Skip to main content

Paleobiological Applications of Focused Ion Beam Electron Microscopy (FIB-EM): An Ultrastructural Approach to the (Micro)Fossil Record

  • Chapter
  • First Online:
Book cover Quantifying the Evolution of Early Life

Part of the book series: Topics in Geobiology ((TGBI,volume 36))

Abstract

Coupled dual-beam focused ion beam electron microscopy (FIB-EM) has gained popularity across multiple disciplines over the past decade. Widely utilized as a stand-alone instrument for micromachining and metal- or insulator-deposition in numerous industries, the sub-μm-scale ion milling and integrated electron imaging capabilities of such FIB-based systems are well documented in the materials science literature. These capacities make FIB-EM a powerful tool for in-situ site-specific preparation of ultrathin foils for transmission electron microscopy. Recent advancements in the field-emission guns of FIB-EM systems have ­provided spatial resolution comparable to that of many high-grade scanning ­electron microscopes, providing enhanced imaging capacities with material-­deposition and material-removal capabilities. Recently, FIB-EM preparation techniques have been applied to geological samples to characterize mineral inclusions, grain boundaries, and microfossils. We here provide a summary of recent paleobiological studies that use FIB-EM methodology for the examination of fossils. Additionally, we demonstrate a novel method for analyzing the three-dimensional ultrastructure of microfossils (reported previously by Schiffbauer and Xiao [Palaios 24: 616–626, 2009]). This method, FIB-EM nanotomography, consists of sequential ion milling, or cross-sectioning, and concurrent SEM imaging, a technique that provides three-dimensional data of precise sites at high spatial resolution, yielding new insight into fossil ultrastructure. We here illustrate the use of FIB-EM nanotomography by studies of herkomorphic and acanthomorphic acritarchs (organic-walled microfossils) extracted from the ≥999 Ma Mesoproterozoic Ruyang Group of North China. The three-dimensional characteristics of important but controversial acritarch ­features such as extravesicular processes and vesicularly enclosed central bodies are described. Taken together, these case studies demonstrate that FIB-EM ­instruments are powerful and useful tools for investigating the three-dimensionality of microfossil ultra- and nanostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arouri KR, Greenwood PF, Walter MR (1999) A possible chlorophycean affinity of some Neoproterozoic acritarchs. Org Geochem 30:1323–1337

    Article  Google Scholar 

  • Arouri KR, Greenwood PF, Walter MR (2000) Biological affinities of Neoproterozoic acritarchs from Australia: microscopic and chemical characterisation. Org Geochem 31:75–89

    Article  Google Scholar 

  • Barber DJ (1970) Thin foils of non-metals made for electron microscopy by sputter-etching. J Mater Sci 5:1–8

    Article  Google Scholar 

  • Barber DJ (1999) Development of ion-beam milling as a major tool for electron microscopy. Microsc Anal 36:5–8

    Google Scholar 

  • Batten DJ (1996) Palynofacies and petroleum potential. In: Jansonius J, McGregor DC (eds) Palynology: Principles and Applications: American Association of Stratigraphic Palynologists Foundation. College Station, Texas

    Google Scholar 

  • Benzerara K, Menguy N, Guyot F, Vanni C, Gillet P (2005) TEM study of a silicate-carbonate-microbe interface prepared by focused ion beam milling. Geochim Cosmochim Acta 69(6):1413–1422

    Article  Google Scholar 

  • Bernard S, Benzerara K, Beyssac O, Menguy N, Guyot F, Brown GE Jr, Goffé B (2007) Exceptional preservation of fossil plant spores in high-pressure metamorphic rocks. Earth Planet Sci Lett 262:257–272

    Article  Google Scholar 

  • Bernard S, Benzerara K, Beyssac O, Brown GE Jr, Grauvogel Stamm L, Duringer P (2009) Ultrastructural and chemical study of modern and fossil sporoderms by scanning transmission X-ray microscopy (STXM). Rev Palaeobot Palynol 156:248–261

    Article  Google Scholar 

  • Cady SL, Noffke N (2009) Geobiology: evidence for early life on Earth and the search for life on other planets. GSA Today 19:4–10

    Article  Google Scholar 

  • Castaing R, Labourie P (1953) Examen direct des métaux par transmission au microscopie ­électronique. Compte Rendus Académie Sci 237:1330–1332

