Skip to main content

Modelling the Stiffness Reduction of Corroded Reinforced Concrete Beams after Cracking

  • Conference paper
  • First Online:
Book cover Modelling of Corroding Concrete Structures

Part of the book series: RILEM Bookseries ((RILEM,volume 5))

Abstract

The serviceability of reinforced concrete structures (i.e., bending stiffness) is mostly affected by the corrosion of the tension reinforcement (steel cross-section and the steel-concrete bond reduction). This paper presents two models aiming to predict the stiffness degradation of corroded reinforced concrete beams particularly after cracking. The two modelling approaches are: beam Macro- Finite-Elements (MFE) using cross-section analysis developed at the LMDC Toulouse and 2D nonlinear finite element analysis developed at Politecnico di Milano. Both, the steel cross-section and bond reduction versus corrosion rate are taken into account. The models are validated by simulating tests on a 23 year old corroded beam from long term experiments still in progress at LMDC. Results show a good agreement between both simulations and the experimental responses and highlight the predominant influence of the steel-concrete bond loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castel, A. François, R. and Arliguie, G., (2000), Mater. Struct. Vol. 33, pp. 539-544.

    Article  Google Scholar 

  2. Castel, A. François, R. and Arliguie, G., (2000), Mater. Struct. Vol. 33, pp. 545-551.

    Article  Google Scholar 

  3. Rodriguez, J. Ortega, L. M. Casal, J., Diez, J. M., (1996), In: Congress on concrete in the service mankind, Proceedings of the 4th International Conference, Dundee UK.

    Google Scholar 

  4. François, R., Arliguie, G., (1999), Mag. Concr. Res. Vol. 51, n. 2, pp. 143-150.

    Article  Google Scholar 

  5. CEB-FIP model code, (1999), Structural concrete: basis of design volume 2, Updated knowledge of the CEB-FIP model code 1990.

    Google Scholar 

  6. François, R., Castel, A. and Vidal, T., (2006), Mater. Struct. Vol. 39, pp. 571-584.

    Article  Google Scholar 

  7. Castel, A., Vidal, T., François, R., (2006), Mater. Struct. Vol. 39, n. 1, pp. 103-113.

    Google Scholar 

  8. Fischer, C., Ožbolt, J., Gehlen, C., (2010), Proceedings of FraMCos-7 - 7th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Jeju, Korea.

    Google Scholar 

  9. Vidal, T., Castel, A., François, R., (2004), Cem. Concr. Res. Vol. 34. pp. 165-174.

    Article  Google Scholar 

  10. Zhang, R., Castel, A., François, R., (2010), Proc. ICE Const. Mater. Vol. 163, n. 2, pp. 97-108.

    Article  Google Scholar 

  11. Zhang, R., Castel, A., François, R., (2009), Mater. Struct. Vol. 42, n. 10, p. 1407-1416.

    Article  Google Scholar 

  12. Coronelli D., Gambarova P., (2004), ASCE Journal of Structural Engineering, August, pp. 1214-1224.

    Google Scholar 

  13. Coronelli D., Mulas M.G., (2006), ACI Struct Journal. Vol. 103, No. 3, May–June, pp. 372-382.

    Google Scholar 

  14. Stevens, N., Uzumeri, S., Collins, M., (1987), SP No. 87, University of Toronto, Toronto, Ontario, Canada, 201 pp.

    Google Scholar 

  15. Menegotto, M., Pinto, P., (1973), Proceedings of IABSE Symposium on the Resistance and Ultimate Deformability of Structure Acted by Well Defined Repeated Load, Lisbon, pp. 15-22.

    Google Scholar 

  16. Eligehausen, R.; Popov, E. P.; and Bertero, V. V., (1983), Report No. UCB/EERC 83-23, Earthquake Engineering Research Center, University of California, Berkeley, Berkeley, Calif., 169 pp.

    Google Scholar 

  17. Regan, P.E., Kennedy Reid, I.L., (2009), Studies and Researches – Graduate School in Concrete Structures – Fratelli Pesenti, Politecnico di Milano, Italy, Vol. 29, pp. 245-275.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 RILEM

About this paper

Cite this paper

Castel, A., Coronelli, D., François, R., Cleland, D. (2011). Modelling the Stiffness Reduction of Corroded Reinforced Concrete Beams after Cracking. In: Andrade, C., Mancini, G. (eds) Modelling of Corroding Concrete Structures. RILEM Bookseries, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0677-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0677-4_15

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0676-7

  • Online ISBN: 978-94-007-0677-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics