Skip to main content

Plant–Plant Allelopathic Interaction. Phase II: Field/Laboratory Experiments

  • Chapter
  • First Online:
Plant-Plant Allelopathic Interactions

Abstract

This chapter describes the underlying criteria and assumption in the development and execution of field and associated laboratory bioassays. It provides details and commentary regarding the materials and methods used. More specifically, describes how glyphosate-desiccated wheat and other cover crops (crimson clover, subterranean clover, and rye) in no-till systems can directly and indirectly influence morningglory, pigweed, and prickly sida seedling emergence, with emphasis on the role of phenolic acids in plant residues and soil.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson RA, Todd JR (1968) Estimation of total tobacco plant phenols by their bonding to polyvinylpyrrolidone. Tob Sci 12:107–111

    Google Scholar 

  • Barnes JP, Putman AR (1983) Rye residues contribute weed suppression in no-tillage cropping systems. J Chem Ecol 9:1045–1057

    Article  Google Scholar 

  • Barnes JP, Putnam AR, Burke A (1986) Allelopathic activity of rye (Secale cereale L.). In: Putnam AR, Tang CS (eds) Science of allelopathy. Wiley, New York, NY, pp 271–286

    Google Scholar 

  • Bates-Smith EC (1956) The commoner phenolic constituents of plants and their systematic distribution. Proc R Dublin Sci 27:165–176

    Google Scholar 

  • Belz RG (2007) Allelopathy in crop/weed interactions – an update. Pest Manag Sci 63:308–326

    Article  PubMed  CAS  Google Scholar 

  • Belz RG (2008) Stimulation versus inhibition – bioactivity of parthenin, a phytochemical from Parthenium hysterophorus L. Int Dose-Response Soc 6:80–96

    Article  CAS  Google Scholar 

  • Belz RG, Velini ED, Duke SO (2007) Dose/response relationships in allelopathy research. In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodologies. Science Publishers, Enfield, NH, pp 3–29

    Google Scholar 

  • Bhowmik PC, Doll JD (1983) Growth analysis of corn and soybean response to allelopathic effects of weed residues at various temperatures and photosynthetic flux densities. J Chem Ecol 9:1263–1280

    Article  Google Scholar 

  • Blum U (1996) Allelopathic interactions involving phenolic acids. J Nematol 28:259–267

    PubMed  CAS  Google Scholar 

  • Blum U (1997) The benefits of citrate over EDTA for extracting phenolic acids from soils and plant debris. J Chem Ecol 23:347–362

    Article  CAS  Google Scholar 

  • Blum U (1998) Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685–708

    Article  CAS  Google Scholar 

  • Blum U (1999) Designing laboratory plant debris-soil bioassays: some reflections. In: Inderjit, Dakshini KMM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, FL, pp 17–23

    Google Scholar 

  • Blum U (2004) Fate of phenolic allelochemicals in soils: the role of soil and rhizosphere microorganisms. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Allelopathy: chemistry & modes of action of allelochemicals. CRC Press, Boca Raton, FL, pp 57–76

    Google Scholar 

  • Blum U (2006) Allelopathy: a soil system perspective. In: Reigosa MJ, Pedrol N, González L (eds) Allelopathy. A physiological process with ecological implications. Springer, Dordrecht, pp 299–340

    Google Scholar 

  • Blum U (2007) Can data derived from field and laboratory bioassays establish the existence of allelopathic interactions in nature? In: Fujii Y, Hiradate S (eds) Allelopathy: new concepts and methodology. Science Publishers, Enfield, NH, pp 31–38

    Google Scholar 

  • Blum U, Austin MF, Shafer SR (1999a) The fates and effects of phenolic acids in a plant-microbe-soil model system. In: Macías FA, Galindo JCG, Molinillo JMG, Cutler HG (eds) Recent advances in allelopathy I. A science for the future. Cádiz University Press, Puerto Real, pp 159–166

    Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985a) Effects of various mixtures of ferulic acid and some of its microbial metabolic products on cucumber leaf expansion and dry matter in nutrient culture. J Chem Ecol 11:619–641

    Article  CAS  Google Scholar 

  • Blum U, Dalton BR, Shann JR (1985b) Effects of ferulic and p-coumaric acids in nutrient culture on cucumber leaf expansion as influenced by pH. J Chem Ecol 11:1567–1582

    Article  CAS  Google Scholar 

  • Blum U, Gerig TM (2005) Relationships between phenolic acid concentrations, transpiration, water utilization, leaf area expansion, and uptake of phenolic acids: nutrient culture studies. J Chem Ecol 31:1907–1932

    Article  PubMed  CAS  Google Scholar 

  • Blum U, Gerig TM (2006) Interrelationships between p-coumaric acid, evapotranspiration, soil water content, and leaf expansion. J Chem Ecol 32:1817–1834

    Article  PubMed  CAS  Google Scholar 

  • Blum U, Gerig TM, Weed SB (1989) Effects of mixtures of phenolic acids on leaf area expansion of cucumber seedlings grown in different pH Portsmouth A1 soil materials. J Chem Ecol 15:2413–2423

    Article  CAS  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, Holappa LD, King LD (1992) Allelopathic activity in wheat-conventional and wheat-no-till soils: development of soil extract bioassays. J Chem Ecol 18:2191–2221

    Article  Google Scholar 

  • Blum U, Gerig TM, Worsham AD, King LD (1993) Modification of allelopathic effects of p-coumaric acid on morning-glory seedling biomass by glucose, methionine, and nitrate. J Chem Ecol 19:2791–2811

    Article  CAS  Google Scholar 

  • Blum U, King LD, Brownie C (2002) Effects of wheat residues on dicotyledonous weed emergence in a simulated no-till system. Allelopathy J 9:159–176

    Google Scholar 

  • Blum U, King LD, Gerig TM, Lehman ME, Worsham AD (1997) Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. Am J Altern Agric 12:146–161

    Article  Google Scholar 

  • Blum U, Shafer SR (1988) Microbial populations and phenolic acids in soils. Soil Biol Biochem 20:793–800

    Article  CAS  Google Scholar 

  • Blum U, Shafer SR, Lehman ME (1999b) Evidence for inhibitory allelopathic interactions involving phenolic acids in field soils: concepts vs. an experimental model. Crit Rev Plant Sci 18:673–693

    Article  CAS  Google Scholar 

  • Blum U, Staman KL, Flint LJ, Shafer SR (2000) Induction and/or selection of phenolic acids-utilizing bulk-soil and rhizosphere bacteria and their influence on phenolic acid phytotoxicity. J Chem Ecol 26:2059–2078

    Article  CAS  Google Scholar 

  • Blum U, Weed SB, Dalton BR (1987) Influence of various soil factors on the effects of ferulic acid on leaf expansion of cucumber seedlings. Plant Soil 98:111–130

    Article  CAS  Google Scholar 

  • Blum U, Wentworth TR, Klein K, Worsham AD, King LD, Gerig TM, Lyu S-W (1991) Phenolic acid content of soils from wheat-no till, wheat-conventional till, and fallow-conventional till soybean cropping systems. J Chem Ecol 17:1045–1068

    Article  CAS  Google Scholar 

  • Blum U, Worsham AD, King LD, Gerig TM (1994) Use of water and EDTA extractions to estimate available (free and reversibly bound) phenolic acids in Cecil soils. J Chem Ecol 20:341–359

    Article  CAS  Google Scholar 

  • Bonanomi G, Sicurezza MG, Caporaso S, Esposito A, Mazzoleni S (2006) Phytotoxicity dynamics of decaying plant materials. New Phytologist 169:571–578

    Article  PubMed  CAS  Google Scholar 

  • Box JD (1983) Investigation of the Folin-Ciocalteau phenol reagent for the determination of polyphenolic substances in natural waters. Water Res 17:511–525

    Article  CAS  Google Scholar 

  • Bradow JM (1991) Relationships between chemical structure and inhibitory activity of C6 through C9 volatiles emitted by plant residues. J Chem Ecol 17:2193–2212

    Article  CAS  Google Scholar 

  • Bradow JM, Connick WJ (1990) Volatile seed germination inhibitors from plant residues. J Chem Ecol 16:645–666

    Article  CAS  Google Scholar 

  • Brouwer R (1983) Functional equilibrium: sense or nonsense? Neth J Agric Sci 31:335–348

    Google Scholar 

  • Brust GE (1994) Seed-predators reduced broadleaf weed growth and competitive ability. Agric Ecosyst and Environ 48:27–34

    Article  Google Scholar 

  • Brust GE, House GJ (1988) Weed seed destruction by arthropods and rodents in low-input soybean agroecosystems. Am J Altern Agric 3:19–25

    Article  Google Scholar 

  • Buttery RG, Xu C-J, Ling LC (1985) Volatile components of wheat leaves (and stems): Possible insect attractants. J Agric Food Chem 33:115–117

    Article  Google Scholar 

  • Calabrese EJ, Baldwin LA (2002) Defining hormesis. Human Exp Toxicol 21:91–97

    Article  CAS  Google Scholar 

  • Cataldo DA, Haroom M, Schrader LE, Youngs VL (1975) Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal 6:71–80

    Article  CAS  Google Scholar 

  • Chou CH, Patrick ZA (1976) Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J Chem Ecol 2:369–387

    Article  CAS  Google Scholar 

  • Dalton BR, Blum U, Weed SB (1983) Allelopathic substances in ecosystems: effectiveness of sterile soil components in altering recovery of ferulic acid. J Chem Ecol 9:1185–1201

    Article  CAS  Google Scholar 

  • Dalton BR, Weed SB, Blum U (1987) Plant phenolic acids in soils: a comparison of extraction procedures. Soil Sci Soc Am J 51:1515–1521

    Article  CAS  Google Scholar 

  • Davidson RL (1969a) Effects of root/leaf temperature differentials on root/shoot ratios in some pasture grasses and clover. Ann Bot 33:561–569

    Google Scholar 

  • Davidson RL (1969b) Effects of soil nutrients and moisture on root/shoot ratios in Lolium perenne L. and Trifolium repens L. Ann Bot 33:571–577

    Google Scholar 

  • DeFrank J, Putnam AR (1978) Weed and crop response to allelopathic crop residues. North Cent Weed Control Conf Proc 33:44

    Google Scholar 

  • Duke SO, Cedergreen N, Velini ED, Belz RG (2006) Hormesis: is it an important factor in herbicide use and allelopathy? Outlook Pest Manag 2006:29–33

    Google Scholar 

  • Einhellig FA (1987) Interactions among allelochemicals and other stress factors of the plant environment. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. ACS symposium series, vol 330. American Chemical Society, Washington, DC, pp 343–357

    Chapter  Google Scholar 

  • Einhellig FA, Leather GR (1988) Potentials for exploiting allelopathy to enhance crop production. J Chem Ecol 14:1829–1844

    Article  CAS  Google Scholar 

  • Elliott LF, Cheng HH (1987) Assessment of allelopathy among microbes and plants. In: Waller GR (ed) Allelochemicals: role in agriculture and forestry. ACS symposium series, vol 330. American Chemical Society, Washington, DC, pp 504–515

    Chapter  Google Scholar 

  • Enache A, Ilnicki RD (1988) Subterranean clover: a new approach to weed control. Proc Northeast Weed Sci Soc 42:34

    Google Scholar 

  • Fester CR, Peterson GA (1979) Effects of no-tillage fallow as compared to conventional tillage in a wheat-fallow system. Agric Exp Sta Res Bull 289, University of Nebraska, Lincoln, NE

