies/case104.html

  8. 8.

    http://www.glasnovations.com/

  9. 9.

    http://www2.dupont.com/Automotive/en_US/applications/caseStudies/case046.html

  10. 10.

    Note: melting points refer to the temperature required to separate molecules from one another. By contrast, the glass-transition temperature refers to the temperature required to perturb the bonds of the polymer backbone.

  11. 11.

    For a very comprehensive treatise regarding epoxy-based adhesives (structure vs. properties, applications, etc.), see: Petrie, E. M. Epoxy Adhesive Formulations, McGraw-Hill: New York, 2006.

  12. 12.

    Note: gel-permeation chromatography (GPC) is a subdivision of size-exclusion chromatography (SEC), in which macromolecular species are separated from one another based on their size. As its name implies, GPC employs a gel (usually cross-linked polystyrene) as the stationary phase, with detection through either light-scattering or refractive index.

  13. 13.

    For a recent review of living radical polymerization (LRP) involving organotellurium, organostibine, and organobismuthine mediated routes (TERP, SBRP, and BIRP, respectively), see: Yamago, S. Chem. Rev. 2009, 109, 5051.

  14. 14.

    For a recent review of transition-metal catalyzed living radical polymerization, see: Ouchi, M.; Terashima, T.; Sawamoto, M. Chem. Rev. 2009, 109, 4963.

  15. 15.

    For a review of bioapplications for RAFT polymerization, see: Boyer, C.; Bulmus, V.; Davis, T. P.; Ladmiral, V.; Liu, J.; Perrier, S. Chem. Rev. 2009, 109, 5402.

  16. 16.

    (a) Hadjikyriacou, S.; Acar, M.; Faust, R. Macromolecules 2004, 37, 7543.

    (b) Aoshima, S.; Segawa, Y.; Okada, Y. J. Polym. Sci., Part A: Polym. Chem. 2001, 39, 751.

  17. 17.

    For a recent review of cationic living polymerization, see: Aoshima, S.; Kanaoka, S. Chem. Rev. 2009, 109, 5245.

  18. 18.

    For a review of stereospecific living radical polymerization (LRP), see: Satoh, K.; Kamigaito, M. Chem. Rev. 2009, 109, 5120.

  19. 19.

    For a thorough classic review of homogeneously-catalyzed polymerization, see: Bikales, N. M. Adv. in Chemistry 1968, 70, 233.

  20. 20.

    Catalyst Separation, Recovery and Recycling: Chemistry and Process Design, Cole-Hamilton, D. J.; Tooze, R. P., eds. Springer: New York, 2006.

  21. 21.

    For a review of homogeneous living Ziegler-Natta polymerization, see: http://images.dcheetahimages.com/www.organicdivision.org/ama/orig/Fellowship/2002_2003_Awardees/Essays/Keaton.pdf

  22. 22.

    For example, see:

    (a) Welborn, H. C. U.S. Patents 5,183,867, 4,808,561.

    (b) Bergemann, C.; Luft, G. Chem. Eng. Technol. 1999, 21, 33.

    (c) Broyer, J. -P.; Malinge, J.; Saudemont, T.; Spitz, R.; Verdel, N. U.S. Patent 6,239,059.

  23. 23.

    (a) Mason, M. R.; Smith, J. M.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc., 1993, 115, 4971.

    (b) Harlan, C. J.; Mason, M. R.; Barron, A. R. Organometallics, 1994, 13, 2957.

    (c) Landry, C. C.; Pappè, N.; Mason, M. R.; Apblett, A. W.; Barron, A. R.; Inorganic and Organometallic Polymers, ACS Symposium Series, Volume II, 1998, 572, 149.

    (d) Harlan, C. J.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc., 1995, 117, 6465.

  24. 24.

    (a) Watanabe, M.; McMahon, C. N.; Harlan, C. J.; Barron, A. R. Organometallics, 2001, 20, 460.

    (b) Koide, Y.; Bott, S. G.; Barron, A. R. Organometallics, 1996, 15, 2213.

    (c) Barron, A. R. Macromol. Symp., 1995, 97, 15.

  25. 25.

    Harlan, C. J.; Bott, S. G.; Barron, A. R. J. Am. Chem. Soc., 1995, 117, 6465.

  26. 26.

    Note: in general, high molecular weight polymers are typically formed from catalysts derived from early transition metals (Groups 4–6). For late transition metals, the β-hydride elimination mechanism is more preferred, leading to greater numbers of oligomers and dimers.

  27. 27.

    For a recent review of hyperbranched polymer architectures, see: Voit, B. I.; Lederer, A. Chem. Rev. 2009, 109, 5924.

  28. 28.

    Flory, P. J. J. Am. Chem. Soc., 1952, 74, 2718.

  29. 29.

    (a) Buhleier, E.; Wehner, W.; Vögtle, F. Synthesis, 1978, 155.

    (b) Moors, R.; Vögtle, F. Chem. Ber., 1993, 126, 2133.

    (c) Vögtle, F.; Weber, E. Angew. Chem. Int. Ed. Engl., 1974, 13, 814.

  30. 30.

    (a) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Polym. J., 1985, 17, 117.

    (b) Tomalia, D. A.; Baker, H.; Dewald, J.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P. Macromolecules, 1986, 19, 2466.

    (c) Tomalia, D. A.; Hall, M.; Hedstrand, D. J. Am. Chem. Soc., 1987, 109, 1601.

    (d) Tomalia, D. A.; Berry, V.; Hall, M.; Hedstrand, D. M. Macromolecules, 1987, 20, 1164.

    (e) Tomalia, D. A. et al. US Patents 4,587,392 (1986); 4,558.120 (1985); 4,568,737 (1986); 4,599,400 (1986); 4,631,337 (1986); 4,507,466 (1985).

    (f) For an extensive review, see: Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A. Angew. Chem. Int. Ed. Engl., 1990, 29, 138.

  31. 31.

    Note: Robert Denkwalter and coworkers from Allied Corporation were granted the first patent for dendrimers (US Patent 4,410,688 – filed 11 December 1981 and published 18 October 1982: http://www.hairlosshelp.com/html/researchframepatentus.htm), which represents the first dendrimer-related publication. However, the term “dendrimer” can be traced back to A. J. Vogel. The generally accepted definition of dendrimers is highly branched and monodisperse polymers (particularly for convergent growth), with a degree of branching of 1.0.

  32. 32.

    (a) Newkome, G. R.; Yao, Z.; Baker, Z. R.; Gupta, V. K.; Org. Chem., 1985, 50, 2004.

    (b) Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K.; Russo, P. S.; Saunders, M. J. J. Am. Chem. Soc., 1986, 108, 849.

    (c) Newkome, G. R.; Baker, G. R.; Saunders, M. J.; Russo, P. S.; Gupta, V. K.; Yao, Z.; Miller, J. E.; Bouillion, K. J. Chem. Soc., Chem. Commun., 1986, 752.

  33. 33.

    (a) Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc., 1990, 112, 7638.

    (b) Hawker, C. J.; Frechet, J. M. J. Macromolecules, 1990, 23, 4726.

    (c) Wooley, K. L.; Hawker, C. J.; Frechet, J. M. J. J. Am. Chem. Soc., 1991, 113, 4252.

  34. 34.

    For a review of dendrimers and other (biohybrid) polymers that exhibit capsule properties, see: van Dongen, S. F. M.; de Hoog, H. -P. M.; Peters, R. J. R. W.; Nallani, M.; Nolte, R. J. M.; van Hest, J. C. M. Chem. Rev. 2009, 109, 6212.

  35. 35.

    Matthews, B. R.; Holan, G. U.S. Patent 6,190,650.

  36. 36.

    Hawker, C. J.; Hedrick, J. L.; Miller, R. D.; Volksen, W. MRS Bull. 2000, 25, 54.

  37. 37.

    Bourne, N.; Stanberry, L. R.; Kern, E. R.; Holan, G.; Matthews, B.; Bernstein, D. I.

    Antimicrob. Agents Chemother.2000, 44, 2471.

  38. 38.

    Svenson, S.; Tomalia, D. A. Adv. Drug Deliv. Reviews 2005, 57, 2106.

  39. 39.

    Li, W. -S.; Aida, T. Chem. Rev. 2009, 109, 6047.

  40. 40.

    (a) Dvornic, P. R.; de Leuze-Jallouli, A. M.; Owen, M. J.; Perz, S. V. Macromolecules, 2000, 33, 5366.

    (b) Dvornic, P. R.; Li, J.; de Leuze-Jallouli, A. M.; Reeves, S. D.; Owen, M. J. Macromolecules, 2002, 35, 9323.

  41. 41.

    Sarkar, A.; Rousseau, J.; Hartmann-Thompson, C.; Maples, C.; Parker, J.; Joyce, P.; Scheide, J. I.; Dvornic, P. R. “Dendritic Polymer Networks: A New Class of Nano-Domained Environmentally Benign Antifouling Coatings”, Chapter X in “New Membranes and Advanced Materials for WasteWater Treatment”, Mueller, A. and Sarkar, A., Eds., ACS Symposium Series 1022, American Chemical Society, Washington, DC, 2010.

  42. 42.

    De Gennes, P. G.; Hervet, H. J. Phys. Lett., 1983, 44, 351–360.

  43. 43.

    Kolb, H. C.; Finn, M. B.; Sharpless, K. B. Angew. Chem. Int. Ed. 2001, 40, 2004.

  44. 44.

    Kolb, H. C.; Sharpless, K. B. Drug Discov. Today 2003, 8, 1128.

  45. 45.

    (a) Iha, R. K.; Wooley, K. L.; Nystrom, A. M.; Burke, D. J.; Kade, M. J.; Hawker, C. J. Chem. Rev. 2009, 109, 5620.

    (b) Hawker, C. J.; Wooley, K. L. Science 2005, 309, 1200.

    (c) For a review of supramolecular polymerization (non-click routes), see: De Greef, T. F. A.; Smulders, M. M. J.; Wolffs, M.; Schenning, A. P. H. J.; Sijbesma, R. P.; Meijer, E. W. Chem. Rev. 2009, 109, 5687.

  46. 46.

    J. A. Opsteen, J. A.; van Hest, J. C. M. Chem. Commun. 2005, 57.

  47. 47.

    (a) Swanson, D. R.; Huang, B.; Abdelhady, H. G.; Tomalia, D. A. New J. Chem. 2007, 31, 1368.

    (b) Tomalia, D. A. Dendritic Polymers with Enhanced Amplification and Interior Functionality, U.S. Patent 2007/0298006 A1, published Dec. 27, 2007.

  48. 48.

    For a history of liquid crystal displays (LCDs), see: Kawamoto, H. Proc. IEEE 2002, 90, 460.

  49. 49.

    A comprehensive discussion regarding siloxane polymerization routes are described within the Ph.D. dissertation (J. Daum, Univ. of Akron, Dec. 2005), found online at:

    http://etd.ohiolink.edu/send-pdf.cgi/Daum%20Jeremy%20L.pdf?akron1134097748

  50. 50.

    Some useful references related to biodegradable polymers include:

    (a) Steinbuchel, A. Biopolymers: General Aspects and Special Applications. Wiley-VCH: Weinheim (Germany), 2003.

    (b) Fritz, J.; Link, U.; Braun, R. Starch 2001, 53, 105.

    (c) Karlsson, R. R.; Albertsson, A. -C. Polymer Eng & Sci. 1998, 38, 1251.

    (d) Kaplan, D. J.; Mayer, J. M..; Ball, D.; McMassie, J.; Allen, A. L.; Stenhouse, P. "Fundamentals of biodegradable polymers" in Biodegradable polymers and packaging Ching, C., Kaplan, D. L., Thomas, E. L. eds.; Technomic publication: Basel, 1993.

    (e) Van de Velde, K.; Kiekens, P. Polym. Test. 2002, 21, 433.

    (f) Rouilly, A.; Rigal, L. J. Macomol. Sci.-Part C. Polymer Reviews 2002, C42, 441.

    (g) Chandra, R.; Rustgi, R. Prog Polym Sci 1998, 23, 1273.

    (h) Kaplan, D.L. Biopolymers from renewable resources, Springer Verlag: Berlin, 1998.

  51. 51.

    For more information regarding bioabsorption/bioresorption, see:

    Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed., Academic Press: New York, 2004.

  52. 52.

    Another common classification rationale for these polymers is by application – for either biomedical or ecological use. For instance, see: Ikada, Y.; Tsuji, H. Macromol. Rapid. Commun. 2000, 21, 117.

  53. 53.

    For a review of biodegradable polymer syntheses using a bismuth catalyst, see: Kricheldorf, H. R. Chem. Rev. 2009, 109, 5579.

  54. 54.

    The most common biodegradable polymers used for medical applications (sutures, screws, pins/rods, tacks, plates, mesh, guided tissue, etc.) are poly(d,l-lactide) and poly(l-lactide), co-polymerized with polyglycolide or poly(l-/d,l-lactide). Other important varieties are poly(dioxanone)-based.

  55. 55.

    It should be noted that tin halides may be used to catalyze the ring-opening polymerization of lactide; however, the halide is converted to an alkoxide, which is the active catalytic species. For instance, see:

    Kricheldorf, H. R.; Sumbel, M. Eur. Polym. J. 1989, 25, 585.

  56. 56.

    Mehta, R.; Kumar, V.; Bhunia, H.; Upadhyay, S. N. Polym. Rev. 2005, 45, 325, and references therein.

  57. 57.

    Stolt, M.; Sodergard, A. Macromolecules 1999, 32, 6412.

  58. 58.

    https://www.almaden.ibm.com/st/chemistry/ps/catalysts/RingOpening/

  59. 59.

    Kobayashi, S.; Makino, A. Chem. Rev. 2009, 109, 5288.

  60. 60.

    Note: the mechanical properties, crystallinity, molecular weight, and Tg/m.p. of the biodegradable polymer depends on various factors such as the monomer/initiator structure, synthetic and post-processing conditions, and the presence of additives. In particular, excessively high processing temperatures will shift the equilibrium toward monomer formation, which will affect the mechanical and degradation properties of the polymer.

  61. 61.

    (a) Frelberg, S.; Zhu, X. X. Int. J. Pharmaceutics 2004, 282, 1.

    (b) Miyajima, M.; Koshika, A.; Okada, J.; Ikeda, M.; Nishimura, K. J. Controll. Rel. 1997, 49, 207.

    (c) http://chemistry.creighton.edu/Opportunities/Baumann/MuszynskiBeth.pdf

  62. 62.

    A nice chronology related to breast implants may be found online at:

    http://www.pbs.org/wgbh/pages/frontline/implants/cron.html

  63. 63.

    Fortunately, Dow Corning was able to successfully emerge from the breast-implant controversy and now remains the global leader in silicon/silicone-based commercial products, as well as one of the world's leaders in the production of ultra-high purity Si, fabricated by Hemlock Semiconductor – a subsidiary of Dow Corning (http://www.hscpoly.com).

  64. 64.

    For a review of implant materials and their carcinogenicity, see:

    http://monographs.iarc.fr/ENG/Monographs/vol74/mono74-10.pdf

  65. 65.

    Arteriosclerosis, Thrombosis, and Vascular Biology, Vol. 22, No. 6, 2002, p. 884.

  66. 66.

    Arterial stents may be self-expanding (spring-type), balloon-type, or thermal-expanding. Thermal-expanding varieties feature shape-memory alloys that expand in response to the application of heat.

  67. 67.

    Lowe, H. C.; Oesterle, S. N.; Khachigian, L. M. J. Am. Coll. Cardiol. 2002 39, 183.

  68. 68.

    (a) Williams, M. S.; DeSimone, J. M. U.S. Patent application 2006/0121087 A1.

    (b) Williams, M. S.; Glenn, R. A.; Smith, J. A.; Holbrook, K. D.; DeSimone, J. M. U.S. Patent 6,887,266.

    (c) DeSimone, J. M.; Williams, M. S. U.S. Patent 6,932,930.

  69. 69.

    (a) Serruys, P. W. et al. Lancet, 2009, 373, 897.

    (b) Ormiston, J. A. et al. Lancet, 2008, 371, 873.

  70. 70.

    Note: in 1827, astronomer Sir John Herschel first reported the concept of making a mold of the wearer's eyes so lenses could be fabricated to perfectly conform to the eyes' surfaces. This idea was realized in 1887 by German glassblower F. A. Muller, who fabricated the first set of glass contact lenses, which were fit to adjust for nearsightedness/farsightedness by Fick and Kalt shortly thereafter. A nice summary of the history of contact lenses may be found online at:

    (a) http://www.eyetopics.com/articles/18/1/The-History-of-Contact-Lenses.html

    (b) http://www.revoptom.com/contactlens/pdf/clp_full.pdf

  71. 71.

    Salvatori, P. L. The story of contact lenses, Obrig Laboratories: New York, 1960.

  72. 72.

    Clinical Anesthesia. Barash, P. G.; Cullen, B. F.; Stoelting, R. K.; Cahalan, M.; Stock, M. C. eds, 6th ed., Lippincott Williams and Wilkins: Philadelphia, PA, 2009.

  73. 73.

    Note: if the polymer contains charged monomeric units, as is common for hydrogel-based contact lenses, proteins and other charged biomolecules will be attracted resulting in biofilm formation. This will result in loss of occular properties, as well as influence the diffusivity of oxygen through the lens, requiring immediate replacement to prevent severe irritation and infection.

  74. 74.

    Note: PMMA is sold under a variety of trade names such as Plexiglass, Lucite, Polycast, Oroglass, Acrylite, R-Cast, Vitroflex, and many others. PMMA may be used as an alternative to glass and polycarbonate; however, it is quite brittle and has a melting point of ca. 130–140°C.

  75. 75.

    It should be noted that the Tg may be varied by co-polymerization with other monomers or through simple intermixing of polymers; for example, the Tg of semi-interpenetrating networks of HEMA and polyurethane may be varied from -140 to 180°C: http://www.pu2pu.com/KNOWLEDGE/Paper/Paper_details.aspx?ID=4489

  76. 76.

    A nice article that describes the importance of oxygen diffusion for silicone-based soft contact lenses may be found online: http://www.clspectrum.com/article.aspx?article=12953

  77. 77.

    Note: if the lens contains a hydrophobic surface, it will disrupt the tear flow that results in the deposition of an albumin film on the lens. Not only will this reduce the effectiveness of the lens to correct optical aberrations, but will also cause infection/irritation. For more details regarding the lens surface and eye complications, see: Rao, J. B., Saini, J. S. “Complications of Contant Lenses” in Contact Lenses. Aquavella, J. V., Rao, G. N., eds. Lippincott Williams and Wilkins: Philadelphia, PA, 1987.

  78. 78.

    Kunzler, J.; Ozark, R. J. Appl. Polym. Sci. 1997, 65, 1081.

  79. 79.

    There is an interesting recent report that delineats the 3-D structure and interactions of calcite crystallized within an agarose hydrogel, using high-resolution electron microscopy/tomography: Li, H.; Xin, H. L.; Muller, D. A.; Estroff, L. A. Science 2009, 326, 1244.

  80. 80.

    PureVisionTM is a copolymer of tris-(trimethylsiloxy)-silyl-propylvinyl carbamate (TRIS-VC), N-vinylpyrrolidone, a vinyl carbonate functional polydimethylsiloxane (PDMS) macromer, and a vinyl carbamate derivative of alanine. For more information, see: Nicolson, P. C.; Vogt, J. Biomaterials 2001, 22, 3273.

  81. 81.

    (a) Toit, R.; Stern, B.; Sweeney, D. Int. Cont. Lens Clinic 2000, 27, 191.

    (b) http://www.siliconehydrogels.org/editorials/08_may.asp

    (c) Chen, C.; Ye, H.; Manesis, N. U.S. patent 7,572,841.

  82. 82.

    Benjamin, W. J.; Karkkainen, T. R. "Hydrogel Hypoxia: Where We've Been, Where We're Going" Contact Lens Spectrum, 1996, September issue.

  83. 83.

    http://www.clspectrum.com/article.aspx?article=13020

  84. 84.

    For a summary of recent strategies for the design and development of polymeric materials for drug- and gene-delivery applications, see: Adv. Drug Deliv. Rev. 2008, 60(9), 955–1094 – thematic issue devoted to this topic. The thematic issue Adv. Drug Deliv. Rev. 2005, 57(15), 2101–2286 is devoted to dendrimers as drug-delivery agents. Lastly, the thematic issue Adv. Drug Deliv. Rev. 2001, 53(1), 1–131 also deals with polymeric materials being used for drug-delivery applications.

  85. 85.

    The therapeutic window is defined as the drug concentration lying between minimum-effective and toxic levels, and is different for each person based on their metabolic and circulatory systems.

  86. 86.

    Saltzman, W. M.; Olbricht, W. L. Nat. Rev. Drug Discov. 2002, 1, 177.

  87. 87.

    Randall, C. L.; Leong, T. G.; Bassik, N.; Gracias, D. H. Adv. Drug Delivery Rev. 2007, 59, 1547.

  88. 88.

    (a) Lehr, H. A.; Brunner, J.; Rangoonwala, R.; Kirkpatrick, C. J. Am. J. Respir. Crit. Care Med. 2002, 165, 514.

    (b) Martin, F. J.; Melnik, K.; West, T.; Shapiro, J.; Cohen, M.; Boiarski, A. A.;

    Ferrari, M. Drugs R&D 2005, 6, 71.

  89. 89.

    Gobin, A. M.; Lee, M. H.; Halas, N. J.; James, W. D.; Drezek, R. A.; West, J. L. Nano Lett. 2007, 7, 1929.

  90. 90.

    http://www.starpharma.com/vivagel.asp

  91. 91.

    Padilla De Jesus, O. L.; Ihre, H. R.; Gagne, L.; Frechet, J. M. J.; Szoka, F. C. Bioconj. Chem. 2002, 13, 453.

  92. 92.

    Goodwin, A. P.; Lam, S. S.; Frechet, J. M. J. J. Am. Chem. Soc. 2007, 129, 6994.

  93. 93.

    (a) Williams, S. S.; Hampton, M. J.; Gowrishankar, V.; Ding, I. K.; Templeton, J. L.; Samulski, E. T.; DeSimone, J. M.; McGehee, M. D. Chem. Mater. 2008, 20, 5229.

    (b) Rolland, J. P.; Van Dam, R. M.; Schorzman, D. A.; Quake, S. R.; DeSimone, J. M. J. Am. Chem. Soc. 2004, 126, 2322.

    (c) Rolland, J. P.; Hagberg, E. C.; Denison, G. M.; Carter, K. R.; De Simone, J. M. Angew. Chem. Int. Ed. Eng. 2004, 43, 5796.

  94. 94.

    (a) In, H. J.; Arora, W.; Buchner, T.; Jurga, S. M.; Smith, H. I.; G. Barbastathis, G. 4th IEEE Conf. on Nanotech. 2004, 358.

    (b) Kubota, K.; Fleischmann, T.; Saravanan, S.; Vaccaro, P. O.; Aida, T. Jpn. J. Appl. Phys. 2003, 42, 4079.

    (c) Guan, J.; He, H.; Hansford, D. J.; Lee, L. J. J. Phys. Chem., B 2005, 109, 23134.

  95. 95.

    For a recent review of conjugated polymers for organic solar cell applications, see: Cheng, Y. -J.; Yang, S. -H.; Hsu, C. -S. Chem. Rev. 2009, 109, 5868.

  96. 96.

    For reviews of synthetic routes for conjugated polymers, see:

    (a) Yokozawa, T.; Yokoyama, A. Chem. Rev. 2009, 109, 5595 (chain-growth condensation polymerization)

    (b) Liu, J.; Lam, J. W. Y.; Tang, B. Z. Chem. Rev. 2009, 109, 5799 (synthesis, structure, and applications of acetylenic polymers).

  97. 97.

    Interesting trivia: Rudolph Peierls was one of Heisenberg's doctoral students while he was at the Universitat Leipzig; other notable students mentored by Heisenberg included Bloch, Mulliken, Slater, Teller, Wentzel and Zener!

  98. 98.

    Note: we already saw this in Chapter 2 (Figure 2.74) wherein the periodicity of the array gives rise to energy gaps at specific values of k (i.e., k = π/a, where a = lattice spacing). If each of the ions in the 1-D array contributes one electron, the band will be half-filled in the ground state. If the ions "dimerize", the periodicity of the array will effectively double giving rise to new band gaps at multiples of k = π/2a. Since these bands may now house electrons at a lower energy level than the original lattice, a more energetically-favorable structure will be generated.

  99. 99.

    A bipolaron is also sometimes referred to as a bisoliton. For instance, see:

    http://dissertations.ub.rug.nl/FILES/faculties/science/2006/m.h.van.der.veen/c1.pdf

  100. 100.

    Chen, Y. -C. Polym. Bull. 1990, 23, 411.

  101. 101.

    Park, S.; Jayaraman, S. MRS Bull. 2003, 28, 585.

  102. 102.

    Note: in 2,000 B.C., magnetic stones are mentioned in the oldest medical textbook ever discovered – the Yellow Emperor's Classic of Internal Medicine. Over 2,500 years ago, a shepherd named Magnes found mineral stones sticking to the metal nails in his sandals; he called the mineral magnetite.

  103. 103.

    Wickman, H. H.; Trozzolo, A. M.; Williams, H. J.; Hull, G. W.; Merritt, F. R. Phys. Rev. 1967, 155, 563. For a historical review of molecular magnetism, see: Miller, J. S. Adv. Mater. 2002, 14, 1105.

  104. 104.

