Skip to main content

The pelagic food web

  • Chapter
  • First Online:
Biological Oceanography of the Baltic Sea

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aleksandrov SV, Zhigalova NN, Zezera AS (2009) Long-term dynamics of zooplankton in the southeastern Baltic Sea. Russian Journal of Marine Biology 35:296–304

    Article  Google Scholar 

  • Algesten G, Brydsten L, Jonsson A, Kortelainen P, Lövgren S et al (2006) Organic carbon budget for the Gulf of Bothnia. Journal of Marine Systems 63:155–161

    Article  Google Scholar 

  • Anderson R, Winter C, Jürgens K (2012) Protist grazing and viral lysis as prokaryotic mortality factors at Baltic Sea oxic-anoxic interfaces. Marine Ecology Progress Series 467:1–14

    Article  CAS  Google Scholar 

  • Andersson A, Falk S, Samuelsson G, Hagström A (1989) Nutritional characteristics of a mixotrophic nanoflagellate, Ochromonas sp. Microbial Ecology 17:251–262

    Article  CAS  Google Scholar 

  • Andersson A, Hajdu S, Haecky P, Kuparinen J, Wikner J (1996) Succession and growth of phytoplankton in the Gulf of Bothnia (Baltic Sea). Marine Biology 126:791–801

    Article  Google Scholar 

  • Andersson A, Samuelsson K, Haecky P, Albertsson J (2006) Changes in the pelagic microbial food web due to artificial eutrophication. Aquatic Ecology 40:99–313

    Article  CAS  Google Scholar 

  • Andersson A, Jurgensone I, Rowe OF, Simonelli P, Bignert A et al (2013) Can humic water discharge counteract eutrophication in coastal waters? PLoS ONE 8(4):e61293

    Article  CAS  Google Scholar 

  • Andersson A, Meier HEM, Ripszam M, Rowe O, Wikner J et al (2015) Projected future climate change and Baltic Sea ecosystem management. Ambio 44(Supplement):S345–S356

    Article  CAS  Google Scholar 

  • Aneer G (1980) Estimates of feeding pressure on pelagic and benthic organisms by Baltic herring (Clupea harengus v. membras L.). Ophelia 1:65–275

    Google Scholar 

  • Atamna-Ismaeel N, Sabeh G, Sharon I, Witzel KP, Labrenz M et al (2008) Widespread distribution of proteorhodopsins in freshwater and brackish ecosystems. The ISME Journal 2:656–662

    Article  CAS  Google Scholar 

  • Autio R (1998) Response of seasonally cold-water bacterioplankton to temperature and substrate treatments. Estuarine, Coastal and Shelf Science 46:465–474

    Article  Google Scholar 

  • Azam F, Fenchel T, Field JG, Gray JS, Meyer-Reil LA, Thingstad F (1983) The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10:257–263

    Article  Google Scholar 

  • Backer J, Biemans C, van Doorn J, Krab K, Reinders W et al (2014) Van Leeuwenhoek: groots in het kleine. Veen Media, Amsterdam, 160 pp [in Dutch]

    Google Scholar 

  • Bartolino V, Margonski P, Lindegren M, Linderholm H, Cardinale et al (2014) Forecasting fish stock dynamics under climate change: Baltic herring (Clupea harengus) as a case study. Fisheries Oceanography 23:258–269

    Article  Google Scholar 

  • Barz K, Hirche HJ (2005) Seasonal development of scyphozoan medusae and the predatory impact of Aurelia aurita on the zooplankton community in the Bornholm basin (central Baltic Sea). Marine Biology 147:465–476

    Article  Google Scholar 

  • Behrends G, Schneider G (1995) Impact of Aurelia aurita medusae (Cnidaria, Scyphozoa) on the standing stock and community composition of mesozooplankton in the Kiel Bight (western Baltic Sea). Marine Ecology Progress Series 127:39–45

    Article  Google Scholar 

  • Berg C, Vandieken V, Thamdrup B, Jürgens K (2015) Significance of archaeal nitrification in hypoxic waters of the Baltic Sea. The ISME Journal 9:1319–1332

    Article  CAS  Google Scholar 

  • Berglund J, Muren U, Båmstedt U, Andersson A (2007) Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnology and Oceanography 52:121–131

    Article  CAS  Google Scholar 

  • Bölter M, Meyer-Reil LA, Dawson R, Liebezeit G, Wolter K, Szwerinski H (1981) Structure analysis of shallow water ecosystems: interaction of microbiological, chemical and physical characteristics measured in the overlying waters of sandy beach sediments. Estuarine, Coastal and Shelf Science 13:579–589

    Article  Google Scholar 

  • Bralewska JM, Witek Z (1995) Heterotrophic dinoflagellates in the ecosystem of the Gulf of Gdańsk. Marine Ecology Progress Series 117:241–248

    Article  Google Scholar 

  • Brander KM (2007) Global fish production and climate change. Proceedings of the National Academy of Sciences of the USA 104:19709–19714

    Article  CAS  Google Scholar 

  • Brettar I, Rheinheimer G (1991) Denitrification in the central Baltic: evidence for H2S-oxidation as motor of denitrification at the oxic-anoxic interface. Marine Ecology Progress Series 77:157–169

    Article  CAS  Google Scholar 

  • Burns TP (1989) Lindeman’s contradiction and the trophic structure of ecosystems. Ecology 70:1355–1362

    Article  Google Scholar 

  • Burris JE (1980) Vertical migration of zooplankton in the Gulf of Finland. American Midland Naturalist 103:316–322

    Article  Google Scholar 

  • Casini M, Cardinale M, Hjelm J (2006) Inter-annual variation in herring, Clupea harengus, and sprat, Sprattus sprattus, condition in the central Baltic Sea: what gives the tune? Oikos 112:638–650

    Article  Google Scholar 

  • Christensen OB, Kjellström E, Zorita E (2015) Projected change – atmosphere. In: BACC Author Team (ed) Second assessment of climate change for the Baltic Sea basin. Regional Climate Studies. Springer, Berlin, pp 217–233

    Google Scholar 

  • Cole JJ, Findley S, Pace ML (1988) Bacterial production in fresh- and saltwater ecosystems: a cross-system overview. Marine Ecology Progress Series 43:1–10

    Article  Google Scholar 

  • Cushing DH (1990) Plankton production and year-class strength in fish populations: an update of the Match/Mismatch hypothesis. Advances in Marine Biology 26:249–293

    Article  Google Scholar 

  • Dahlgren K, Olsen BR, Troedsson C, Båmstedt U (2012) Seasonal variation in wax ester concentration and gut content in a Baltic Sea copepod [Limnocalanus macrurus (Sars 1863)]. Journal of Plankton Research 34:286–297

    Article  Google Scholar 

  • Eilola K, Mårtensson S, Meier HEM (2013) Modeling the impact of reduced sea ice cover in future climate on the Baltic Sea biogeochemistry. Geophysical Reseach Letters 40:1–6

    Article  Google Scholar 

  • Fenchel T (1987) Ecology of protozoa: the biology of free-living phagotrophic protists. Springer, Berlin 197 pp

    Google Scholar 

  • Fenchel T, Kristensen LD, Rasmussen L (1990) Water column anoxia: vertical zonation of planktonic protozoa. Marine Ecology Progress Series 62:1–10

    Article  Google Scholar 

  • Flinkman J, Vuorinen I, Aro E (1992) Planktivorous Baltic herring (Clupea harengus) prey selectively on reproducing copepods and cladocerans. Canadian Journal of Fisheries and Aquatic Sciences 49:73–77

    Article  Google Scholar 

  • Flinkman J, Vuorinen I, Christiansen M (1994) Calanoid copepod eggs survive passage through fish digestive tracts. ICES Journal of Marine Science 51:127–129

    Article  Google Scholar 

  • Flinkman J, Aro E, Vuorinen I, Viitasalo M (1998) Changes in the northern Baltic zooplankton and herring nutrition from 1980s to 1990s: top-down and bottom-up processes at work. Marine Ecology Progress Series 165:127–136

    Article  Google Scholar 

  • Folke C, Hammar M, Jansson AM (1991) Life-support value of ecosystems: a case study of the Baltic Sea region. Ecological Economics 3:123–137

    Article  Google Scholar 

  • Fuhrman JA (2002) Community structure and function in prokaryotic marine plankton. Antonie van Leeuwenhoek 81:521–527

    Article  CAS  Google Scholar 

  • Funkey CP, Conley DJ, Reuss NS, Humborg C, Jilbert T, Slomp CP (2014) Hypoxia sustains Cyanobacteria blooms in the Baltic Sea. Environmental Science and Technology 48:2598–2602

    Article  CAS  Google Scholar 

  • Gismervik I, Andersen T (1997) Prey switching by Acartia clausi: experimental evidence and implications of intraguild predation assessed by a model. Marine Ecology Progress Series 157:247–259

    Article  Google Scholar 

  • Glaubitz S, Lueders T, Abraham WR, Jost G, Jürgens K, Labrenz M (2009) 13C-isotope analyses reveal that chemolithoautotrophic Gamma- and Epsilonproteobacteria feed a microbial food web in a pelagic redoxcline of the central Baltic Sea. Environmental Microbiology 11:326–337

    Article  CAS  Google Scholar 

  • Glaubitz S, Kießlich K, Meeske C, Labrenz M, Jürgens K (2013) SUP05 dominates the gammaproteobacterial sulfur oxidizer assemblages in pelagic redoxclines of the central Baltic and Black Seas. Applied and Environment Microbiology 79:2767–2776

    Article  CAS  Google Scholar 

  • Gocke K, Rheinheimer G (1991) A synoptic survey on bacterial numbers, biomass and activity along the middle line of the Baltic Sea. Kieler Meeresforschungen Sonderheft 8:1–7

    Google Scholar 

  • Gorokhova E, Fagerberg T, Hansson S (2004) Predation by herring (Clupea harengus) and sprat (Sprattus sprattus) on Cercopagis pengoi in a western Baltic Sea bay. ICES Journal of Marine Science 61:959–965

    Article  Google Scholar 

  • Gorokhova E, Hansson S, Höglander H, Andersen CM (2005) Stable isotopes show food web changes after invasion by the predatory cladoceran Cercopagis pengoi in a Baltic Sea bay. Oecologia 143:25–259

    Article  Google Scholar 

  • Gorokhova E, Lehtiniemi M, Viitasalo-Frösen S, Haddock SHD (2009) Molecular evidence for the occurrence of ctenophore Mertensia ovum in the northern Baltic Sea and implications for the status of the Mnemiopsis leidyi invasion. Limnology and Oceanography 54:2025–2033

    Article  CAS  Google Scholar 

  • Gorokhova E, Hajdu S, Larsson U (2014) Responses of phyto- and zooplankton communities to Prymnesium polylepis (Prymnesiales) bloom in the Baltic Sea. PLoS ONE 9(11):e112985

    Article  CAS  Google Scholar 

  • Granskog M, Kaartokallio H, Kuosa H, Thomas DN, Vainio J (2006) Sea ice in the Baltic Sea – a review. Estuarine, Coastal and Shelf Science 70:145–160

    Article  Google Scholar 

  • Grote J, Jost G, Labrenz M, Herndl GJ, Jürgens K (2008) Epsilonproteobacteria represent the major portion of chemoautotrophic bacteria in sulfidic waters of pelagic redoxclines of the Baltic and Black Seas. Applied and Environment Microbiology 74:7546–7551

    Article  CAS  Google Scholar 

  • Grote J, Schott T, Bruckner CG, Glöckner FO, Jost G et al (2012) Genome and physiology of a model Epsilonproteobacterium responsible for sulfide detoxification in marine oxygen depletion zones. Proceedings of the National Academy of Sciences of the USA 109:506–510

    Article  CAS  Google Scholar 

  • Hagström Å, Pinhassi J, Zweifel UL (2000) Biogeographical diversity among marine bacterioplankton. Aquatic Microbial Ecology 21:231–244

    Article  Google Scholar 

  • Hajdu S, Larsson U, Moestrup O (1996) Seasonal dynamics of Chrysochromulina species (Prymnesiophyceae) in a coastal area and a nutrient-enriched inlet of the northern Baltic proper. Botanica Marina 39:281–295

    Google Scholar 

  • Hajdu S, Edler L, Olenina I, Witek B (2000) Spreading and establishment of the potentially toxic dinoflagellate Prorocentrum minimum in the Baltic Sea. International Review of Hydrobiology 85:561–575

    Article  Google Scholar 

  • Hajdu S, Pertola S, Kuosa H (2005) Prorocentrum minimum (Dinophyceae) in the Baltic Sea: morphology, occurrence – a review. Harmful Algae 4:471–480

    Article  CAS  Google Scholar 

  • Hakala T, Viitasalo M, Rita H, Aro E, Flinkman J, Vuorinen I (2003) Temporal and spatial variability in the growth rates of Baltic herring (Clupea harengus membras L.) larvae during summer. Marine Biology 142:25–33

    Article  Google Scholar 

  • Halinen K, Jokela J, Fewer DP, Wahlsten M, Sivonen K (2007) Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Applied and Environment Microbiology 73:6543–6550

    Article  CAS  Google Scholar 

  • Hällfors G (2004) Checklist of Baltic Sea phytoplankton species. Baltic Sea Environment Proceedings 95:1–208

    Google Scholar 

  • Hänninen J, Vuorinen I, Hjelt P (2000) Climatic factors in the Atlantic control the oceanographic and ecological changes in the Baltic Sea. Limnology and Oceanography 45:703–710

    Article  Google Scholar 

  • Harding KC, Härkönen T (1999) Development in the Baltic grey seal (Halichoerus grypus) and ringed seal (Phoca hispida) populations during the 20th century. Ambio 28:619–627

    Google Scholar 

  • Heiskanen AS (1998) Factors governing sedimentation and pelagic nutrient cycles in the northern Baltic Sea. University of Helsinki, Tammer-Paino Oy, Tampere [PhD Thesis]

    Google Scholar 

  • HELCOM (2015) Manual for marine monitoring in the COMBINE programme of HELCOM. HELCOM, Helsinki, 413 pp. http://www.helcom.fi

  • Henriksen P (2009) Long-term changes in phytoplankton in the Kattegat, the Belt Sea, the Sound and the western Baltic Sea. Journal of Sea Research 61:114–123

    Article  Google Scholar 

  • Hensen V (1887) Über die Bestimmung des Planktons oder des im Meer treibenden Materials an Pflanzen und Thieren. Bericht der Kommission zur wissenschaftlichen Untersuchung der deutschen Meere 5:1–108 [in German]

    Google Scholar 

  • Herlemann DPR, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF (2011) Transitions in bacterial communities along the 2,000 km salinity gradient of the Baltic Sea. The ISME Journal 5:1571–1579

    Article  CAS  Google Scholar 

  • Herlemann DPR, Lundin D, Labrenz M, Jürgens K, Zheng Z et al (2013) Metagenomic de novo assembly of an aquatic representative of the Verrucomicrobia class Spartobacteria. mBio 4(3):e00569-12

    Google Scholar 

  • Herlemann DPR, Manecki M, Meeske C, Pollehne F, Labrenz M et al (2014) Uncoupling of bacterial and terrigenous dissolved organic matter dynamics in decomposition experiments. PLoS ONE 9(4):e93945

    Article  CAS  Google Scholar 

  • Hernroth L, Ackefors H (1979) The zooplankton of the Baltic Proper. A long-term investigation of the fauna, its biology and ecology. Report of the Fishery Board of Sweden, Institute of Marine Research 2:1–59

    Google Scholar 

  • Holmfeldt K, Dziallas C, Titelman J, Pohlmann K, Grossart HP, Riemann L (2009) Diversity and abundance of freshwater actinobacteria along environmental gradients in the brackish northern Baltic Sea. Environmental Microbiology 11:2042–2054

    Article  CAS  Google Scholar 

  • Hügler M, Sievert SM (2011) Beyond the Calvin cycle: autotrophic carbon fixation in the ocean. Annual Review of Marine Sciences 3:261–289

    Article  Google Scholar 

  • Jaanus A, Andersson A, Olenina I, Törning K, Kaljurand K (2011) Changes in phytoplankton communities along a north-south gradient in the Baltic Sea between 1990 and 2008. Boreal Environment Research 16(supplement A):191–208

    Google Scholar 

  • Jochem F, Babenerd B (1989) Naked Dictyocha speculum – a new type of phytoplankton bloom in the western Baltic. Marine Biology 103:373–379

    Article  Google Scholar 

  • Johansson S (1983) Annual dynamics and production of rotifers in a eutrophication gradient in the Baltic Sea. Hydrobiologia 14:335–340

    Article  Google Scholar 

  • Johansson M, Gorokhova E, Larsson U (2004) Annual variability in ciliate community structure, potential prey and predators in the open northern Baltic Sea proper. Journal of Plankton Research 26:67–80

    Article  Google Scholar 

  • Johnson MD, Oldach D, Delwiche CF, Stoecker DK (2007) Retention of transcriptionally active cryptophyte nuclei by the ciliate Myrionecta rubra. Nature 445:426–428

    Article  CAS  Google Scholar 

  • Jost G, Martens-Habbena W, Pollehne F, Schnetger B, Labrenz M (2010) Anaerobic sulfur oxidation in the absence of nitrate dominates microbial chemoautotrophy beneath the pelagic chemocline of the Eastern Gotland basin, Baltic Sea. FEMS Microbiology Ecology 71:226–236

    Article  CAS  Google Scholar 

  • Jürgens K, Massana R (2008) Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans, 2nd edn. Wiley, New York, pp 383–441

    Chapter  Google Scholar 

  • Kahru M, Elmgren R (2014) Multi-decadal time series of satellite-detected accumulations of cyanobacteria in the Baltic Sea. Biogeosciences 11:3619–3633

    Article  Google Scholar 

  • Kaitala S, Hällfors S, Maunula P (2011) Phytoplankton biomass and species succession. HELCOM Baltic Sea Environment Fact Sheet. http://www.helcom.fi

  • Karlson K, Bonsdorff E, Rosenberg R (2007) The impact of benthic macrofauna for nutrient fluxes from Baltic Sea sediments. Ambio 36:161–167

    Article  CAS  Google Scholar 

  • Katajisto T (1996) Copepod eggs survive a decade in the sediments of the Baltic Sea. Hydrobiologia 320:153–159

    Article  Google Scholar 

  • Katajisto T (2004) Effects of anoxia and hypoxia on the dormancy and survival of subitaneous eggs of Acartia bifilosa (Copepoda: Calanoida). Marine Biology 145:751–757

    Google Scholar 

  • King N, Westbrook MJ, Young SL, Kuo A, Abedin M et al (2008) The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–788

    Article  CAS  Google Scholar 

  • Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviours in the planktonic copepod Acartia tonsa. Marine Ecology Progress Series 143:65–75

    Article  Google Scholar 

  • Kisand V, Andersson N, Wikner J (2005) Bacterial freshwater species successfully immigrate to the brackish water environment in the northern Baltic. Limnology and Oceanography 50:945–956

    Article  Google Scholar 

  • Kivi K, Kuosa H, Tanskanen S (1996) An experimental study on the role of crustacean and microprotozoan grazers in the planktonic food web. Marine Ecology Progress Series 136:59–68

    Article  Google Scholar 

  • Klais R, Tamminen T, Kremp A, Spilling K, Olli K (2011) Decadal-scale changes of dinoflagellates and diatoms in the anomalous Baltic Sea spring bloom. PLoS ONE 6(6):e21567

    Article  CAS  Google Scholar 

  • Klais R, Tamminen T, Kremp A, Spilling K, Woong An B et al (2013) Spring phytoplankton communities shaped by interannual weather variability and dispersal limitation: mechanisms of climate change effects on key coastal primary producers. Limnology and Oceanography 58:753–762

    Article  Google Scholar 

  • Koski M, Schmidt K, Engström-Öst J, Viitasalo M, Jónasdóttir SH et al (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnology and Oceanography 47:878–885

    Article  Google Scholar 

  • Kremp A, Tamminen T, Spilling K (2008) Dinoflagellate bloom formation in natural assemblages with diatoms: nutrient competition and growth strategies in Baltic spring phytoplankton. Aquatic Microbial Ecology 50:181–196

    Article  Google Scholar 

  • Kremp A, Lindholm T, Dreßler N, Erler K, Gerdts G et al (2009) Bloom forming Alexandrium ostenfeldii (Dinophyceae) in shallow waters of the Åland archipelago, Northern Baltic Sea. Harmful Algae 8:318–328

    Article  CAS  Google Scholar 

  • Kuosa H, Kivi K (1989) Bacteria and heterotrophic flagellates in the pelagic carbon cycle in the northern Baltic Sea. Marine Ecology Progress Series 53:93–100

    Article  Google Scholar 

  • Laamanen M, Kuosa H (2005) Annual variability of biomass and heterocysts of the N2-fixing cyanobacterium Aphanizomenon flos-aquae in the Baltic Sea with reference to Anabaena spp. and Nodularia spumigena. Boreal Environment Research 10:19–30

    Google Scholar 

  • Laanemets J, Kononen K, Pavelson J, Poutanen EL (2004) Vertical location of seasonal nutriclines in the western Gulf of Finland. Journal of Marine Systems 52:1–13

    Article  Google Scholar 

  • Labrenz M, Sintes E, Toetzke F, Zumsteg A, Herndl GJ et al (2010) Relevance of a crenarchaeotal subcluster related to Candidatus Nitrosopumilus maritimus to ammonia oxidation in the suboxic zone of the central Baltic Sea. The ISME Journal 4:1496–1508

    Article  Google Scholar 

  • Labrenz M, Grote J, Mammitzsch K, Boschker HTS, Laue M et al (2013) Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant Epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. International Journal of Systematic and Evolutionary Microbiology 63:4141–4148

    Article  CAS  Google Scholar 

  • Lagus A (2009) Role of nutrients in regulation of phytoplankton community in the Archipelago Sea, northern Baltic Sea. Annales Universitatis Turkuensis, Ser. AII 239:1–56 [PhD Thesis]

    Google Scholar 

  • Langenheder S, Kisand V, Wikner J, Tranvik LJ (2003) Salinity as a structuring factor for the composition and performance of bacterioplankton degrading riverine DOC. FEMS Microbiology Ecology 45:189–202

    Article  CAS  Google Scholar 

  • Larsson U, Nyberg S, Andreasson K, Lindahl O, Wikner J (2010) Phytoplankton production – measurements with problems. Havet – om miljötillståndet i svenska havsområden 2010:26–29 [in Swedish]

    Google Scholar 

  • Larsson J, Celepli N, Ininbergs K, Dupont CL, Yooseph S et al (2014a) Picocyanobacteria containing a novel pigment gene cluster dominate the brackish-water Baltic Sea. The ISME Journal 8:1892–1903

    Article  CAS  Google Scholar 

  • Larsson K, Hajdu S, Kilpi M, Larsson R, Leito A et al (2014b) Effects of an extensive Prymnesium polylepis bloom on breeding eiders in the Baltic Sea. Journal of Sea Research 88:21–28

    Article  Google Scholar 

  • Leadbeater BSC, Yu Q, Kent J, Stekel D (2009) Three-dimensional images of choanoflagellate loricae. Proceedings of the Royal Society B 276:3–11

    Article  Google Scholar 

  • Lefébure R, Degerman R, Andersson A, Larsson S, Eriksson LO et al (2013) Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Global Change Biology 19:1358–1372

    Article  Google Scholar 

  • Legendre L, Rassoulzadegan F (1995) Plankton and nutrient dynamics in marine waters. Ophelia 41:153–172

    Article  Google Scholar 

  • Lehmann A, Myrberg K (2008) Upwelling in the Baltic Sea. Journal of Marine Systems 74:S3–S12

    Article  Google Scholar 

  • Lehtimäki J, Moisander P, Sivonen K, Kononen K (1997) Growth, nitrogen fixation, and nodularin production by two Baltic Sea cyanobacteria. Applied and Environment Microbiology 63:1647–1656

    Google Scholar 

  • Leppäkoski E, Olenin S (2000) Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions 2:151–163

    Article  Google Scholar 

  • Lewandowska AM, Sommer U (2010) Climate change and the spring bloom: a mesocosm study on the influence of light and temperature on phytoplankton and mesozooplankton. Marine Ecology Progress Series 405:101–111

    Article  CAS  Google Scholar 

  • Lignell R, Heiskanen AS, Kuosa H, Gundersen K, Kuuppo-Leinikki P et al (1993) Fate of phytoplankton spring bloom: sedimentation and carbon flow in the planktonic food web in the northern Baltic. Marine Ecology Progress Series 94:239–252

    Article  Google Scholar 

  • Lignell R, Hoikkala L, Lahtinen T (2008) Effects of inorganic nutrients, glucose and solar radiation on bacterial growth and exploitation of dissolved organic carbon and nitrogen in the northern Baltic Sea. Aquatic Microbial Ecology 51:209–221

    Article  Google Scholar 

  • Lindholm T, Nummelin C (1999) Red tide of the dinoflagellate Heterocapsa triquetra (Dinophyta) in a ferry-mixed coastal inlet. Hydrobiologia 393:245–251

    Article  CAS  Google Scholar 

  • Lohmann H (1908) Untersuchungen zur Feststellung des vollständigen Gehaltes des Meeres an Plankton. Wissenschaftliche Meeresuntersuchung Abteilung Kiel N.F. 10:131–370 [in German]

    Google Scholar 

  • Lumberg A, Ojaveer E (1991) On the environment and zooplankton dynamics in the Gulf of Finland in 1961–1990. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 1(N3):131–140

    Google Scholar 

  • Lundström K, Hjerne O, Lunneryd SG, Karlsson O (2010) Understanding the diet composition of marine mammals: grey seals (Halichoerus grypus) in the Baltic Sea. ICES Journal of Marine Science 67:1230–1239

    Google Scholar 

  • Maar M, Visser AW, Nielsen TG, Stips A, Saito H (2006) Turbulence and feeding behaviour affect the vertical distributions of Oithona similis and Microsetella norwegica. Marine Ecology Progress Series 313:157–172

    Article  Google Scholar 

  • MacKenzie BR, Köster FW (2004) Fish production and climate: sprat in the Baltic Sea. Ecology 85:784–794

    Article  Google Scholar 

  • MacKenzie BR, Alheit J, Conley DJ, Holm P, Kinze CK (2002) Ecological hypotheses for a historical reconstruction of upper trophic level biomass in the Baltic Sea and Skagerrak. Canadian Journal of Fisheries and Aquatic Sciences 59:173–190

    Article  Google Scholar 

  • MacKenzie BR, Gislason H, Möllmann C, Köster FW (2007) Impact of 21st century climate change on the Baltic Sea fish community and fisheries. Global Change Biology 13:1–20

    Article  Google Scholar 

  • MacKenzie BR, Eero M, Ojaveer H (2011) Could seals prevent cod recovery in the Baltic Sea? PLoS ONE 6(5):e18998

    Article  CAS  Google Scholar 

  • Majaneva M, Rintala JM, Hajdu S, Hällfors S, Hällfors G et al (2012) The extensive bloom of alternate-stage Prymnesium polylepis (Haptophyta) in the Baltic Sea during autumn–spring 2007–2008. European Journal of Phycology 47:310–320

    Article  Google Scholar 

  • Marcotte BM (1982) Evolution within the Crustacea. Part 2: Copepoda. In: Abele LG (ed) The biology of Crustacea, vol 1. Academic Press, New York, pp 185–197

    Google Scholar 

  • Meier HEM (2015) Projected change – marine physics. In: BACC Author Team (ed) Second assessment of climate change for the Baltic Sea basin. Regional Climate Studies. Springer, Berlin, pp 243–252

    Google Scholar 

  • Meier HEM, Andersson HC, Eilola K, Gustafsson BG, Kuznetsov I et al (2011) Hypoxia in future climates – a model ensemble study for the Baltic Sea. Geophysical Reseach Letters 38:L24608

    Google Scholar 

  • Meier HEM, Müller-Karulis B, Andersson HC, Dieterich C, Eilola K et al (2012) Impact of climate change on ecological quality indicators and biogeochemical fluxes in the Baltic Sea: A multi-model ensemble study. Ambio 41:558–573

    Article  Google Scholar 

  • Mills CE (2001) Jellyfish blooms: are populations increasing globally in response to changing ocean conditions? Hydrobiologia 451:55–68

    Article  Google Scholar 

  • Miyashita LK, Gaeta SA, Lopes RM (2011) Life cycle and reproductive traits of marine podonids (Cladocera, Onychopoda) in a coastal subtropical area. Journal of Plankton Research 33:779–792

    Article  Google Scholar 

  • Möllmann C, Kornilovs G, Sidrevics L (2000) Long-term dynamics of main mesozooplankton species in the central Baltic Sea. Journal of Plankton Research 22:2015–2038

    Article  Google Scholar 

  • Möllmann C, Kornilovs G, Fetter M, Köster FW (2005) Climate, zooplankton and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science 62:1270–1280

    Article  Google Scholar 

  • Muro-Pastor AM, Hess WR (2012) Heterocyst differentiation: from single mutants to global approaches. Trends in Microbiology 20:549–557

    Article  CAS  Google Scholar 

  • Myung G, Hyung SK, Jong SP, Myung GP, Wonho Y (2011) Population growth and plastic type of Myrionecta rubra depend on the kinds of available cryptomonad prey. Harmful Algae 10:536–541

    Article  Google Scholar 

  • Nissling A, Müller A, Hinrichsen HH (2003) Specific gravity and vertical distribution of sprat (Sprattus sprattus) eggs in the Baltic Sea. Journal of Fish Biology 63:280–299

    Article  Google Scholar 

  • Ojaveer E, Lindroth A, Bagge O, Lehtonen H, Toivonen J (1981) Fish and Fisheries. In: Voipio A (ed) The Baltic Sea. Elsevier Oceanography Series, vol 30, pp 275–350

    Google Scholar 

  • Ojaveer E, Lumberg A, Ojaveer H (1998) Highlights of zooplankton dynamics in Estonian waters (Baltic Sea). ICES Journal of Marine Science 55:748–755

    Article  Google Scholar 

  • Ojaveer H, Simm M, Lankov A (2004) Population dynamics and ecological impact of the non-indigenous Cercopagis pengoi in the Gulf of Riga (Baltic Sea). Hydrobiologia 522:261–269

    Article  Google Scholar 

  • Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N et al (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings 106:1–144

    Google Scholar 

  • Olli K, Trunov K (2010) Abundance and distribution of vernal bloom dinoflagellate cysts in the Gulf of Finland and Gulf of Riga (the Baltic Sea). Deep-Sea Research II 57:235–242

    Article  CAS  Google Scholar 

  • Olli K, Klais R, Tamminen T, Ptacnik R, Andersen T (2011) Long term changes in the Baltic Sea phytoplankton community. Boreal Environment Research 16:3–14

    Google Scholar 

  • Olli K, Ptacnik R, Andersen T, Trikk O, Klais R et al (2014) Against the tide: recent diversity increase enhances resource use in a coastal system. Limnology and Oceanography 59:267–274

    Article  Google Scholar 

  • Österblom H, Hansson S, Larsson U, Hjerne O, Wulff F et al (2007) Human-induced trophic cascades and ecological regime shifts in the Baltic Sea. Ecosystems 10:877–889

    Article  CAS  Google Scholar 

  • Paxinos R, Mitchell JG (2000) A rapid Utermöhl method for estimating algal numbers. Journal of Plankton Research 22:2255–2262

    Article  Google Scholar 

  • Pearre S (1982) Estimating prey preference by predators: uses of various indices, and a proposal of another based on χ2. Canadian Journal of Fisheries and Aquatic Sciences 39:914–923

    Article  Google Scholar 

  • Pertola S, Koski M, Viitasalo M (2002) Stoichiometry of mesozooplankton in N- and P-limited areas of the Baltic Sea. Marine Biology 140:425–434

    Article  Google Scholar 

  • Pinhassi J, Winding A, Binnerup SJ, Zweifel UL, Riemann B, Hagström Å (2003) Spatial variability in bacterioplankton community composition at the Skagerrak-Kattegat front. Marine Ecology Progress Series 255:1–13

    Article  CAS  Google Scholar 

  • Ptacnik R, Andersen T, Brettum P, Lepistö L, Willén E (2010) Regional species pools control community saturation in lake phytoplankton. Proceedings of the Royal Society B 277:3755–3764

    Article  Google Scholar 

  • Rajasilta M, Hänninen J, Vuorinen I (2014) Decreasing salinity improves the feeding conditions of the Baltic herring (Clupea harengus membras) during spring in the Bothnian Sea, northern Baltic. ICES Journal of Marine Science 71:1148–1152

    Article  Google Scholar 

  • Rand PS, Stewart DJ (1998) Prey fish exploitation, salmonine production, and pelagic food web efficiency in Lake Ontario. Canadian Journal of Fisheries and Aquatic Sciences 55:318–327

    Article  Google Scholar 

  • Rantajärvi E, Olsonen R, Hällfors S, Leppänen JM, Raateoja M (1998) Effect of sampling frequency on detection of natural variability in phytoplankton: unattended high-frequency measurements on board ferries in the Baltic Sea. ICES Journal of Marine Science 55:697–704

    Article  Google Scholar 

  • Remane A (1934) Die Brackwasserfauna. Verhandlungen der Deutschen Zoologischen Gesellschaft 36:34–74 [in German]

    Google Scholar 

  • Repka S, Meyerhöfer M, von Bröckel K, Sivonen K (2004) Associations of cyanobacterial toxin, nodularin, with environmental factors and zooplankton in the Baltic Sea. Microbial Ecology 47:350–358

    Article  CAS  Google Scholar 

  • Rheinheimer G (1974) Bakterien und Pilze. In: Magaard L, Rheinheimer G (eds) Meereskunde der Ostsee. Springer, Berlin, pp 161–170 [in German]

    Chapter  Google Scholar 

  • Rheinheimer G (ed) (1977) Microbial ecology of a brackish water environment. Ecological Studies, vol 25. Springer, Berlin, 296 pp

    Google Scholar 

  • Rheinheimer G (1984) Bacterial ecology of the North and Baltic seas. Botanica Marina 27:277–299

    CAS  Google Scholar 

  • Riemann L, Leitet C, Pommier T, Simu K, Holmfeldt K et al (2008) The native bacterioplankton community in the central Baltic Sea is influenced by freshwater bacterial species. Applied and Environment Microbiology 74:503–515

    Article  CAS  Google Scholar 

  • Rönkkönen S, Ojaveer E, Raid T, Viitasalo M (2003) Long-term changes in the Baltic herring growth. Canadian Journal of Fisheries and Aquatic Sciences 61:219–229

    Article  Google Scholar 

  • Rudstam LG, Hansson S, Johansson S, Larsson U (1992) Dynamics of planktivory in a coastal area of the northern Baltic Sea. Marine Ecology Progress Series 80:159–173

    Article  Google Scholar 

  • Rychert K (2011) Communities of heterotrophic protists (Protozoa) in the near-bottom zone of the Gdańsk basin. Oceanological and Hydrobiological Studies 40:67–73

    Article  Google Scholar 

  • Salka I, Wurzbacher C, Garcia SL, Labrenz M, Jürgens K, Grossart HP (2014) Distribution of acI-actinorhodopsin genes in Baltic Sea salinity gradients indicates adaptation of facultative freshwater photoheterotrophs to brackish waters. Environmental Microbiology 16:586–597

    Article  CAS  Google Scholar 

  • Samuelsson K, Berglund J, Haecky P, Andersson A (2002) Structural changes in an aquatic microbial food web caused by inorganic nutrient addition. Aquatic Microbial Ecology 29:29–38

    Article  Google Scholar 

  • Samuelsson K, Berglund J, Andersson A (2006) Factors controlling the heterotrophic flagellate and ciliate community along a brackish water primary production gradient. Journal of Plankton Research 28:345–359

    Article  Google Scholar 

  • Sandberg J, Andersson A, Johansson S, Wikner J (2004) Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Marine Ecology Progress Series 268:13–29

    Article  Google Scholar 

  • Sandström O (1980) Selective feeding by Baltic herring. Hydrobiologia 69:199–207

    Article  Google Scholar 

  • Schneider G, Behrends G (1994) Population dynamics and the trophic role of Aurelia aurita medusae in the Kiel Bight and western Baltic. ICES Journal of Marine Science 51:359–367

    Article  Google Scholar 

  • Schumann R, Rieling T, Görs S, Hammer A, Selig U, Schiewer U (2003) Viability of bacteria from different aquatic habitats I. Environmental conditions and productivity. Aquatic Microbial Ecology 32:121–135

    Article  Google Scholar 

  • Segerstråle SG (1969) Biological fluctuations in the Baltic Sea. Progress in Oceanography 5:169–184

    Article  Google Scholar 

  • Seppälä J, Ylöstalo P, Kaitala S, Hällfors S, Raateoja M, Maunula P (2007) Ship-of-opportunity based phycocyanin fluorescence monitoring of the filamentous cyanobacteria bloom dynamics in the Baltic Sea. Estuarine, Coastal and Shelf Science 73:489–500

    Article  Google Scholar 

  • Setälä O, Kivi K (2003) Planktonic ciliates in the Baltic Sea in summer. Distribution, species association and estimated grazing impact. Aquatic Microbial Ecology 32:287–297

    Article  Google Scholar 

  • Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquatic Microbial Ecology 28:175–211

    Article  Google Scholar 

  • Simu K, Holmfeldt K, Zweifel UL, Hagström Å (2005) Culturability and coexistence of colony-forming and single-cell marine bacterioplankton. Applied and Environment Microbiology 71:4793–4800

    Article  CAS  Google Scholar 

  • Sivonen K, Kononen K, Carmichael WW, Dahlem AM, Rinehart KL et al (1989) Occurrence of the hepatotoxic cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the toxin. Applied and Environment Microbiology 55:1990–1995

    CAS  Google Scholar 

  • Sivonen K, Niemelä SI, Niemi RM, Lepistö L, Luoma TH, Räsänen LA (1990) Toxic cyanobacteria (blue-green algae) in Finnish fresh and coastal waters. Hydrobiologia 190:267–275

    Article  Google Scholar 

  • Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behaviour. Progress in Oceanography 85:92–107

    Article  Google Scholar 

  • Smetacek V (1981) The annual cycle of protozooplankton in the Kiel Bight. Marine Biology 63:1–11

    Article  Google Scholar 

  • Snoeijs P, Häubner N (2014) Astaxanthin dynamics in Baltic Sea mesozooplankton communities. Journal of Sea Research 85:131–143

    Article  Google Scholar 

  • Sprules W, Bowerman J (1988) Omnivory and food web lengths in zooplankton food webs. Ecology 69:418–426

    Article  Google Scholar 

  • Stewart KD, Mattox KR (1980) Phylogeny of phytoflagellates. In: Cox ER (ed) Phytoflagellates. Developments in Marine Biology, vol 2. Elsevier, Amsterdam, pp 433–462

    Google Scholar 

  • Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK et al (eds) (2013) The physical science basis – contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge 1535 pp

    Google Scholar 

  • Straile D (1997) Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group. Limnology and Oceanography 42:1375–1385

    Article  Google Scholar 

  • Suikkanen S, Laamanen M, Huttunen M (2007) Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine, Coastal and Shelf Science 71:580–592

    Article  Google Scholar 

  • Suikkanen S, Pulina S, Engström-Öst J, Lehtiniemi M, Lehtinen S, Brutemark A (2013) Climate change and eutrophication induced shifts in northern summer plankton communities. PLoS ONE 8(6):e66475

    Article  CAS  Google Scholar 

  • Tamminen T, Andersen T (2007) Seasonal phytoplankton nutrient limitation patterns as revealed by bioassays over Baltic Sea gradients of salinity and eutrophication. Marine Ecology Progress Series 340:121–138

    Article  CAS  Google Scholar 

  • Telesh I, Heerkloss R (2004) Atlas of Estuarine Zooplankton of the Southern and Eastern Baltic Sea. Part II: Crustacea. Verlag Dr. Kovač, Hamburg, p 118

    Google Scholar 

  • Thompson RM, Hemberg M, Strazomski BM, Shurin JB (2007) Trophic levels and trophic tangels: the prevalence of omnivory in real food webs. Ecology 88:612–617

    Article  Google Scholar 

  • Uiboupin R, Laanemets J, Sipelgas L, Raag L, Lips I, Buhhalko N (2012) Monitoring the effect of upwelling on the chlorophyll a distribution in the Gulf of Finland (Baltic sea) using remote sensing and in situ data. Oceanologia 54:395–419

    Article  Google Scholar 

  • Uitto A, Heiskanen AS, Lignell R, Autio R, Pajuniemi R (1997) Summer dynamics of the coastal planktonic food web in the northern Baltic Sea. Marine Ecology Progress Series 151:27–41

    Article  CAS  Google Scholar 

  • Utermöhl H (1931) Neue Wege in der quantitativen Erfassung des Planktons (mit besonderer Berücksichtigung des Ultraplanktons). Verhandlungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 5:567–595 [in German]

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen der Internationale Vereinigung für Theoretische und Angewandte Limnologie 9:1–38 [in German]

    Google Scholar 

  • Vahtera E, Conley DJ, Gustafsson BG, Kuosa H, Pitkänen H et al (2007) Internal ecosystem feedbacks enhance nitrogen-fixing cyanobacteria blooms and complicate management in the Baltic Sea. Ambio 36:186–194

    Article  CAS  Google Scholar 

  • Viherluoto M, Kuosa H, Flinkman J, Viitasalo M (2000) Food utilisation of pelagic mysids, Mysis mixta and M. relicta during their growing season in the northern Baltic Sea. Marine Biology 136:553–559

    Article  Google Scholar 

  • Viitasalo M (1992a) Mesozooplankton of the Gulf of Finland and northern Baltic Proper – a review of monitoring data. Ophelia 35:147–168

    Article  Google Scholar 

  • Viitasalo M (1992b) Calanoid resting eggs in the Baltic Sea: implications for the population dynamics of Acartia bifilosa (Copepoda). Marine Biology 114:397–405

    Article  Google Scholar 

  • Viitasalo M, Katajisto T (1994) Mesozooplankton resting eggs in the Baltic Sea – identification and vertical distribution in laminated and mixed sediments. Marine Biology 120:455–466

    Article  Google Scholar 

  • Viitasalo M, Rautio M (1998) Zooplanktivory by Praunus flexuosus (Crustacea: Mysidacea): functional responses and prey selection in relation to prey escape responses. Marine Ecology Progress Series 174:77–87

    Article  Google Scholar 

  • Viitasalo M, Koski M, Pellikka K, Johansson S (1995) Seasonal and long-term variations in the body size of planktonic copepods in the northern Baltic Sea. Marine Biology 123:241–250

    Article  Google Scholar 

  • Viitasalo M, Kiørboe T, Flinkman J, Pedersen LW, Visser AW (1998) Predation vulnerability of planktonic copepods: consequences of predator foraging strategies and prey sensory abilities. Marine Ecology Progress Series 175:129–145

    Article  Google Scholar 

  • Viitasalo M, Rosenberg M, Heiskanen AS, Koski M (1999) Sedimentation of copepod fecal material in the coastal northern Baltic Sea: where did all the pellets go? Limnology and Oceanography 44:1388–1399

    Article  Google Scholar 

  • Viitasalo M, Flinkman J, Viherluoto M (2001) Zooplanktivory in the Baltic Sea: a comparison of prey selectivity by Clupea harengus and Mysis mixta, with reference to prey escape reactions. Marine Ecology Progress Series 216:191–200

    Article  Google Scholar 

  • Viitasalo M, Blenckner T, Gårdmark A, Kaartokallio H, Kautsky L et al (2015) Environmental impacts – marine ecosystems. In BACC Author Team (ed) Second assessment of climate change for the Baltic Sea basin. Regional Climate Studies. Springer, Berlin, pp 363–380

    Google Scholar 

  • Vuorinen I, Rajasilta M, Salo J (1983) Selective predation and habitat shift in a copepod species – support for the predation hypothesis. Oecologia 59:62–64

    Article  CAS  Google Scholar 

  • Vuorinen I, Hänninen J, Rajasilta M, Laine P, Eklund J et al (2015) Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas – implications for environmental monitoring. Ecological Indicators 50:196–205

    Article  Google Scholar 

  • Wasmund N, Göbel J, von Bodungen B (2008) 100-years-changes in the phytoplankton community of Kiel Bight (Baltic Sea). Journal of Marine Systems 73:300–322

    Article  Google Scholar 

  • Wasmund N, Tuimala J, Suikkanen S, Vandepitte L, Kraberg A (2011) Long-term trends in phytoplankton composition in the western and central Baltic Sea. Journal of Marine Systems 87:145–159

    Article  Google Scholar 

  • Webb DG, Weaver AJ (1988) Predation and the evolution of free spawning in marine calanoid copepods. Oikos 51:189–192

    Article  Google Scholar 

  • Weber F, Anderson R, Foissner W, Mylnikov AP, Jürgens K (2014) Morphological and molecular approaches reveal highly stratified protist communities along Baltic Sea pelagic redox gradients. Aquatic Microbial Ecology 73:1–16

    Article  Google Scholar 

  • Welch HE (1968) Relationship between assimilation efficiencies and growth efficiencies for aquatic consumers. Ecology 49:755–759

    Article  Google Scholar 

  • Westin L, Nissling (1991) Effects of salinity on spermatozoa motility, percentage of fertilized eggs and egg development of Baltic cod (Gadus morhua), and implications for cod stock fluctuations in the Baltic. Marine Biology 108:5–9

    Article  Google Scholar 

  • Wieland K, Waller U, Schnack D (1994) Development of Baltic cod eggs at different levels of temperature and oxygen content. Dana 10:163–177

    Google Scholar 

  • Wieland K, Jarre-Teichmann A, Horbowa K (2000) Changes in the timing of spawning of Baltic cod: possible causes and implications for recruitment. ICES Journal of Marine Science 57:452–464

    Article  Google Scholar 

  • Wikner J, Andersson A (2012) Increased freshwater discharge shifts the trophic balance in the coastal zone of the northern Baltic Sea. Global Change Biology 18:2509–2519

    Article  Google Scholar 

  • Witek M (1998) Annual changes of abundance and biomass of planktonic ciliates in the Gdańsk basin, southern Baltic. International Review of Hydrobiology 83:163–182

    Article  Google Scholar 

  • Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K et al (2009) Changes in biogenic carbon flow in response to sea surface warming. Proceedings of the National Academy of Sciences of the USA 106:7067–7072

    Article  CAS  Google Scholar 

  • Wright JJ, Konwar KM, Hallam SJ (2012) Microbial ecology of expanding oxygen minimum zones. Nature Reviews Microbiology 10:381–394

    CAS  Google Scholar 

  • Wylezich C, Karpov SA, Mylnikov AP, Anderson R, Jürgens K (2012) Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypically mitochondrial cristae. BMC Microbiology 12:271, 13 pp

    Google Scholar 

  • Zöllner E, Hoppe HG, Sommer U, Jürgens K (2009) Effect of zooplankton-mediated trophic cascades on marine microbial food web components (bacteria, nanoflagellates, ciliates). Limnology and Oceanography 54:262–275

    Article  Google Scholar 

  • Zweifel UL, Norrman B, Hagström Å (1993) Consumption of dissolved organic carbon by marine bacteria and demand for inorganic nutrients. Marine Ecology Progress Series 101:23–32

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agneta Andersson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Andersson, A., Tamminen, T., Lehtinen, S., Jürgens, K., Labrenz, M., Viitasalo, M. (2017). The pelagic food web. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_8

Download citation

Publish with us

Policies and ethics