    Google Scholar 

  • Flaig W (1971) Organic compounds in soil. Soil Sci 111:19–33

    Article  CAS  Google Scholar 

  • Gerig TM, Blum U (1991) Effects of mixtures of four phenolic acids on leaf area expansion of cucumber seedlings grown in Portsmouth B1 soil materials. J Chem Ecol 17:29–40

    Article  CAS  Google Scholar 

  • Glass ADM (1976) The allelopathic potential of phenolic acids associated with the rhizosphere of Pteridium aquilinum. Can J Bot 54:2440–2444

    Article  CAS  Google Scholar 

  • Goodwin TW, Mercer EI (1983) Introduction to plant biochemistry, 2nd edn. Pergaman Press, Oxford

    Google Scholar 

  • Grabber JH (2005) How do lignin composition, structure, and cross-linking affect degradability? A review if cell wall model studies. Crop Sci 45:820–831

    Article  CAS  Google Scholar 

  • Guenzi WD, McCalla TM (1966) Phenolic acids in oats, wheat, sorghum, and corn residues and their phytotoxicity. Agron J 58:303–304

    Article  CAS  Google Scholar 

  • Hadas A, Kautsky L, Goek M, Kara EE (2004) Rates of decomposition of plant residues and available nitrogen in soil, related to residue composition through simulation of carbon and nitrogen turnover. Soil Biol Biochem 36:255–266

    Article  CAS  Google Scholar 

  • Hall AB, Blum U, Fites RC (1982) Stress modification of allelopathy of Helianthus annuus L. debris on seed germination. Am J Bot 69:776–783

    Article  Google Scholar 

  • Hall AB, Blum U, Fites RC (1983) Stress modification of allelopathy of Helianthus annuus L. debris on seedling biomass production of Amaranthus retroflexus L. J Chem Ecol 9:1213–1222

    Article  CAS  Google Scholar 

  • Harborne JB (1990) Plant phenolics. In: Bell EA, Charlwood BV (eds) Secondary plant products. Springer, Berlin, pp 331–401

    Google Scholar 

  • Harborne JB (1993) Introduction to ecological biochemistry, 4th edn. Academic Press Limited, London

    Google Scholar 

  • Harborne JB (1998) Phytochemical methods: a guide to modern techniques of plant analysis, 3rd edn. Chapman & Hall, London

    Google Scholar 

  • Harmsen GW, Van Schreven DA (1955) Mineralization of organic nitrogen in soil. Adv Agron 7:299–395

    Article  Google Scholar 

  • Harper JR, Balke NE (1981) Characterization of the inhibition of K+ absorption in oat roots by salicylic acid. Plant Physiol 68:1349–1553

    Article  PubMed  CAS  Google Scholar 

  • Harper JL, Williams JT, Sagar GR (1965) The behavior of seeds in soil I. The heterogeneity of soil surfaces and its role in determining the establishment of plants from seed. J Ecol 53:273–286

    Article  Google Scholar 

  • Hartley RD, Whitehead DC (1985) Phenolic acids in soils and their influence on plant growth and soil microbial processes. In: Vaughan D, Malcolm RE (eds) Soil organic matter and biological activity. Developments in plant and soil, vol 16. Martinus Nijhoff/Dr. W. Junk Publishers, Dordrecht, pp 109–150

    Chapter  Google Scholar 

  • Inderjit, Mallik AU (2002) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkäuser, Basel

    Google Scholar 

  • Iritani WM, Arnold CY (1960) Nitrogen release of vegetable crop residues during incubation as related to their chemical composition. Soil Sci 89:74–82

    Article  CAS  Google Scholar 

  • Khanbabaee K, van Ree T (2001) Tannins: classification and definition. Nat Prod Rep 18:641–649

    Article  PubMed  CAS  Google Scholar 

  • Kimber RWL (1973) Phytotoxicity from plant residues III. The relative effects of toxins and nitrogen immobilization on the germination and growth of wheat. Plant Soil 38:543–555

    Article  CAS  Google Scholar 

  • Koeppe DE, Rohrbaugh LM, Wender SH (1969) The effects of varying UV intensities on the concentration of scopolin and caffeoylquinic acids in tobacco and sunflower. Phytochem 8:889–896

    Article  CAS  Google Scholar 

  • Lang ARG (1967) Osmotic coefficients and water potential of sodium chloride solutions from 0 to 40°C. Aust J Chem 20:2017–2013

    Article  Google Scholar 

  • Lavelle P, Spain AV (2001) Soil ecology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Lehman ME (1993) Effects of allelopathy on plant emergence and growth as modified by physical factors and root distribution. North Carolina State University Thesis, Raleigh

    Google Scholar 

  • Lehman ME, Blum U (1997) Cover crop debris effects on weed emergence as modified by environmental factors. Allelopathy J 4:69–88

    Google Scholar 

  • Lehman ME, Blum U (1999) Evaluation of ferulic acid uptake as a measurement of allelochemical dose: effective concentration. J Chem Ecol 25:2585–2600

    Article  CAS  Google Scholar 

  • Li X, Kellaway RC, Ison RL, Annison G (1992) Chemical composition and nutritive value of mature annual legumes for sheep. Animal Feed Sci Tech 37:221–231

    Article  CAS  Google Scholar 

  • Liebl RA, Worsham AD (1983) Inhibition of morning-glory (Ipomoea lacunosa L.) and certain other weed species by phytotoxic components of wheat (Triticum aestivum L.) straw. J Chem Ecol 9:1027–1043

    Article  CAS  Google Scholar 

  • Lynch JM (1977) Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. J Appl Bact 42:81–87

    Article  CAS  Google Scholar 

  • Macías FA, Oliva RM, Varela RM, Torres A, Molinillo MG (1999) Allelochemicals from sunflower leaves cv. Peredovick Phytochem 52:613–621

    Article  Google Scholar 

  • Macías FA, Oliveros-Bastidas A, Marin D, Castellano D, Simonet AM, Molinillo JMG (2005) Degradation studies on benzoxazinoids. Soil degradation dynamics of (2R)-2-O-ß-D-glucopyranosyl-4-hydroxy-(2H)-1,4-benzoxazin-3-(4H)-one (DIBOA-Glc) and its degradation products, phytotoxic allelochemicals from gramineae. J Agric Food Chem 53:554–561

    Article  PubMed  CAS  Google Scholar 

  • Mathiassen SK, Kudsk P, Mogensen BB (2006) Herbicidal effects of soil-incorporated wheat. J Agric Food Chem 54:1058–1063

    Article  PubMed  CAS  Google Scholar 

  • McAllister RA (1969) Observations on the Folin-Ciocalteu reaction. J Med Lab Technol 26:1–10

    PubMed  CAS  Google Scholar 

  • Morrison FB (1956) Feeds and feeding: a handbook for students and stockman, 22nd edn. Morrison Publication Co, Ithaca, NY

    Google Scholar 

  • Nagabhushana GG, Worsham AD, Yenish JP (2001) Allelopathic cover crops to reduce herbicide use in sustainable agricultural systems. Allelopathy J 8:133–146

    Google Scholar 

  • Nair MG, Whitenack CJ, Putnam AR (1990) 2,2′-oxo-1,1′-azobenzene a microbially transformed allelochemical from 2,3-benzoazolione: I. J Chem Ecol 16:353–364

    Article  CAS  Google Scholar 

  • Nakano H, Morita S, Shigemori H, Hasegawa K (2006) Plant growth inhibitory compounds from aqueous leachates of wheat straw. Plant Growth Regul 48:215–219

    CAS  Google Scholar 

  • Niemeyer HM, Pesel ES, Capaja SV, Bravo HR, Franke S, Francke W (1989) Changes in hydroxamic acid levels of wheat plants induced by aphid feeding. Phytochem 28:447–449

    Article  CAS  Google Scholar 

  • Ohno T, First PR (1998) Assessment of the Folin and Ciocalteu’s method for determining soil phenolic carbon. J Environ Qual 27:776–782

    Article  CAS  Google Scholar 

  • Pandey DK (1994) Inhibition of salvinia (Salvinia molesta Mitchell) by parthenium (Parthenium hysterophorus L.). II. Relative effect of flower, leaf, stem, and root residue on salvinia and paddy. J Chem Ecol 20:3123–3131

    Article  CAS  Google Scholar 

  • Patrick ZA (1971) Phytotoxic substances associated with the decomposition in the soil of plant residue. Soil Sci 111:13–18

    Article  CAS  Google Scholar 

  • Paul EA, Clark FE (1989) Soil microbiology and biochemistry. Academic Press, San Diego, CA

    Google Scholar 

  • Pue KJ, Blum U, Gerig TM, Shafer SR (1995) Mechanism by which noninhibitory concentrations of glucose increase inhibitory activity of p-coumaric acid on morning-glory seedling biomass accumulation. J Chem Ecol 21:833–847

    Article  CAS  Google Scholar 

  • Putnam AR, DeFrank J (1983) Use of phytotoxic plant residues for selective weed control. Crop Prot 2:173–181

    Article  Google Scholar 

  • Putnam AR, DeFrank J, Barnes JP (1983) Exploitation of allelopathy for weed control in annual and perennial cropping systems. J Chem Ecol 9:1001–1010

    Article  Google Scholar 

  • Putnam AR, Tang CS (1986) The science of allelopathy. Wiley, New York, NY

    Google Scholar 

  • Qasem JR, Hill TA (1989) On difficulties with allelopathy methodology. Weed Res 29:345–347

    Article  Google Scholar 

  • Reader RJ (1991) Control of seedling emergence by ground cover: a potential mechanism involving seed predation. Can J Bot 69:2084–2087

    Article  Google Scholar 

  • Reigosa MJ, Pedrol N (2002) Allelopathy: from molecules to ecosystems. Science Publisher Inc, Enfield, NH

    Google Scholar 

  • Rice EL (1983) Pest control with nature’s chemicals: allelochemics and pheromones in gardening and agriculture. University of Oklahoma Press, Norman, OK

    Google Scholar 

  • Rice EL (1984) Allelopathy. Academic Press, Orlando, FL

    Google Scholar 

  • Rice EL (1995) Biological control of weeds and plant diseases. Advances in applied allelopathy. University of Oklahoma Press, Norman, OK

    Google Scholar 

  • Rizvi SJH, Rizvi V (1992) Allelopathy: basic and applied aspects. Chapman & Hall, London

    Google Scholar 

  • Rovira AD (1991) Rhizosphere research-85 years of progress and frustration. In: Keister DL, Cregan PB (eds) Beltsville symposium in agricultural research. 14. The rhizosphere and plant growth. Kluwer Academic Press, Dordrecht, pp 3–13

    Chapter  Google Scholar 

  • SAS Institute Inc (1999) SAS/STAT user’s guide, version 8. SAS Publishing, Cary

    Google Scholar 

  • Schmidt SK (1988) Degradation of juglone by soil bacteria. J Chem Ecol 14:1561–1571

    Article  CAS  Google Scholar 

  • Schmidt SK, Ley RE (1999) Microbial competition and soil structure limit the expression of allelopathy. In: Interjit, Dakshini KM, Foy CL (eds) Principles and practices in plant ecology: allelochemical interactions. CRC Press, Boca Raton, FL, pp 339–351

    Google Scholar 

  • Shafer SR, Blum U (1991) Influence of phenolic acids on microbial populations in the rhizosphere of cucumber. J Chem Ecol 17:369–389

    Article  CAS  Google Scholar 

  • Shann JR, Blum U (1987) The uptake of ferulic and p-hydroxybenzoic acids by Cucumis sativus. Phytochemistry 26:2959–2964

    Article  CAS  Google Scholar 

  • Shilling DG, Liebl RA, Worsham AD (1985) Rye (Secale cereale L.) and wheat (Triticum aestivum L.) mulch: the suppression of certain broadleaved weeds and the isolation and identification of phytotoxins. In: Thompson AC (ed) The chemistry of allelopathy: biochemical interactions among plants. ACS symposium series, vol 268. American Chemical Society, Washington, DC, pp 243–271

    Chapter  Google Scholar 

  • Shilling DG, Worsham AD, Danehower DA (1986) Influence of mulch, tillage, and diphenamid on weed control, yield, and quality in no-till flue-cured tobacco (Nicotiana tabacum). Weed Sci 34:738–744

    Google Scholar 

  • Siqueira JO, Nair MG, Hammerschmidt R, Safir GR (1991) Significance of phenolic compounds in plant-soil-microbial systems. Crit Rev Plant Sci 10:63–121

    Article  CAS  Google Scholar 

  • Sparling GP, Ord BG, Vaughan D (1981) Changes in microbial biomass and activity in soils amended with phenolic acids. Soil Biol Biochem 13:455–460

    Article  CAS  Google Scholar 

  • Sparling GP, Vaughan D (1981) Soil phenolic acids and microbes in relation to plant growth. J Sci Food Agric 32:625–626

    Google Scholar 

  • Staman K, Blum U, Louws F, Robertson D (2001) Can simultaneous inhibition of seedling growth and stimulation of rhizosphere bacterial populations provide evidence for phytotoxin transfer from plant residues in the bulk soil to the rhizosphere of sensitive species? J Chem Ecol 27:807–829

    Article  PubMed  CAS  Google Scholar 

  • Steuter AA (1981) Water potential of aqueous polyethylene glycol. Plant Physiol 67:64–67

    Article  PubMed  CAS  Google Scholar 

  • Stevenson FJ (1982) Humus chemistry. Wiley, New York, NY

    Google Scholar 

  • Stowe LG, Osborn A (1980) The influence of nitrogen and phosphorus levels on the phytotoxicity of phenolic compounds. Can J Bot 58:1149–1153

    Article  CAS  Google Scholar 

  • Strobel BW (2001) Influence of vegetation on low-molecular-weight carboxylic acids in soil solution-a review. Geoderma 99:169–198

    Article  CAS  Google Scholar 

  • Stubbs TL, Kennedy AC, Reisenauer PE, Burns JW (2009) Chemical composition of residue from cereal crops and cultivars in dryland ecosystems. Agron J 101:538–545

    Article  CAS  Google Scholar 

  • Sylvia DM, Fuhrmann JJ, Hartel PG, Zuberer DA (2004) Principles and application of soil microbiology, 2nd edn. Prentice Hall, New Jersey, NJ

    Google Scholar 

  • Tang CS, Waiss AC (1978) Short-chain fatty acids as growth inhibitors in decomposing wheat straw. J Chem Ecol 4:225–232

    Article  CAS  Google Scholar 

  • Tapin S, Sigoillot J-C, Asther M, Petit-Conil M (2006) Feruloyl esterase utilization for simultaneous processing of nonwood plants into phenolic compounds and pulp fibers. J Agric Food Chem 54:3697–3703

    Article  PubMed  CAS  Google Scholar 

  • Taussky HH, Shorr E (1953) A microcolorimetric method for the determination of inorganic phosphorus. J Biol Chem 202:675–685

    PubMed  CAS  Google Scholar 

  • Teasdale JR (1988) Weed suppression by hairy vetch residues. Proc Northeast Weed Sci Soc 42:73

    Google Scholar 

  • Thelander O (1985) Review of straw carbohydrate research. In: Hill RH, Munck L (eds) New approaches to research on cereal carbohydrates. Prog Biotech, vol I. Elsevier, New York, NY, pp 217–230

    Google Scholar 

  • Turner JA, Rice EL (1975) Microbial decomposition of ferulic acid in soil. J Chem Ecol 1:41–58

    Article  CAS  Google Scholar 

  • Vaughan D, Sparling GP, Ord BG (1983) Amelioration of the phytotoxicity of phenolic acids by some soil microbes. Soil Biol Biochem 15:613–614

    Article  CAS  Google Scholar 

  • Vermerris W, Nicholson R (2006) Phenolic compound biochemistry. Springer, Dordrecht

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    Article  PubMed  CAS  Google Scholar 

  • Waller GR (1987) Allelochemicals: role in agriculture and forestry. ACS symposium series, vol 330. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Whitehead DC, Dibb H, Hartley RD (1981) Extractant pH and the release of phenolic compounds from soils, plant roots and leaf litter. Soil Biol Biochem 13:343–348

    Article  CAS  Google Scholar 

  • Wickliffe WB II (1999) Enhancing weed suppression by increasing rye cover crop seedling rates in no-till tobacco production. North Carolina State University Thesis, Raleigh, NC

    Google Scholar 

  • Willard JI, Penner D (1976) Benzoxazinones: cyclic hydroxamic acids found in plants. Residue Rev 64:67–76

    Article  PubMed  CAS  Google Scholar 

  • Williamson GB, Weidenhamer JD (1990) Bacterial degradation of juglone. Evidence against allelopathy? J Chem Ecol 16:1739–1752

    Article  CAS  Google Scholar 

  • Wilson RE, Rice EL (1968) Allelopathy as expressed by Helianthus annuus and its role in old-field succession. Bull Torrey Bot Club 95:432–448

    Article  CAS  Google Scholar 

  • Worsham AD (1989) Current and potential techniques using allelopathy as an aid in weed management. In: Chou CH, Waller GR (eds) Phytochemical ecology: allelochemicals, mycotoxins, and insect pheromones and allomones. Academia Sinica Monograph Series No. 9. Institute of Botany, Taipei, ROC, pp 275–291

    Google Scholar 

  • Worsham AD (1990) Weed management strategies for conservation tillage in the 1990’s. In: Mueller JP, Wagger MG (eds) Conservation tillage for agriculture in the 1990’s: proceedings of the 1990 southern region conservation tillage conference, pp 42–47. Special Bulletin 90-1. North Carolina State University, Raleigh

    Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2000a) Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in root tissue. J Agric Food Chem 48:5321–5325

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2000b) Distribution and exudation of allelochemicals in wheat Triticum aestivum. J Chem Ecol 26:2141–2154

    Article  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerie D, An M (2001a) Allelochemicals in wheat (Triticum aestivum L.): cultivar differences in exudation of phenolic acids. J Agric Food Chem 49:3742–3745

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001b) Allelochemicals in wheat (Triticum aestivum L.): variation of phenolic acids in shoot tissue. J Chem Ecol 27:125–135

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Haig T, Pratley J, Lemerle D, An M (2001c) Allelochemicals in wheat (Triticum aestivum L.): production and exudation of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one. J Chem Ecol 27:1691–1700

    Article  PubMed  CAS  Google Scholar 

  • Xu JM, Tang C, Chen ZL (2006) The role of plant residues in pH change of acid soils differing in initial pH. Soil Biol Biochem 38:709–719

    Article  CAS  Google Scholar 

  • Yenish JP, Worsham AD, Chilton WS (1995) Disappearance of DIBOA-glucoside, DIBO, and BOA from rye (Secale cereale L.) cover crop residue. Weed Sci 43:18–20

    CAS  Google Scholar 

  • Yongoing MA (2005) Allelopathic studies of common wheat (Triticum aestivum L). Weed Biol Manag 5:93–104

    Article  Google Scholar 

  • Zeng RS, Mallik AU, Luo SM (2008) Allelopathy in sustainable agriculture and forestry. Springer, New York, NY

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Udo Blum .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Blum, U. (2011). Plant–Plant Allelopathic Interaction. Phase II: Field/Laboratory Experiments. In: Plant-Plant Allelopathic Interactions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0683-5_3

Download citation

Publish with us

Policies and ethics