    (a) Miller, J. S.; Calabrese, J. C.; Epstein, A. J.; Bigelow, R. W.; Zhang, J. H.; Reiff, W. M. J. Chem. Soc., Chem. Commun., 1986, 1026.

    (b) Miller, J. S.; Epstein, A. J. Angew. Chem. Int. Ed. Eng., 1994, 33, 385.

    (c) Miller, J. S.; Epstein, A. J. Chem. Eng. News, 1995, 73(40), 30.

    (d) Manriquez, J. M.; Yee, G. T.; McLean, R. S.; Epstein, A. J.; Miller, J. S. Science, 1991, 252, 1415.

    (e) Miller, J. S.; Epstein, A. J. J. Chem. Soc., Chem. Commun., 1998, 1319.

    (f) Pokhodnya, K. I.; Epstein, A. J.; Miller, J. S. Adv. Mater., 2000, 12, 410.

    (g) Hatlevik, O.; Buschmann, W. E.; Zhang, J.; Manson, J. L.; Miller, J. S. Adv. Mater., 1999, 11, 914.

    (h) Miller, J. S. Inorg. Chem., 2000, 39, 4392.

  105. 105.

    Beltran, L. M. C.; Long, J. R. Acc. Chem. Res., 2005, 38, 325.

  106. 106.

    Vickers, E. B.; Selby, T. D.; Thorum, M. S.; Taliaferro, M. L.; Miller, J. S. Inorg. Chem., 2004, 43, 6414.

  107. 107.

    For a recent review of molecular magnetism, see: Gatteschi, D.; Bogani, L.; Cornia, A.; Mannini, M.; Sorace, L.; Sessoli, R. Solid State Sci. 2008, 10, 1701.

  108. 108.

    For a good review of back-bonding, crystal/ligand field theory and the spectrochemical series, see: Shriver, D. W.; Atkins, P. Inorganic Chemistry, 5th ed., W. H. Freeman: New York, 2009.

  109. 109.

    (a) Verdaguer, M.; Bluezen, A.; Marvaud, V.; Waissermann, J.; Seuleimann, M.; Desplanches, C.; Scuiller, A.; Train, C.; Garde, R.; Gelly, G.; Lomenech, C.; Rosenman, I.; Veillet, P.; Cartier, C.; Sato, O.; Einaga, Y.; Iyoda, T.; Fujishima, A.; Hashimoto, K. J. Electrochem. Soc., 1997, 144, L11.

    (b) Einaga, Y.; Sato, O.; Ohkoshi, S.; Fujishima, A.; Hashimoto, K. Chem. Lett., 1998, 585.

  110. 110.

    For a very nice review on 3D cyanide-based magnets see: Miller, J. S. MRS Bull., 2000, 11, 60.

  111. 111.

    Examples of antioxidant additives used in polymer formulations may be found online: http://www.albemarle.com/Products_and_services/Polymer_additives/Antioxidants/Polymer/

  112. 112.

    Note: heat stabilizers are used in the processing of rigid (pipe, window profiles, siding, fencing) and some flexible (packaging) PVC applications, preventing the thermal degradation of PVC resins during elevated temperature exposure. In addition, heat stabilizers extend the lifetime of finished products.

  113. 113.

    A curing agent for polyurethanes and epoxies, as well as a chain extender for polyurethane and polyurea: http://www.albemarle.com/TDS/Curatives/SC7003L_ETHACURE_100.pdf

  114. 114.

    An amine cure accelerator that is used to promote free-radical formation in addition polymerizations such as unsaturated polyester resin, viny ester, and acrylate systems: http://www.albemarle.com/TDS/Curatives/SC0006F_FIRSTCURE_MHPT.pdf

  115. 115.

    Used to increase the shelf life of olefinic resins, used in coatings, adhesives, photoresists, printing inks, and unsaturated polyester resins, vinyl monomers, and acrylated oligomers: http://www.albemarle.com/TDS/Curatives/SC0002F_FIRSTCURE_ST-2.pdf

  116. 116.

    A Plasticizer Information Center with information about various types of plasticizers may be found online at: http://www.plasticisers.org/index.asp?page=2

  117. 117.

    Anti-plasticizers are added to rigidify polymers, and may be bulky molecules that disperse in a polymer, or “sticky” molecules that induce attractive interactions between the additive and polymer. For instance, see: Dasmahapatra, A. K.; Nanavati, H.; Kumaraswamy, G. J. Chem. Phys. 2009, 131, 074905, and references therein.