    Google Scholar 

  • Cavalazzi B (2007) Chemotrophic filamentous microfossils from the Hollard Mound (Devonian, Morocco) as investigated by focused ion beam. Astrobiology 7:402–415

    Article  Google Scholar 

  • Cohen PA, Knoll AH, Kodner RB (2009) Large spinose microfossils in Ediacaran rocks as resting stages of early animals. Proc Natl Acad Sci USA 106:6519–6524

    Article  Google Scholar 

  • Evitt WR (1963) A discussion and proposals concerning fossil dinoflagellates, hystrichospheres, and acritarchs. Proc Natl Acad Sci USA 49: 158–164, 298–302

    Google Scholar 

  • Floss C, Stadermann FJ, Bradley J, Dai ZR, Bajt S, Graham G (2004) Carbon and nitrogen isotopic anomalies in an anhydrous interplanetary dust particle. Science 303(5662):1355–1358

    Article  Google Scholar 

  • Giannuzzi LA, Prenitzer BI, Drown-MacDonald JL, Brown SR, Irwin RB, Stevie FA, Shofner TL (1998) Advances in the FIB lift-out technique for TEM specimen preparation: HREM lattice imaging. Microstruct Sci 26:249–253

    Google Scholar 

  • Giannuzzi LA, Prenitzer BI, Drown-MacDonald JL, Shofner TL, Brown SR, Irwin RB, Stevie FA (1999) Electron microscopy sample preparation for the biological and physical sciences using focused ion beams. J Process Anal Chem 4:162–167

    Google Scholar 

  • Golubic S, Barghoorn ES (1977) Interpretation of microbial fossils with special reference to the Precambrian. In: Flügel E (ed) Fossil algae: recent results and developments. Springer, Berlin

    Google Scholar 

  • Groeber MA, Haley BK, Uchic MD, Dimiduk DM, Ghosh S (2006) 3D reconstruction and characterization of polycrystalline microstructures using a FIB–SEM system. Mater Charact 57:259–273

    Article  Google Scholar 

  • Hagadorn JW, Xiao S, Donoghue PCJ, Bengtson S, Gostling NJ, Pawlowska M, Raff EC, Raff RA, Turner FR, Yin C, Zhou C, Yuan X, McFeely MB, Stampanoni M, Nealson KH (2006) Cellular and subcellular structure of Neoproterozoic embryos. Science 314:291–294

    Article  Google Scholar 

  • Heaney PJ, Vicenzi EP, Giannuzzi LA, Livi KJT (2001) Focused ion beam milling: a method of site-specific sample extraction for microanalysis of Earth and planetary materials. Am Mineral 86:1094–1099

    Google Scholar 

  • Holzer L, Indutnyi F, Gasser P, Münch B, Wegmann M (2004) Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. J Microsc 216:84–95

    Article  Google Scholar 

  • Holzer L, Münch B, Wegmann M, Gasser P, Flatt RJ (2006) FIB-nanotomography of particulate systems—Part I: particle shape and topology of interfaces. J Am Ceram Soc 89:2577–2585

    Article  Google Scholar 

  • Holzer L, Gasser P, Kaech A, Wegmann M, Zingg A, Wepf A, Münch B (2007) Cryo-FIB-nanotomography for quantitative analysis of particle structures in cement suspensions. J Microsc 227:216–228

    Article  Google Scholar 

  • Inkson BJ, Mulvihill M, Möbus G (2001) 3D determination of grain shape in a FeAl-based nanocomposite by 3D FIB tomography. Scr Mater 45:753–758

    Article  Google Scholar 

  • Javaux EJ, Marshal CP (2006) A new approach in deciphering early protist paleobiology and evolution: combined microscopy and microchemistry of single Proterozoic acritarchs. Rev Palaeobot Palynol 139:1–15

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2001) Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412:66–69

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2003) Recognizing and interpreting the fossils of early eukaryotes. Orig Life Evol Biosph 33:75–94

    Article  Google Scholar 

  • Javaux EJ, Knoll AH, Walter MR (2004) TEM evidence for eukaryotic diversity in mid-Proterozoic oceans. Geobiology 2:121–132

    Article  Google Scholar 

  • Javaux EJ, Marshall CP, Bekker A (2010) Organic-walled microfossils in 3.2-billion-year-old shallow-marine siliciclastic deposits. Nature 463:934–938

    Article  Google Scholar 

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A

    Google Scholar 

  • Kaufman A, Xiao S (2003) High CO2 levels in the Proterozoic atmosphere estimated from analyses of individual microfossils. Nature 425:279–282

    Article  Google Scholar 

  • Kempe A, Wirth R, Altermann W, Stark RW, Schopf JW, Heckl WM (2005) Focussed ion beam preparation and in situ nanoscopic study of Precambrian acritarchs. Precambrian Res 140(1–2):36–54

    Article  Google Scholar 

  • Knoll AH, Barghoorn ES (1975) Precambrian eukaryotic organisms: a reassesment of the evidence. Science 190:52–54

    Google Scholar 

  • Krohn VE (1961) Progress in astronautics and rocketry. Academic, New York

    Google Scholar 

  • Kubis AJ, Shiflet GJ, Dunn DN, Hull R (2004) Focused ion-beam tomography. Metall Mater Trans A 35A:1935–1943

    Article  Google Scholar 

  • Lee MR, Bland PA, Graham G (2003) Preparation of TEM samples by focused ion beam (FIB) techniques: applications to the study of clays and phyllosilicates in meteorites. Mineral Mag 67(3):581–592

    Article  Google Scholar 

  • Lorensen WE, Cline HE (1987) Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Comput Graph 21:163–169

    Article  Google Scholar 

  • Luo Q, Zhang Y, Sun S (1985) The eukaryotes in the basal Changcheng system of Yanshan ranges. Acta Geol Sin 1985(1):12–16

    Google Scholar 

  • Marko M, Hsieh C, Schalek R, Frank J, Mannella C (2007) Focused-ion-beam thinning of frozen-hydrated biological specimens for cryoelectron microscopy. Nat Meth 4:215–217

    Article  Google Scholar 

  • Marshall CP, Javaux EJ, Knoll AH, Walter MR (2005) Combined micro-Fourier transform infrared (FTIR) spectroscopy and micro-Raman spectroscopy of Proterozoic acritarchs: a new approach to palaeobiology. Precambrian Res 138:208–224

    Article  Google Scholar 

  • Meng F, Zhou C, Yin L, Chen Z, Yuan X (2005) The oldest known dinoflagellates: morphological and molecular evidence from Mesoproterozoic rocks at Yongji, Shanxi Province. Chin Sci Bull 50:1230–1234

    Google Scholar 

  • Moczydłowska M, Willman S (2009) Ultrastructure of cell walls in ancient microfossils as a proxy to their biological affinities. Precambrian Res 173:27–38

    Article  Google Scholar 

  • Moldowan JM, Talyzina NM (1998) Biogeochemical evidence for dinoflagellate ancestors in the early Cambrian. Science 281:1168–1170

    Article  Google Scholar 

  • Moreau JW, Sharp TG (2004) A transmission electron microscope study of silica and kerogen biosignatures in 1.9 Ga Gunflint microfossils. Astrobiology 4:196–209

    Article  Google Scholar 

  • Müller WEG, Eckert C, Kropf K, Wang X, Schloßmacher U, Seckert C, Wolf SE, Tremel W, Schröder HC (2007) Formation of giant spicules in the deep-sea hexactinellid Monorhaphis chuni (Schulze 1904): electron-microscopic and biochemical studies. Cell Tissue Res 329:363–378

    Article  Google Scholar 

  • Oehler DZ (1976) Transmission electron microscopy of organic microfossils from the late Precambrian Bitter springs formation of Australia: techniques and survey of preserved ultrastructure. J Paleontol 50(1):90–106

    Google Scholar 

  • Oehler DZ (1977) Pyrenoid-like structures in late Precambrian algae from the Bitter springs ­formation of Australia. J Paleontol 51(5):885–901

    Google Scholar 

  • Oehler DZ (1978) Pyrenoid-like structures in late Precambrian algae from the Bitter springs ­formation of Australia. J Paleontol 51(5):885–901

    Google Scholar 

  • Phaneuf MW (1999) Applications of focused ion beam microscopy to materials science ­specimens. Micron 30:277–288

    Article  Google Scholar 

  • Prenitzer BI, Urbanik-Shannon CA, Giannuzzi LA, Brown SR, Irwin RB (2003) The correlation between ion beam/material interactions and practical FIB specimen preparation. Microsc Microanal 9(3):216–231

    Article  Google Scholar 

  • Quekett J (1848) Microtomes and microtome knives, A practical treatise on the use of the microscope. Hippolyte Bailliere, London

    Google Scholar 

  • Rubanov S, Munroe PR (2004) FIB-induced damage in silicon. J Microsc 214(3):213–221

    Article  Google Scholar 

  • Sandberg PA, Hay WW (1967) Study of microfossils by means of the scanning electron microscope. J Paleontol 41:999–1001

    Google Scholar 

  • Schiffbauer JD, Xiao S (2009) Novel application of focused ion beam electron microscopy (FIB-EM) in preparation and analysis of microfossils ultrastructures: a new view of complexity in early eukaryotic organisms. Palaios 24:616–626

    Article  Google Scholar 

  • Schiffbauer JD, Yin L, Bodnar RJ, Kaufman AJ, Meng F, Hu J, Shen B, Yuan X, Bao H, Xiao S (2007) Ultrastructural and geochemical characterization of Archean-Paleoproterozoic graphite particles: implications for recognizing traces of life in highly metamorphosed rocks. Astrobiology 7(4):684–704

    Article  Google Scholar 

  • Schopf JW (1992) Proterozoic prokaryotes: affinities, geologic distribution, and evolutionary trends. In: Schopf JW, Klein C (eds) The Proterozoic biosphere: a multidisciplinary study. Cambridge University Press, Cambridge

    Chapter  Google Scholar 

  • Schopf JW, Oehler DZ (1976) How old are the eukaryotes? Science 193:47–49

    Article  Google Scholar 

  • Schulz HN, Brinkhoff T, Ferdelman TG, Mariné MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495

    Article  Google Scholar 

  • Seligman AM, Wasserkrug HL, Hanker JS (1966) A new staining method for enhancing contrast of lipid-containing membranes and droplets in osmium tetroxide-fixed tissue with osmiophilic thiocarbohydrazide (TCH). J Cell Biol 30:424–432

    Article  Google Scholar 

  • Servais T (1996) Some considerations on acritarch classification. Rev Palaeobot Palynol 93:9–22

    Article  Google Scholar 

  • Sun S, Zhu S (2000) Paleoproterozoic eukaryotic fossils from northern China. Acta Geol Sin 74(2):116–122

    Google Scholar 

  • Talyzina NM, Moczydłowska M (2000) Morphological and ultrastructural studies of some acritarchs from the Lower Cambrian Lükati Formation, Estonia. Rev Palaeobot Palynol 112:1–21

    Article  Google Scholar 

  • Vander Voort GF (ed) (2004) Chemical and electrolytic polishing. In: ASM handbook: metallography and microstructures. ASM International, Materials Park

    Google Scholar 

  • Vidal G (1988) A palynological preparation method. Palynology 12:215–220

    Article  Google Scholar 

  • Weiss BP, Vali H, Baudenbacher FJ, Kirschvink JL, Stewart ST, Shuster DL (2002) Records of an ancient Martian magnetic field in ALH84001. Earth Planet Sci Lett 201(3–4):449–463

    Article  Google Scholar 

  • Westall F, de Ronde CEJ, Southam G, Grassineau N, Colas M, Cockell C, Lammer H (2006) Implications of a 3.472–3.333 Gyr-old subaerial microbial mat from the Barberton greenstone belt, South Africa for the UV environmental conditions on the early Earth. Phil Trans Roy Soc B 361:1857–1875

    Article  Google Scholar 

  • Willman S, Moczydłowska M, Grey K (2006) Neoproterozoic (Ediacaran) diversification of ­acritarchs: A new record from the Murnaroo 1 drillcore, eastern Officer Basin, Australia: Review of Palaeobotany and Palynology 139:17–39

    Google Scholar 

  • Willman S, Moczydłowska M (2007) Wall ultrastructure of an Ediacaran acritarch from the Officer Basin, Australia. Lethaia 40:111–123

    Article  Google Scholar 

  • Willman S (2009) Morphology and wall ultrastructure of leiosphaeric and acanthomorphic ­acritarchs from the Ediacaran of Australia. Geobiology 7:8–20

    Google Scholar 

  • Wirth R (2004) Focused Ion Beam (FIB): A novel technology for advanced application of micro- and nanoanalysis in geosciences and applied mineralogy. Eur J Mineral 16:863–876

    Article  Google Scholar 

  • Wirth R (2009) Focused Ion Beam (FIB) combined with SEM and TEM: advanced analytical tools for studies of chemical composition, microstructure and crystal structure in geomaterials on a nanometre scale. Chem Geol 261:217–229

    Article  Google Scholar 

  • Xiao S, Schiffbauer JD (2008) Microfossil phosphatization and its astrobiological implications. In: Seckbach J, Walsh M (eds) From fossils to astrobiology: cellular origin, life in extreme habitats and astrobiology. Springer, New York

    Google Scholar 

  • Xiao S, Knoll AH, Kaufman AJ, Yin L, Zhang Y (1997) Neoproterozoic fossils in Mesoproterozoic rocks? Chemostratigraphic resolution of a biostratigraphic conundrum from the North China platform. Precambrian Res 84:197–220

    Article  Google Scholar 

  • Xiao S, Zhang Y, Knoll AH (1998) Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553–558

    Article  Google Scholar 

  • Xiao S, Hagadorn JW, Zhou C, Yuan X (2007) Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? Geology 35:115–118

    Article  Google Scholar 

  • Yan Y (1982) Schizofusa from the Chuanlinggou Formation of Changcheng System in Jixian County. Bull Tianjin Inst Geol Min Res 6:1–7

    Google Scholar 

  • Yan Y (1991) Shale-facies microflora from the Changzhougou Formation (Changcheng System) in Pangjiapu Region, Hebei, China. Acta Micropalaeontol Sinica 8(2):183–195

    Google Scholar 

  • Yan Y (1995) Shale facies microfloras from lower Changcheng System in Kuancheng, Hebei, and comparison with those of neighboring areas. Acta Micropalaeontol Sinica 12(4):349–373

    Google Scholar 

  • Yin L, Zhu M, Knoll AH, Yuan X, Zhang J, Hu J (2007) Doushantuo embryos preserved inside diapause egg cysts. Nature 446:661–663

    Article  Google Scholar 

  • Zang W-L (2007) Deposition and deformation of late Archean sediments and preservation of microfossils in the Harris Greenstone Domain, Gawler Craton, South Australia. Precambrian Res 156:107–124

    Article  Google Scholar 

  • Zhang Z (1986) Clastic facies microfossils from the Chuanlinggou Formation (1800 Ma) near Jixian, North China. J Micropalaeontol 5(2):9–16

    Article  Google Scholar 

  • Zhang Z (1997) A new Palaeoproterozoic clastic-facies microbiota from the Changzhougou Formation, Changcheng Group, Jixian, north China. Geol Mag 134(2):145–150

    Article  Google Scholar 

Download references

Acknowledgments

Research was supported by NASA Exobiology and Evolutionary Biology Program, the Virginia Tech Institute for Critical Technology and Applied Science (VT-ICTAS), and the Virginia Space Grant Consortium. We thank J. McIntosh and S.R.F. McCartney (VT-ICTAS Nanoscale Characterization and Fabrication Laboratory) for technical assistance; P. Shinpaugh (VT-CAVE, Visualization and Animation Group of ICTAS) for assistance with the construction of 3D renderings; T.A. Dexter and P.J. Voice (Virginia Tech) for critical comments and suggestions for improvement, and J. Norton for conceptual graphical representations of the Shuiyousphaeridium macroreticulatum process. A shortened version of this paper dealing specifically with the case study presented in Sect. 13.4 is available in Schiffbauer (2009), published by SEPM Society for Sedimentary Geology; and thank the editorial staff, including Palaios co-editor S.T. Hasiotis, managing editor J. Hardesty, associate editor B. Granier, and two anonymous reviewers, for greatly improving the quality of the first version of this report. We are additionally grateful to reviewers Bradley De Gregorio, Emmanuelle Javaux, and J. William Schopf for constructive and thoughtful comments and suggestions that enhanced this newest adaptation of our work. FIB-EM analyses were conducted at the VT-ICTAS Nanoscale Characterization and Fabrication Laboratory under the supervision and operation of J.D. Schiffbauer and J. McIntosh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James D. Schiffbauer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Schiffbauer, J.D., Xiao, S. (2011). Paleobiological Applications of Focused Ion Beam Electron Microscopy (FIB-EM): An Ultrastructural Approach to the (Micro)Fossil Record. In: Laflamme, M., Schiffbauer, J., Dornbos, S. (eds) Quantifying the Evolution of Early Life. Topics in Geobiology, vol 36. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0680-4_13

Download citation

Publish with us

Policies and ethics