Skip to main content

Ecospace Utilization During the Ediacaran Radiation and the Cambrian Eco-explosion

  • Chapter
  • First Online:
Quantifying the Evolution of Early Life

Part of the book series: Topics in Geobiology ((TGBI,volume 36))

Abstract

A theoretical ecospace is a multi-parameter system for classifying the ecological properties of organisms; because they are viewed in terms of their ecological and functional capabilities, morphologically and phylogenetically disparate organisms can be compared and contrasted. In the ecospace used here, marine animals are classified according to three parameters that can be determined relatively easily from fossils: tiering (position relative to the sediment-water interface), motility level, and feeding mechanism. Analyses of faunas from the Ediacaran, Cambrian, and Recent suggest that the ecological richness (number of ecological lifestyles) of the marine fauna rose through time, although the pace of increase slowed after the early Phanerozoic. However, the Ediacaran biota was quite distinct from Phanerozoic faunas in terms of which tiers, motility levels, and feeding mechanisms were employed; thus, the rise to dominance of bilaterians during the Cambrian Explosion caused a fundamental transformation in marine ecology. Changes in marine animal ecology since the Cambrian Explosion were of lesser magnitude.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Algeo TJ, Scheckler SE (1998) Terrestrial-marine teleconnections in the Devonian: links between the evolution of land plants, weathering processes, and marine anoxic events. Philos Trans R Soc Lond B 353:113–130

    Google Scholar 

  • Antcliffe JB, Brasier MD (2007) Towards a morphospace for the Ediacara biota. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran biota. Geological Society, London, pp 377–386

    Google Scholar 

  • Antcliffe JB, Brasier MD (2008) Charnia at 50: developmental models for Ediacaran fronds. Palaeontology 51:11–26

    Google Scholar 

  • Ausich WI, Bottjer DJ (1982) Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science 216:173–174

    Google Scholar 

  • Ausich WI, Bottjer DJ (1985) Phanerozoic tiering in suspension-feeding communities on soft substrata: implications for diversity. In: Valentine JW (ed) Phanerozoic diversity patterns. Princeton University Press, Princeton, pp 255–274

    Google Scholar 

  • Bambach RK (1983) Ecospace utilization and guilds in marine communities through the Phanerozoic. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenum, New York, pp 719–746

    Google Scholar 

  • Bambach RK, Knoll AH, Sepkoski JJ Jr (2002) Anatomical and ecological constraints on Phanerozoic animal diversity in the marine realm. Proc Natl Acad Sci USA 99:6854–6959

    Google Scholar 

  • Bambach RK, Bush AM, Erwin DH (2007) Autecology and the filling of ecospace: key metazoan radiations. Palaeontology 50:1–22

    Google Scholar 

  • Bellwood DR (2003) Origins and escalation of herbivory in fishes: a functional perspective. Paleobiology 29:71–83

    Google Scholar 

  • Bengtson S (2002) Origins and early evolution of predation. In: Kowalewski M, Kelley PH (eds) The fossil record of predation, Paleontological Society Papers 8. Yale University Reprographics and Imaging Services, New Haven, pp 289–317

    Google Scholar 

  • Bengtson S, Zhao Y (1992) Predatorial borings in late Precambrian mineralized exoskeletons. Science 257:367–369

    Google Scholar 

  • Bottjer DJ, Ausich WI (1986) Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12:400–420

    Google Scholar 

  • Brasier MD, Antcliffe JB (2009) Evolutionary relationships within the Avalonian Ediacara biota: new insights from laser analysis. J Geol Soc Lond 166:363–384

    Google Scholar 

  • Briggs DEG, Fortey RA, Wills MA (1992) Morphological disparity in the Cambrian. Science 256:1670–1673

    Google Scholar 

  • Briggs DEK, Erwin DH, Collier FJ (1994) The fossils of the Burgess Shale. Smithsonian Institution Press, Washington

    Google Scholar 

  • Bush AM, Daley GM (2008) Comparative paleoecology of fossils and fossil assemblages. In: Kelley PH, Bambach RK (eds) From evolution to geobiology: research questions driving paleontology at the start of a new century. Paleontol Soc Paper 14:289–317

    Google Scholar 

  • Bush AM, Bambach RK, Daley GM (2007a) Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology 33:76–97

    Google Scholar 

  • Bush AM, Kowalewski M, Hoffmeister A, Bambach RK, Daley GM (2007b) Potential paleoecologic biases from size-filtering of fossils. Palaios 22:612–622

    Google Scholar 

  • Bush AM, Bambach RK, Daley GM (2008) Were local ecological interactions linked to alpha diversity trends in level-bottom marine communities? Geol Soc Am Abs Prog 40:232–236

    Google Scholar 

  • Clapham ME, Narbonne GM (2002) Ediacaran epifaunal tiering. Geology 30:627–630

    Google Scholar 

  • Clapham ME, Narbonne GM, Gehling JG (2003) Paleoecology of the oldest known animal communities: Ediacaran assemblages at Mistaken Point, Newfoundland. Paleobiology 29:527–544

    Google Scholar 

  • Davidson EH, Erwin DH (2006) Gene regulatory networks and the evolution of animal body plans. Science 311:796–800

    Google Scholar 

  • Droser ML, Gehling JG, Jensen SR (2005) Ediacaran trace fossils: true or false? In: Briggs DEG (ed) Evolving form and function: fossils and development. Yale Peabody Museum Publications, New Haven, pp 125–138

    Google Scholar 

  • Droser ML, Gehling JG, Jensen S (2006) Assemblage paleobiology of the Ediacara biota: the unabridged edition? Palaeogeogr Palaeocl Palaeoec 232:131–147

    Google Scholar 

  • Dunne JA, Williams RJ, Martinez ND et al (2008) Compilation and network analysis of Cambrian food webs. PLoS Biol 6:e102:0693–0708

    Google Scholar 

  • Dzik J (2003) Anatomical information content in the Ediacaran fossils and their possible zoological affinities. Integr Comp Biol 43:114–126

    Google Scholar 

  • Erwin DH (2006) Extinction: how life on Earth nearly ended 250 million years ago. Princeton University Press, Princeton

    Google Scholar 

  • Erwin DH (2008) Wonderful Ediacarans, wonderful cnidarians? Evol Dev 10:263–264

    Google Scholar 

  • Erwin DH (2009) Early origin of the bilaterian developmental toolkit. Philos Trans R Soc Lond B 364:2253–2261

    Google Scholar 

  • Erwin DH, Davidson EH (2002) The last common bilaterian ancestor. Development 129:3021–3032

    Google Scholar 

  • Evans JS (1912) The sudden appearance of the Cambrian fauna. 11th Int Geol Cong, Stockholm. Compte Rendu 1:543–546

    Google Scholar 

  • Fedonkin MA (1992) Vendian faunas and the early evolution of metazoa. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum, New York, pp 87–129

    Google Scholar 

  • Fedonkin MA, Waggoner BM (1997) The late Precambrian fossil Kimberella is a mollusc-like bilaterian organism. Nature 388:868–871

    Google Scholar 

  • Fedonkin MA, Gehling JG, Grey K et al (eds) (2007a) The rise of animals: evolution and diversification of the kingdom Animalia. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Fedonkin MA, Simonetta A, Ivantsov AY (2007b) New data on Kimberella, the Vendian mollusc-like organism (White Sea region, Russia): paleontological and evolutionary implications. In: Vickers-Rich P, Komarower P (eds) The rise and fall of the Ediacaran biota. Geological Society, London, pp 157–179

    Google Scholar 

  • Foote M (1997) Evolution of morphological diversity. Annu Rev Ecol Syst 28:129–152

    Google Scholar 

  • Foote M, Gould SJ, Lee MSY et al (1992) Cambrian and Recent morphological disparity: discussions and reply. Science 258:1816–1818

    Google Scholar 

  • Freeman G (2009) The rise of bilaterians. Hist Biol 21:99–114

    Google Scholar 

  • Gaines RR, Briggs DEG, Yuanlong Z (2008) Cambrian Burgess Shale-type deposits share a common mode of fossilization. Geology 36:755–758

    Google Scholar 

  • Gehling JG (1991) The case for Ediacaran fossil roots to the metazoan tree. Mem Geol Soc India 20:181–224

    Google Scholar 

  • Gehling JG (1999) Microbial mats in terminal Proterozoic siliciclastics: Ediacaran death masks. Palaios 14:40–57

    Google Scholar 

  • Gehling JG (2000) Environmental interpretation and a sequence stratigraphic framework for the terminal Proterozoic Ediacara Member within the Rawnsley Quartzite, South Australia. Precambrian Res 100:65–95

    Google Scholar 

  • Gehling JG, Rigby JK (1996) Long expected sponges from the Neoproterozoic Ediacara fauna of South Australia. J Paleontol 70:185–195

    Google Scholar 

  • Gehling JG, Narbonne GM (2007) Spindle-shaped Ediacara fossils from the Mistaken Point assemblage, Avalon Zone, Newfoundland. Can J Earth Sci 44:367–387

    Google Scholar 

  • Gehling JG, Droser ML, Jensen SR et al (2005) Ediacara organisms: relating form to function. In: Briggs DEG (ed) Evolving form and function: fossils and development. Yale Peabody Museum Publications, New Haven, pp 43–66

    Google Scholar 

  • Germs GJB (1972a) The stratigraphy and paleontology of the lower Nama Group, south west Africa. Univ Cape Town Dept Geol Precambrian Res Unit Bull 12:1–250

    Google Scholar 

  • Germs GJB (1972b) New shelly fossils from the Nama Group, south west Africa. Am J Sci 272:752–761

    Google Scholar 

  • Glaessner MF (1984) The dawn of animal life: a biohistorical study. Cambridge University Press, Cambridge

    Google Scholar 

  • Gould SJ (1991) The disparity of the Burgess Shale arthropod fauna and the limits of cladistic analysis: why we must strive to quantify morphospace. Paleobiology 17:411–423

    Google Scholar 

  • Grant SWF (1990) Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. Am J Sci 290-A:261–294

    Google Scholar 

  • Grazhdankin D (2004) Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution. Paleobiology 30:203–221

    Google Scholar 

  • Grazhdankin D, Seilacher A (2002) Underground Vendobionta from Namibia. Palaeontology 45:57–78

    Google Scholar 

  • Grazhdankin D, Seilacher A (2005) A re-examination of the Nama-type Vendian organism Rangea schneiderhoehni. Geol Mag 142:571–582

    Google Scholar 

  • Grotzinger JP, Watters WA, Knoll AH (2000) Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology 26:334–359

    Google Scholar 

  • Hendy AJW, Aberhan M, Alroy J et al (2009) A 600 million year record of ecological diversification. Geol Soc Am Abs Prog 41:508

    Google Scholar 

  • Hofmann HJ, O’Brien SJ, King AF (2008) Ediacaran biota on Bonavista Peninsula, Newfoundland, Canada. J Paleontol 82:1–36

    Google Scholar 

  • Hou X-G, Adridge RJ, Bergström J et al (2004) The Cambrian fossils of Chengjiang, China: the flowering of early animal life. Blackwell, Malden

    Google Scholar 

  • Hua H, Pratt BR, Zhang L (2003) Borings in Cloudina shells: complex predator-prey dynamics in the terminal Neoproterozoic. Palaios 18:454–459

    Google Scholar 

  • Huntley JW, Kowalewski M (2007) Strong coupling of predation intensity and diversity in the Phanerozoic fossil record. Proc Natl Acad Sci USA 104:15006–15010

    Google Scholar 

  • Huntley JW, Xiao S, Kowalewski M (2006) On the morphological history of Proterozoic and Cambrian acritarchs. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology. Springer, Berlin/Heidelberg/New York, pp 23–56

    Google Scholar 

  • Hutchinson GE (1961) The biologist poses some problems. In: Sears M (ed) Oceanography. Am Assoc Adv Sci Publ 67, Washington, DC, pp 85–94

    Google Scholar 

  • Ivantsov AY, Malakhovskaya YE (2002) Giant traces of Vendian animals. Dokl Earth Sci 385A:618–622

    Google Scholar 

  • Jenkins RJF (1992) Functional and ecological aspects of Ediacaran assemblages. In: Lipps JH, Signor PW (eds) Origin and early evolution of the Metazoa. Plenum, New York, pp 152–171

    Google Scholar 

  • Jenkins RJF, Ford CH, Gehling JG (1983) The Ediacara Member of the Rawnsley Quartzite: the context of the Ediacara assemblage (late Precambrian, Flinders Range). J Geol Soc Aust 30:101–119

    Google Scholar 

  • Jensen S, Droser ML, Gehling JG (2006) A critical look at the Ediacaran trace fossil record. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology. Springer, Berlin/Heidelberg/New York, pp 115–157

    Google Scholar 

  • Kelley PH, Kowalewski M, Hansen TA (eds) (2003) Predator-prey interactions in the fossil record, vol 20, Topics in geobiology. Plenum/Kluwer, New York

    Google Scholar 

  • Knoll AH, Carroll SB (1999) Early animal evolution: emerging views from comparative biology and geology. Science 284:2129–2137

    Google Scholar 

  • Kowalewski M, Kelley PH (eds) (2002) The fossil record of predation. Paleontological Society Special Papers 8. Yale University Reprographics and Imaging Services, New Haven

    Google Scholar 

  • Kowalewski M, Dulai A, Fürsich FT (1998) A fossil record full of holes: the Phanerozoic history of drilling predation. Geology 26:1091–1094

    Google Scholar 

  • Laflamme M, Xiao S, Kowalewski M (2009) Osmotrophy in modular Ediacara organisms. Proc Natl Acad Sci USA 106:14438–14443

    Google Scholar 

  • Liu AG, McIlroy D, Brasier MD (2010) First evidence for locomotion in the Ediacara biota from the 565 Ma mistaken point formation, Newfoundland. Geology 38:123–126

    Google Scholar 

  • Love GD, Grosjean E, Stalvies C et al (2009) Fossil steroids record the appearance of Demospongiae during the Cryogenian period. Nature 457:718–721

    Google Scholar 

  • Marshall CR (2006) Explaining the Cambrian “Explosion” of animals. Annu Rev Earth Pl Sc 34:355–384

    Google Scholar 

  • McGhee GR Jr, Sheehan PM, Bottjer DJ, Droser ML (2004) Ecological ranking of Phanerozoic biodiversity crises: ecological and taxonomic severities are decoupled. Palaeogeogr Palaeocl Palaeoec 211:289–297

    Google Scholar 

  • McKerrow WS (ed) (1978) The ecology of fossils: an illustrated guide. MIT Press, Cambridge

    Google Scholar 

  • Narbonne GM (2005) The Ediacara biota: Neoproterozoic origin of animals and their ecosystems. Annu Rev Earth Pl Sc 33:421–442

    Google Scholar 

  • Narbonne GM, Gehling JG (2003) Life after snowball: the oldest complex Ediacaran fossils. Geology 31:27–30

    Google Scholar 

  • Narbonne GM, Saylor BZ, Grotzinger JP (1997) The youngest Ediacaran fossils from southern Africa. J Paleontol 71:953–967

    Google Scholar 

  • Narbonne GM, Laflamme M, Greentree C et al (2009) Reconstructing a lost world: Ediacaran rangeomorphs from Spaniard’s Bay, Newfoundland. J Paleontol 83:503–523

    Google Scholar 

  • Novack-Gottshall PM (2004) Ecological disparity of deep-subtidal, soft-substrate assemblages during the Cambrian through Devonian. Geol Soc Am Abs Prog 36:457

    Google Scholar 

  • Novack-Gottshall PM (2007) Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology 33:273–294

    Google Scholar 

  • Rumsfeld, DH (2002) United States Department of Defense news briefing, 12 February 2002. http://www.defenselink.mil/transcripts/transcript.aspx?transcriptid=2636

    Google Scholar 

  • Seilacher A (1984) Late Precambrian and Early Cambrian Metazoa: preservational or real extinctions? In: Holland HD, Trendall AF (eds) Patterns of change in Earth evolution. Springer, Berlin/Heidelberg/New York, pp 159–168

    Google Scholar 

  • Seilacher A (1989) Vendozoa: organismic construction in the Proterozoic biosphere. Lethaia 22:229–239

    Google Scholar 

  • Seilacher A (1992) Vendobionta and Psammocorallia: lost constructions of Precambrian evolution. J Geol Soc London 149:607–613

    Google Scholar 

  • Shen B, Dong L, Xiao S et al (2008) The Avalon explosion: evolution of Ediacara morphospace. Science 319:81–84

    Google Scholar 

  • Signor PW III, Brett CE (1984) The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229–245

    Google Scholar 

  • Sprigg RC (1949) Early Cambrian “jellyfishes” of Ediacara, South Australia and Mount John, Kimberley District, Western Australia. T Roy Soc South Aust 73:72–99

    Google Scholar 

  • Stanley S (1973) An ecological theory for the sudden origin of multicellular life in the Late Precambrian. Proc Natl Acad Sci USA 70:1486–1489

    Google Scholar 

  • Stanley SM (1977) Trends, rates, and patterns of evolution in the Bivalvia. In: Hallam A (ed) Patterns of evolution, as illustrated by the fossil record. Elsevier, Amsterdam, pp 209–250

    Google Scholar 

  • Steneck RS (1983) Escalating herbivory and resulting adaptive trends in calcareous algal crusts. Paleobiology 9:44–61

    Google Scholar 

  • Thayer CW (1979) Biological bulldozers and the evolution of marine benthic communities. Science 203:458–461

    Google Scholar 

  • Thayer CW (1983) Sediment-mediated biological disturbance and the evolution of the marine benthos. In: Tevesz MJS, McCall PL (eds) Biotic interactions in recent and fossil benthic communities. Plenum, New York, pp 479–625

    Google Scholar 

  • Valentine JW (1992) Dickinsonia as a polypoid organism. Paleobiology 18:378–382

    Google Scholar 

  • Valentine JW, Jablonski D, Erwin DH (1999) Fossils, molecules and embryos: new perspectives on the Cambrian explosion. Development 126:851–859

    Google Scholar 

  • Vermeij GJ (1977) The Mesozoic marine revolution: evidence from snails, predators, and grazers. Paleobiology 3:245–258

    Google Scholar 

  • Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton

    Google Scholar 

  • Vermeij GJ (1990) The origin of skeletons. Palaios 4:585–589

    Google Scholar 

  • Wade M (1972) Dickinsonia: polychaete worms from the late Precambrian Ediacara fauna, South Australia. Mem Queensland Museum 16:171–190

    Google Scholar 

  • Waggoner BM (1999) Biogeographic analyses of the Ediacara biota: a conflict with paleotectonic reconstructions. Paleobiology 25:440–458

    Google Scholar 

  • Waggoner B (2003) The Ediacaran biotas in space and time. Integr Comp Biol 43:104–113

    Google Scholar 

  • Whittington HB (1975) The enigmatic animal Opabinia regalis, Middle Cambrian, Burgess Shale, British Columbia. Philos Trans R Soc Lond B 271:1–43

    Google Scholar 

  • Wood RA, Grotzinger JP, Dickson JAD (2002) Proterozoic modular biomineralized metazoan from the Nama Group, Namibia. Science 296:2383–2386

    Google Scholar 

  • Xiao S, Dong L (2006) On the morphological and ecological history of Proterozoic macroalgae. In: Xiao S, Kaufman AJ (eds) Neoproterozoic geobiology and paleobiology. Springer, Berlin/Heidelberg/New York, pp 57–90

    Google Scholar 

  • Xiao S, Laflamme M (2009) On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. Trends Ecol Evol 24:31–40

    Google Scholar 

  • Xiao S, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558

    Google Scholar 

  • Xiao S, Kowalewski M, Shen B et al (2009) The rise of bilaterians: a reply. Hist Biol 21:239–246

    Google Scholar 

Download references

Acknowledgments

Thanks to P. Novack-Gottshall, R. Krause, and M. Laflamme for helpful reviews and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Bush .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Bush, A.M., Bambach, R.K., Erwin, D.H. (2011). Ecospace Utilization During the Ediacaran Radiation and the Cambrian Eco-explosion. In: Laflamme, M., Schiffbauer, J., Dornbos, S. (eds) Quantifying the Evolution of Early Life. Topics in Geobiology, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0680-4_5

Download citation

Publish with us

Policies and ethics