  118. 118.

    Note: phthalates are used where good resistance to water and oils is required. For example, applications such as garden hoses, shoes, toys, food wraps, flooring materials, notebook covers, vinyl tiles, traffic cones, plastic foams, tool handles, building materials, etc.

  119. 119.

    Note: trimellitates have a low volatility, and are used in automobile interiors where resistance to high temperature is required.

  120. 120.

    Note: used for low-temperature applications or those requiring resistance to UV light.

  121. 121.

    Howell, B. A. Presented in part at the 15th International Conference on Advances in Additives and Modifiers for Polymers and Blends, Las Vegas, NV, February, 2006.

  122. 122.

    For instance, see:

    (a) Howell, B. A.; Cho, Y. -J. “Brominated Aryl Phospholane Flame Retardants” in ACS Symp. Series V – Fire and Polymers, 2009, 249.

    (b) Howell, B. A.; Wu, H. J. Therm. Anal. Calorim. 2006, 83, 79.

  123. 123.

    Rule, J. D.; Brown, E. N.; Sottos, N. R.; White, S. R.; Moore, J. S. Adv. Mater., 2005, 17, 205.

  124. 124.

    Controlled and Living Polymerizations: From Mechanisms to Applications. Matyjaszewski, K.; Muller, A. H. E., eds., Wiley: New York, 2009.

  125. 125.

    Hasenwinkel, J. M.; Lautenschlager, E. P.; Wixson, R. L.; Gilbert, J. L. J. Biomed. Mater. Res., 2002, 59, 411.

  126. 126.

    Ghosh, B.; Urban, M. W. Science 2009, 323, 1458.

  127. 127.

    Chen, X.; Dam, M. A.; Ono, K.; Mal, A.; Shen, H.; Nutt, S. R.; Sheran, K.; Wudl, F. Science, 2002, 295, 1698.

Further Reading

  1. Wallace, G. G.; Spinks, G. M.; Kane-Maguire, L. A. P.; Teasdale, P. R. Conductive Electroactive Polymers: Intelligent Polymer Systems, 3rd ed., CRC Press: New York, 2008.

    Google Scholar 

  2. Dvornic, P. R., Owen, M. J., eds., Silicon-Containing Dendritic Polymers, Springer: New York, 2009.

    Google Scholar 

  3. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; Lemons, J. E. Biomaterials Science: An Introduction to Materials in Medicine, 2nd ed., Academic Press: New York, 2004.

    Google Scholar 

  4. Controlled and Living Polymerizations: From Mechanisms to Applications. Matyjaszewski, K.; Muller, A. H. E., eds., Wiley: New York, 2009.

    Google Scholar 

  5. Al-Malaika, S.; Golovoy, A.; Wilkie, C. A. ed. Chemistry and Technology of Polymer Additives, Blackwell Science: Malden, MA, 1999.

    Google Scholar 

  6. Allcock, H. R.; Lampe, F. W.; Mark, J. E. Contemporary Polymer Chemistry, 3rd ed., Prentice-Hall: New Jersey, 2003.

    Google Scholar 

  7. Painter, P. C.; Coleman, M. M. Fundamentals of Polymer Science, 2nd ed., CRC: New York, 1997.

    Google Scholar 

  8. Flory, P. J. Principles of Polymer Chemistry, Cornell University Press: Ithaca, NY, 1953.

    Google Scholar 

  9. Odian, G. Principles of Polymerization, 3rd ed., Wiley: New York, 1991.

    Google Scholar 

  10. Young, R. J.; Lovell, P. A. Introduction to Polymers, 2nd ed., CRC: New York, 2000.

    Google Scholar 

  11. Stevens, M. P. Polymer Chemistry: An Introduction, 3rd ed., Oxford University Press: Oxford, 1998.

    Google Scholar 

  12. Fortin, J. B.; Lu, T. -M. Chemical Vapor Deposition Polymerization: The Growth and Properties of Parylene Thin Films, Springer: Berlin Heidelberg New York, 2003.

    Google Scholar 

  13. Hsieh, H.; Quirk, R. P. Anionic Polymerization, CRC: New York, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fahlman, B.D. (2011). Polymeric Materials. In: Materials Chemistry. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0693-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0693-4_5

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0692-7

  • Online ISBN: 978-94-007-0693-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics