Skip to main content

The phytobenthic zone

  • Chapter
  • First Online:
Biological Oceanography of the Baltic Sea

Abstract

  1. 1.

    Phytobenthic communities consist of macrophytes (macroalgae, vascular plants and mosses) with their accompanying fauna and microorganisms.

  2. 2.

    The phytobenthic communities occur in the photic zone, which in the Baltic Sea extends from the water surface down to a ~20 m water depth, but in turbid coastal waters only down to ~5 m.

  3. 3.

    The type of vegetation is determined by the available substrate, which is a result of geography and geology in combination with currents. Most macroalgae grow attached to hard substrates whereas vascular plants and charophytes grow on sandy or soft (silt and mud) substrates.

  4. 4.

    Generally, the coastal areas of the Baltic Sea consist of mixed substrates with an intermingled vegetation of vascular plants and algae. In the northern Baltic Sea hard substrates dominate in the outer archipelagos, and in the southeastern Baltic Sea sandy and muddy substrates dominate.

  5. 5.

    Luxuriant stands of macrophytes provide food, shelter and spawning habitats for the associated sessile and mobile micro-, meio- and macrofauna, including fish.

  6. 6.

    On an ecosystem-wide scale, the phytobenthic communities vary along the large-scale Baltic Sea gradient. Biomass decreases with lower salinity and colder climate, while the proportion of freshwater species increases.

  7. 7.

    On a local scale, the phytobenthic communities are mainly, directly or indirectly, shaped by water movement (e.g. by the occurrence of sandy beaches and rocky shores) and winter ice cover. Light and substrate availability give rise to typical depth zonation patterns, ending with soft-substrate communities deepest down.

  8. 8.

    On a small scale (patches), phytobenthic community structure and composition is influenced by microhabitat structure and biotic interactions.

  9. 9.

    The phytobenthic communities in the brackish Baltic Sea are more sensitive to disturbance than their marine counterparts due to low diversity, physiological stress and the loss of sexual reproduction when species approach their salinity limit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agardh CA (1824) Systema algarum. Lundae Literis Berlingianis, 312 pp [in Latin]

    Google Scholar 

  • Agardh CA (1830) Conspectus criticus diatomacearum, Part 1. Lundae Literis Berlingianus, 16 pp [in Latin]

    Google Scholar 

  • Andersson AJ, Mackenzie FT, Lerman A (2005) Coastal ocean and carbonate systems in the high CO2 world of the anthropocene. American Journal of Science 305:875–918

    Article  CAS  Google Scholar 

  • Andrulewicz E, Kruk-Dowgiałło L, Osowiecki A (2004) Phytobenthos and macrozoobenthos of the Słupsk bank stony reefs, Baltic Sea. Hydrobiologia 514:163–170

    Article  Google Scholar 

  • Aneer G (1985) Some speculations about the Baltic herring in connection with the eutrophication of the Baltic Sea. Canadian Journal of Fisheries and Aquatic Sciences 42. Supplement 1:83–90

    Google Scholar 

  • Atkinson D (1994) Temperature and organism size – a biological law for ectotherms? Advances in Ecological Research 3:1–58

    Article  Google Scholar 

  • Atkinson D, Ciotti BJ, Montagnes DJS (2003) Protists decrease in size linearly with temperature: ca. 2.5 % degrees C−1. Philosophical Transactions of the Royal Society B 270:2605–2611

    Google Scholar 

  • Austin A (1959) Observations on Furcellaria fastigiata (L.) Lam. forma aegagropila Reinke in Danish waters together with a note on other unattached algae. Hydrobiologia 14:255–277

    Article  Google Scholar 

  • Axén J (1999) A STELLA®-simulation. Predicting population fluctuations of Baltic Sea blue mussels, Mytilus edulis L. Department of Systems Ecology, Stockholm University 1999,17:1–24 [MSc Thesis]

    Google Scholar 

  • Baardseth E (1970) A square-scanning, two-stage sampling method of estimating seaweed quantities. Reports of the Norwegian Institute for Seaweed Research 33:1–41

    Google Scholar 

  • Baden SP, Boström C, Arponen H, Tobiasson S, Moksnes PO (2010) Relative importance of trophic interactions and nutrient enrichment in seagrass ecosystems: a broadscale field experiment in the Baltic-Skagerrak area. Limnology and Oceanography 55:1435–1448

    Article  CAS  Google Scholar 

  • Baden SP, Gullström M, Lundén B, Pihl L, Rosenberg R (2003) Vanishing seagrass (Zostera marina L.) in Swedish coastal waters. AMBIO 32:374–377

    Article  Google Scholar 

  • Bellebaum J, Schirmeister B, Sonntag N, Garthe S (2013) Decreasing but still high: bycatch of seabirds in gillnet fisheries along the German Baltic coast. Aquatic Conservation: Marine and Freshwater Ecosystems 23:210–221

    Google Scholar 

  • Bergström L, Tatarenkov A, Johannesson K, Jönsson RB, Kautsky L (2005) Genetic and morphological identification of Fucus radicans sp. nov. (Fucales, Phaeophyceae) in the brackish Baltic Sea. Journal of Phycology 41:1025–1038

    Article  CAS  Google Scholar 

  • Bhattacharyya S, Feferman L, Unterman T, Tobacman JK (2015) Exposure to common food additive carrageenan alone leads to fasting hyperglycemia and in combination with high fat diet exacerbates glucose intolerance and hyperlipidemia without effect on weight. Journal of Diabetes Research 2015. Article ID 513429:1–13

    Google Scholar 

  • Blindow I (2000) Distribution of charophytes along the Swedish Coast in relation to salinity and eutrophication. Internationale Revue für Hydrobiologie 85:707–717

    Article  Google Scholar 

  • Boström C, Baden S, Bockelmann AC, Dromph K, Fredriksen S et al (2014) Distribution, structure and function of Nordic eelgrass (Zostera marina) ecosystems: implications for coastal management and conservation. Aquatic Conservation: Marine and Freshwater Ecosystems 24:410–434

    Article  Google Scholar 

  • Boström C, Bonsdorff E (1997) Community structure and spatial variation of benthic invertebrates associated with Zostera marina (L.) beds in the northern Baltic Sea. Journal of Sea Research 37:153–166

    Article  Google Scholar 

  • Boström C, Bonsdorff E, Kangas P, Norkko A (2002) Long-term changes in a brackish water Zostera marina community indicate effects of eutrophication. Estuarine Coastal Shelf Science 55:795–804

    Article  Google Scholar 

  • Boström C, O’Brien K, Roos C, Ekebom J (2006) Environmental variables explaining structural and functional diversity of seagrass macrofauna in an archipelago landscape. Journal of Experimental Marine Biology and Ecology 335:52–73

    Article  Google Scholar 

  • Bučas M, Daunys D, Olenin S (2009) Recent distribution and stock assessment of the red alga Furcellaria lumbricalis on an exposed Baltic Sea coast: combined use of field survey and modelling methods. Oceanologia 51:341–359

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Oceanography: anthropogenic carbon and ocean pH. Nature 425:365

    Article  CAS  Google Scholar 

  • Choo KS, Nilsson J, Pedersén M, Snoeijs P (2005) Photosynthesis, carbon uptake and antioxidant defence in two coexisting filamentous green algae under different stress conditions. Marine Ecology Progress Series 292:127–138

    Article  CAS  Google Scholar 

  • Dayton PK (1975) Experimental evaluation of ecological dominance in a rocky intertidal algal community. Ecological Monographs 48:137–159

    Article  Google Scholar 

  • Dring M (1981) Chromatic adaptation of photosynthesis in benthic marine algae: an examination of its ecological significance using a theoretical model. Limnology and Oceanography 26:271–284

    Article  Google Scholar 

  • Durinck J, Skov H, Jensen FP, Pihl S (1994) Important marine areas for wintering birds in the Baltic Sea. EU DG XI research contract no. 2242/90-09-01. Ornis Consult Report, 110 pp

    Google Scholar 

  • Ekebom J, Laihonen P, Suominen T (2003) A GIS-based stepwise procedure for assessing physical exposure in fragmented archipelagos. Estuarine, Coastal and Shelf Science 57:887–898

    Article  Google Scholar 

  • Engkvist R, Malm T, Tobiasson S (2000) Density-dependent grazing effects of the isopod Idotea balthica Pallas on Fucus vesiculosus L in the Baltic Sea. Aquatic Ecology 34:253–260

    Article  Google Scholar 

  • Eriksson BK, Johansson G (2003) Sedimentation reduces recruitment success of Fucus vesiculosus (Phaeophyceae) in the Baltic Sea. European Journal of Phycology 38:217–222

    Article  Google Scholar 

  • Eriksson BK, Johansson G, Snoeijs (1998) Long-term changes in the sublittoral zonation of brown algae in the southern Bothnian Sea. European Journal of Phycology 33:241–249

    Google Scholar 

  • Eriksson BK, Ljunggren L, Sandström A, Johansson G, Mattila J, Rubach A, Råberg S, Snickars M (2009) Declines in predatory fish promote bloom-forming macroalgae. Ecological Applications 19:1975–1988

    Article  Google Scholar 

  • Eriksson BK, Rubach A, Hillebrand H (2006) Community dominance by a canopy species controls the relationship between macroalgal production and species richness. Limnology and Oceanography 51:1813–1818

    Article  Google Scholar 

  • Eriksson BK, Sandström A, Isæus M, Schreiber H, Karås P (2004) Effects of boating activities on aquatic vegetation in the Stockholm archipelago, Baltic Sea. Estuarine, Coastal and Shelf Science 61:339–349

    Article  Google Scholar 

  • Eriksson BK, Sieben K, Eklöf J, Ljunggren L, Olsson J, Casini M, Bergström U (2011) Effects of altered offshore food webs on coastal ecosystems emphasize the need for cross-ecosystem management. AMBIO 40:786–797

    Article  Google Scholar 

  • Ferry BW, Sheard JW (1969) Zonation of supralittoral lichens on rocky shores around the Dale peninsula, Pembrokeshire. Field Studies 3:41–67

    Google Scholar 

  • Forsberg Å, Pekkari S (1999) Undersökning av undervattensvegetation och vattenkemi i nordligaste Bottenviken. Länsstyrelsen i Norrbottens län, Rapportserie 3/1999. [in Swedish]

    Google Scholar 

  • Foster J, Hirst AG, Esteban (2013) Achieving temperature-size changes in a unicellular organism. The ISME Journal 7:28–36

    Google Scholar 

  • Ganning B (1971) Studies on chemical, physical and biological conditions in Swedish rockpool ecosystems. Ophelia 9:51–105

    Article  Google Scholar 

  • Goecker ME, Kåll SE (2003) Grazing preferences of marine isopods and amphipods on three prominent algal species of the Baltic Sea. Journal of Sea Research 50:309–314

    Article  Google Scholar 

  • Gustafsson C, Boström C (2010) Biodiversity influences ecosystem functioning in aquatic angiosperm communities. Oikos 120:1037–1046

    Article  Google Scholar 

  • Gustafsson C, Boström C (2013) Influence of neighboring plants on shading stress resistance and recovery of eelgrass, Zostera marina L. PLoS ONE 8(5):e64064

    Article  CAS  Google Scholar 

  • Håkansson L (1977) The influence of wind, fetch, and water depth on the distribution of sediments in Lake Vänern, Sweden. Canadian Journal of Earth Sciences 14:397–412

    Article  Google Scholar 

  • Hällfors G (1984) Filamentous rock-pool algae in the Tvärminne archipelago, S. coast of Finland. Acta Botanica Fennica 126:1–111

    Google Scholar 

  • Hasselrot AT (1993) Insight into a psychomyiid life: towards the understanding of the ecology of the caddis fly Tinodes waeneri L. (Trichoptera, Psychomyiidae). Acta Universitatis Upsaliensis: Comprehensive summaries of Uppsala dissertations from the Faculty of Science and Technology, Uppsala University 13:1–24

    Google Scholar 

  • Havenhand JN (2012) How will ocean acidification affect Baltic Sea ecosystems? An assessment of plausible impacts on key functional groups. AMBIO 41:637–644

    Article  Google Scholar 

  • Hawkins SJ, Hartnoll RG (1985) Factors determining the upper limits of intertidal canopy-forming algae. Marine Ecology Progress Series 20:265–271

    Article  Google Scholar 

  • Hayden HS, Blomster J, Maggs CA, Silva PC, Stanhope MJ, Waaland JR (2003) Linnaeus was right all along: Ulva and Enteromorpha are not distinct genera. European Journal of Phycology 38:277–294

    Article  Google Scholar 

  • HELCOM (2007) HELCOM list of threatened and/or declining species and biotopes/habitats in the Baltic Sea Area. Baltic Sea Environment Proceedings 113:1–17

    Google Scholar 

  • HELCOM (2012) Checklist of Baltic Sea macro-species. Baltic Sea Environment Proceedings 130:1–203

    Google Scholar 

  • HELCOM (2013a) HELCOM red list of Baltic Sea species in danger of becoming extinct. Baltic Sea Environment Proceedings 140:1–106

    Google Scholar 

  • HELCOM (2013b) Climate change in the Baltic Sea Area: HELCOM thematic assessment in 2013. Baltic Sea Environment Proceedings 137:1–66

    Google Scholar 

  • Hemmi A, Jormalainen V (2002) Nutrient enhancement increases performance of a marine herbivore via quality of its food alga. Ecology 83:1052–1064

    Article  Google Scholar 

  • Hillebrand H, Soininen J, Snoeijs P (2010) Warming leads to higher species turnover in a coastal ecosystem. Global Change Biology 16:1181–1193

    Article  Google Scholar 

  • Ilus E (2009) Environmental effects of thermal and radioactive discharges from nuclear power plants in the boreal brackish-water conditions of the northern Baltic Sea. STUK – Radiation and Nuclear Safety Authority, Helsinki, Finland, 380 pp

    Google Scholar 

  • Isaeus M (2004) Factors structuring Fucus communities at open and complex coastlines in the Baltic Sea. Stockholm University, 24 pp [PhD Thesis]

    Google Scholar 

  • Jansson AM (1974) Community structure, modelling and simulation of the Cladophora ecosystem in the Baltic Sea. Contributions from the Askö Laboratory, Stockholm University 5:1–130

    Google Scholar 

  • Jansson AM, Kautsky N (1977) Quantitative survey of hard bottom communities in a Baltic archipelago. In: Keegan BF, O’Ceidigh P, Boaden PJS (eds) Biology of benthic organisms. Pergamon Press, Oxford, pp 359–366

    Chapter  Google Scholar 

  • Jansson BO (1978) The Baltic – a systems analysis of a semi-enclosed sea. In: Charnock H, Deacon G (eds) Advances in Oceanography. Plenum Press, New York NY, pp 131–183

    Chapter  Google Scholar 

  • Jansson BO, Aneer G, Nellbring S (1985) Spatial and temporal distribution of demersal fish fauna in a Baltic archipelago as estimated by SCUBA-census. Marine Ecology Progress Series 23:31–43

    Article  Google Scholar 

  • Jerlov NG (1976) Marine optics. Elsevier, New York NY, 231 pp

    Google Scholar 

  • Johansson G, Snoeijs P (2002) Macroalgal photosynthetic responses to light in relation to thallus morphology and depth zonation. Marine Ecology Progress Series 244:63–72

    Article  Google Scholar 

  • Kangas Autio H, Hällfors G, Luther H, Niemi Å, Salemaa H (1982) A general model of the decline of Fucus vesiculosus at Tvärminne, south coast of Finland in 1977–1981. Acta Botanica Fennica 188:1–27

    Google Scholar 

  • Karlson AML, Almqvist G, Skóra KE, Appelberg M (2007) Indications of competition between non-indigenous round goby and native flounder in the Baltic Sea. ICES Journal of Marine Science 64:479–486

    Article  Google Scholar 

  • Kautsky H (1984) Inventering av de grunda, vegetationstäckta bottnarna inom det planerade marina naturreservatet Salvorev, Sandö bank och Kopparstenarna, maj-juni 1983. Länsstyrelsen i Gotlands Län, 65 pp [in Swedish]

    Google Scholar 

  • Kautsky H (1989) Quantitative distribution of plant and animal communities of the phytobenthic zone in the Baltic Sea. Contributions from the Askö Laboratory, Stockholm University 35:1–80

    Google Scholar 

  • Kautsky H (1992) The impact of pulp mill effluents on phytobenthic communities of the Baltic Sea. AMBIO 21:308–313

    Google Scholar 

  • Kautsky H (1995a) Quantitative distribution of sublittoral plant and animal communities in the Baltic Sea gradient. In: Eleftheriou A, Ansell AA, Smith CJ (eds) Biology and ecology of shallow coastal waters. Olsen and Olsen, Fredensborg, pp 23–30

    Google Scholar 

  • Kautsky H (2013) Phytobenthos techniques. In: Eleftheriou A (ed) Methods for the study of marine benthos, 4th edn. John Wiley and Sons, Hoboken, NJ, pp 427–465

    Chapter  Google Scholar 

  • Kautsky H, Kautsky L, Kautsky N, Kautsky U, Lindblad C (1992) Studies on the Fucus vesiculosus community in the Baltic Sea. Acta Phytogeographica Suecica 78:33–48

    Google Scholar 

  • Kautsky H, Martin G, Mäkinen A, Borgiel M, Vahteri P, Rissanen J (1999) Structure of phytobenthic and associated animal communities in the Gulf of Riga. Hydrobiologia 393:191–200

    Article  Google Scholar 

  • Kautsky H, Tobiasson S, Karlsson J (2011) Komplexa samband på bottnarna. Havet – om miljötillståndet i svenska havsområden 2011:36–41 [in Swedish]

    Google Scholar 

  • Kautsky H, van der Maarel E (1990) Multivariate approaches to the variation in phytobenthic communities and environmental vectors in the Baltic Sea. Marine Ecology Progress Series 60:169–184

    Article  Google Scholar 

  • Kautsky N (1981) On the trophic role of the blue mussel (Mytilus edulis) in a Baltic coastal ecosystem and the fate of the organic matter produced by the mussels. Kieler Meeresforschung, Sonderhäft 5:454–461

    Google Scholar 

  • Kautsky N, Evans S (1987) Role of biodeposition by Mytilus edulis in the circulation of matter and nutrients in a Baltic coastal ecosystem. Marine Ecology Progress Series 38:201–212

    Article  Google Scholar 

  • Kautsky N, Kautsky H, Kautsky U, Wærn M (1986) Decreased depth penetration of Fucus vesiculosus L. since the 1940s indicates eutrophication of the Baltic Sea. Marine Ecology Progress Series 28:1–8

    Article  Google Scholar 

  • Kautsky N, Wallentinus I (1980) Nutrient release from a Baltic Mytilus-red algal community and its role in benthic and pelagic productivity. Ophelia, Supplement 1:17–30

    CAS  Google Scholar 

  • Kautsky U (1995b) Ecosystem processes in coastal areas of the Baltic Sea. Stockholm University, 25 pp [PhD Thesis]

    Google Scholar 

  • Kautsky U, Kautsky H (1995) Coastal production in the Baltic Sea. In: Eleftheriou A, Ansell AA, Smith CJ (eds) Biology and ecology of shallow coastal waters. Olsen and Olsen, Fredensborg, pp 31–38

    Google Scholar 

  • Kilpi M, Lorentsen SH, Petersen IK, Einarsson A (2014) Trends and drivers of change in diving ducks. TemaNord 2015: 516. Nordic Council of Ministers, Copenhagen, p 56

    Google Scholar 

  • Kiirikki M (1996a) Experimental evidence that Fucus vesiculosus (Phaeophyta) controls filamentous algae by means of the whiplash effect. European Journal of Phycology 31:61–66

    Article  Google Scholar 

  • Kiirikki M (1996b) Mechanisms affecting macroalgal zonation in the northern Baltic Sea. European Journal of Phycology 31:225–232

    Article  Google Scholar 

  • Korpinen S, Honkanen T, Vesakoski O, Hemmi A, Koivikko R (2007) Macroalgal communities face the challenge of changing biotic interactions: review with focus on the Baltic Sea. AMBIO 36:203–211

    Article  Google Scholar 

  • Korpinen S, Westerbom M (2010) Microhabitat segregation of the amphipod genus Gammarus (Crustacea: Amphipoda) in the northern Baltic Sea. Marine Biology 157:361–370

    Article  Google Scholar 

  • Krause-Jensen D, Carstensen J, Dahl K (2007) Total and opportunistic algal cover in relation to environmental variables. Marine Pollution Bulletin 55:115–125

    Article  CAS  Google Scholar 

  • Kurennoy D, Soomere T, Parnell KE (2009) Variability in the properties of wakes generated by high-speed ferries. Journal of Coastal Research SI 56:519–523

    Google Scholar 

  • Larsson K, Tydén (2005) Effekter av oljeutsläpp på övervintrande alfågel Clangula hyemalis vid Hoburgs bank i centrala Östersjön mellan 1996/97 och 2003/04. Ornis Svecica 15:161–171 [in Swedish]

    Google Scholar 

  • Lauringson V, Kotta J, Orav-Kotta H, Kotta I, Herkül K, Põllumäe A (2009) Comparison of benthic and pelagic suspension feeding in shallow water habitats of the northeastern Baltic Sea. Marine Ecology 30:43–55

    Article  Google Scholar 

  • Leidenberger S, Harding K, Jonsson PR (2012) Ecology and distribution of the isopod genus Idotea in the Baltic Sea: key species in a changing environment. Journal of Crustacean Biology 32:359–381

    Article  Google Scholar 

  • Littler NN, Littler DS (1984) Relationships between macroalgal functional form groups and substrata stability in a subtropical rocky-intertidal system. Journal of Experimental Marine Biology and Ecology 74:13–34

    Article  Google Scholar 

  • Ljunggren L, Sandström A, Bergström U, Mattila J, Lappalainen A et al (2010) Recruitment failure of coastal predatory fish in the Baltic Sea coincident with an offshore ecosystem regime shift. ICES Journal of Marine Science 67:1587–1595

    Article  Google Scholar 

  • Luther H (1951a) Verbreitung und Ökologie der höheren Wasserpflanzen im Brackwasser der Ekenäs-Gegend in Südfinnland. I. Algemeiner Teil. Acta Botanica Fennica 49:1–231 [in German]

    Google Scholar 

  • Luther H (1951b) Verbreitung und Ökologie der höheren Wasserpflanzen im Brackwasser der Ekenäs-Gegend in Südfinnland. II. Spezieller Teil. Acta Botanica Fennica 50:1–370 [in German]

    Google Scholar 

  • Lyons D, Arvanitidis C, Blight A, Chatzinikolaou E, Guy-Haim T et al (2014) Macroalgal blooms alter community structure and primary productivity in marine ecosystems. Global Change Biology 20:2712–2724

    Article  Google Scholar 

  • Mackenzie BR, Schiedek D (2007) Daily ocean monitoring since the 1860s shows record warming of northern European seas. Global Change Biology 13:1335–1347

    Article  Google Scholar 

  • Markager S, Sand-Jensen K (1992) Light requirements and depth zonation of marine macroalgae. Marine Ecology Progress Series 88:83–92

    Article  Google Scholar 

  • Martin G, Paalme T, Torn K (2006a) Growth and production rates of loose-lying and attached forms of the red algae Furcellaria lumbricalis and Coccotylus truncatus in Kassari Bay, the West Estonian Archipelago Sea. Hydrobiologia 554:107–115

    Article  Google Scholar 

  • Martin G, Paalme T, Torn K (2006b) Seasonality pattern of biomass accumulation in drifting Furcellaria lumbricalis community in waters of the West Estonian archipelago, Baltic Sea. Journal of Applied Phycology 18:557–563

    Article  Google Scholar 

  • Moksnes PO, Gullström M, Tryman K, Baden SP (2008) Trophic cascades in a temperate seagrass community. Oikos 117:763–777

    Article  Google Scholar 

  • Möller T, Kotta J, Martin G (2014) Spatiotemporal variability in the eelgrass Zostera marina L. in the northeastern Baltic Sea: canopy structure and associated macrophyte and invertebrate communities. Estonian Journal of Ecology 63:90–108

    Article  Google Scholar 

  • Munsterhjelm R (2005) Natural succession and human-induced changes in the soft-bottom macrovegetation of shallow brackish bays on the southern coast of Finland. Walter and Andrée de Nottbeck Foundation Scientific Reports 26:1–53

    Google Scholar 

  • Nellbring S (1985) Abundance, biomass, and seasonal variation of fish on shallow soft bottoms in the Askö area, northern Baltic Proper. Sarsia 70:217–225

    Article  Google Scholar 

  • Nilsson J, Andersson J, Karås P, Sandström O (2004) Recruitment failure and decreasing catches of perch (Perca fluviatilis L.) and pike (Esox lucius L.) in the coastal waters of south-east Sweden. Boreal Environment Research 9:295–306

    Google Scholar 

  • Nilsson J (2006) Predation of northern pike (Esox lucius L.) eggs: a possible cause of regionally poor recruitment in the Baltic Sea. Hydrobiologia 553:161–169

    Article  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41:199–219

    Article  Google Scholar 

  • Norling P, Kautsky N (2008) Patches of the mussel Mytilus sp. are islands of high biodiversity in subtidal sediment habitats in the Baltic Sea. Aquatic Biology 4:75–87

    Article  Google Scholar 

  • Nyqvist A, André C, Gullström M, Baden SP, Åberg P (2009) Dynamics of seagrass meadows on the Swedish Skagerrak coast. AMBIO 38:85–88

    Article  Google Scholar 

  • Nyström-Sandman A, Wikström SA, Blomqvist M, Kautsky H, Isæus M (2012) Scale-dependent influence of environmental variables on species distribution: a case study on five coastal benthic species in the Baltic Sea. Ecography 35:1–10

    Article  Google Scholar 

  • Östman M, Rönnberg O (1991) Effects of ships’ waves on rockpools in the Åland archipelago, northern Baltic Sea. Sarsia 76:125–132

    Article  Google Scholar 

  • Padilla DK, Allen BJ (2000) Paradigm lost: reconsidering functional form and group hypotheses in marine ecology. Journal of Experimental Marine Biology and Ecology 250:207–221

    Article  CAS  Google Scholar 

  • Paine RT (1966) Food web complexity and species diversity. American Naturalist 100:65–75

    Article  Google Scholar 

  • Paine RT (1995) A conversation on refining the concept of “keystone species”. Conservation Biology 9:962–964

    Article  Google Scholar 

  • Pajusalu L, Martin G, Põllumäe A, Paalme T (2013) Results of laboratory and field experiments of the direct effect of increasing CO2 on net primary production of macroalgal species in the brackish water ecosystems. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 62:148–154

    Article  CAS  Google Scholar 

  • Pajusalu L, Martin G, Põllumäe A, Torn K, Paalme T (2015) Direct effects of increased CO2 concentrations in seawater on the net primary production of charophytes in a shallow, coastal, brackish-water ecosystem. Boreal Environment Research 20:413–422

    Google Scholar 

  • Pauwels K (2007) Biochemical adaptation for dormancy in subitaneous and dormant eggs of Daphnia magna. Hydrobiologia 594:91–96

    Article  CAS  Google Scholar 

  • Pedersén M, Snoeijs P (2001) Patterns of macroalgal diversity, community composition and long-term changes along the Swedish west coast. Hydrobiologia 459:83–102, Erratum (2002) Hydrobiologia 468:233

    Google Scholar 

  • Pekkari S (1965) Notes on aquatic vegetation. Acta Phytogeographica Suecica 50:209–214

    Google Scholar 

  • Pihl L, Baden S, Kautsky N, Rönnbäck P, Söderqvist T, Troell M, Wennhage H (2006) Shift in fish assemblage structure due to loss of seagrass Zostera marina habitats in Sweden. Estuarine, Coastal and Shelf Science 67:123–132

    Article  Google Scholar 

  • Rasmussen E (1977) The wasting disease of eelgrass Zostera marina and its effects on environmental factors and fauna. In: McRoy CP, Helfferich C (eds) Seagrass ecosystems – a scientific perspective. Marcel Dekker, New York NY, pp 1–51

    Google Scholar 

  • Raven JA, Giordano M, Beardall J, Maberly SC (2012) Algal evolution in relation to atmospheric CO2: carboxylases, carbon-concentrating mechanisms and carbon oxidation cycles. Philosophical Transactions of the Royal Society B 367:493–507

    Article  CAS  Google Scholar 

  • Raven J, Caldeira K, Elderfield H, Hoegh-Guldberg O, Liss P et al (2005) Ocean acidification due to increasing atmospheric carbon dioxide. The Royal Society Policy Document 12(05):1–60

    Google Scholar 

  • Reusch TBH, Boström C, Stam WT, Olsen JL (1999) An ancient eelgrass clone in the Baltic. Marine Ecology Progress Series 183:301–304

    Article  Google Scholar 

  • Rodhe S, Molis M, Wahl M (2004) Regulation of anti-herbivore defence by Fucus vesiculosus in response to various cues. Journal of Ecology 92:1011–1018

    Article  Google Scholar 

  • Rodhe S, Wahl M (2008) Antifeeding defense in Baltic macroalgae: induction by direct grazing versus waterborne cues. Journal of Phycology 44:85–90

    Article  Google Scholar 

  • Rönnbäck P, Kautsky N, Pihl L, Troell M, Söderqvist T, Wennhage H (2007) Ecosystem goods and services from Swedish coastal habitats: identification, valuation, and implications of ecosystem shifts. AMBIO 36:534–544

    Article  Google Scholar 

  • Roos C, Rönnberg O, Berglund J, Alm A (2003) Long-term changes in macroalgal communities along ferry routes in a northern Baltic archipelago. Nordic Journal of Botany 23:247–259

    Article  Google Scholar 

  • Ruuskanen A, Bäck S, Reitalu T (1999) A comparison of two cartographic exposure methods using Fucus vesiculosus as an indicator. Marine Biology 134:139–145

    Article  Google Scholar 

  • Saderne V, Fietzek P, Herman PMJ (2013) Extreme variations of pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS ONE 8(4):e62689

    Google Scholar 

  • Salo T, Gustafsson C, Boström C (2009) Effects of plant diversity on primary production and species interactions in a brackish water seagrass community. Marine Ecology Progress Series 396:261–272

    Article  Google Scholar 

  • Salovius S, Kraufvelin P (2004) The filamentous green alga Cladophora glomerata as a habitat for littoral macrofauna in the northern Baltic Sea. Ophelia 58:65–78

    Article  Google Scholar 

  • Sandén P, Håkansson B (1996) Long-term trends in Secchi depth in the Baltic Sea. Limnology and Oceanography 41:346–351

    Article  Google Scholar 

  • Schubert H, Blindow I (eds) (2003) Charophytes of the Baltic Sea. Koeltz, Königstein 332 pp

    Google Scholar 

  • Skov H, Heinänen S, Žydelis R, Bellebaum J, Bzoma S, et al. (2011) Waterbird populations and pressures in the Baltic Sea. TemaNord 2011:550. Nordic Council of Ministers, Copenhagen, 201 pp

    Google Scholar 

  • Snoeijs P (1989) Effects of increasing water temperatures and flow rates on epilithic fauna in a cooling-water discharge basin. Journal of Applied Ecology 26:935–956

    Article  Google Scholar 

  • Snoeijs P (1990a) Effects of temperature on spring bloom dynamics of epilithic diatom communities in the Gulf of Bothnia. Journal of Vegetation Science 1:599–608

    Article  Google Scholar 

  • Snoeijs P (1990b) Marine and brackish waters. Acta Phytogeographica Suecica 84:187–212

    Google Scholar 

  • Snoeijs P (1995) Effects of salinity on epiphytic diatom communities on Pylaiella littoralis (Phaeophyceae) in the Baltic Sea. Ecoscience 2:382–394

    Article  Google Scholar 

  • Snoeijs P, Kautsky U (1989) Effects of ice-break on the structure and dynamics of a benthic diatom community in the northern Baltic Sea. Botanica Marina 32:547–562

    Article  Google Scholar 

  • Snoeijs P, Prentice IC (1989) Effects of cooling water discharge on the structure and dynamics of epilithic algal communities in the northern Baltic. Hydrobiologia 184:99–123

    Article  Google Scholar 

  • Snoeijs P, Wakuru-Murasi L (2004) Symbiosis between diatoms and cyanobacterial colonies. Vie Milieu 54:163–170

    Google Scholar 

  • Sonntag N, Schwemmer H, Fock HO, Bellebaum J, Garthe S (2012) Seabirds, set-nets, and conservation management: assessment of conflict potential and vulnerability of birds to bycatch in gillnets. ICES Journal of Marine Science 69:578–589

    Article  Google Scholar 

  • Stearns SC (1989) Trade-offs in life-history evolution. Functional Ecology 3:259–268

    Article  Google Scholar 

  • Strandmark A, Bring A, Cousins SAO, Destouni G, Kautsky H et al (2015) Climate change effects on the Baltic Sea borderland between land and sea. AMBIO 44(Supplement):S28–S38

    Article  Google Scholar 

  • Svedelius N (1901) Studier öfver Östersjons hafsalgflora. Uppsala University, 140 pp [PhD Thesis, in Swedish]

    Google Scholar 

  • Svensson F, Norberg J, Snoeijs P (2014) Diatom cell size, coloniality and motility: trade-offs between temperature, salinity and nutrient supply with climate change. PLoS ONE 9(10):e109993

    Article  CAS  Google Scholar 

  • Svensson PA, Malm T, Engkvist R (2004) Distribution and host plant preference of Idotea balthica (Pallas) (Crustacea: Isopoda) on shallow rocky shores in the central Baltic Sea. Sarsia 89:1–7

    Article  Google Scholar 

  • Tedengren M, André C, Johannesson K, Kautsky N (1990) Genotypic and phenotypic differences between Baltic and North Sea populations of Mytilus edulis evaluated through reciprocal transplantations, III Physiology. Marine Ecology Progress Series 59:221–227

    Article  Google Scholar 

  • Tedengren M, Kautsky N (1986) Comparative study of the physiology and its probable effect on size in blue mussels (Mytilus edulis L.) from the North Sea and the Northern Baltic Proper. Ophelia 25:147–155

    Article  Google Scholar 

  • Thomsen MS, Wernberg T (2015) The devil in the detail: harmful seaweeds are not harmful to everyone. Global Change Biology 21:1381–1382

    Article  Google Scholar 

  • Tobacman J (2001) Review of harmful gastrointestinal effects of carrageenan in animal experiments. Environmental Health Perspectives 109:983–994

    Article  CAS  Google Scholar 

  • Torn K (2008) Distribution and ecology of charophytes in the Baltic Sea. Dissertationes Biologicae Universitatis Tartuensis 143:1–31

    Google Scholar 

  • Torn K, Krause-Jensen D, Martin G (2006a) Present and past depth distribution of bladderwrack (Fucus vesiculosus) in the Baltic Sea. Aquatic Botany 84:53–62

    Article  Google Scholar 

  • Torn K, Martin G (2004) Environmental factors affecting the distribution of charophyte species in Estonian coastal waters, Baltic Sea. Proceedings of the Estonian Academy of Sciences, Biology and Ecology 53:251–259

    Google Scholar 

  • Torn K, Martin G, Paalme T (2006b) Seasonal changes in biomass, elongation growth and primary production rate of Chara tomentosa in the NE Baltic Sea. Annales Botanici Fennici 43:276–283

    Google Scholar 

  • Ulanova A, Busse S, Snoeijs P (2009) Coastal diatom-environment relationships in the brackish Baltic Sea. Journal of Phycology 45:54–68

    Article  Google Scholar 

  • Vahteri P, Mäkinen A, Salovius S, Vuorinen I (2000) Are drifting algal mats conquering the bottom of the Archipelago Sea, SW Finland? AMBIO 29:338–343

    Article  Google Scholar 

  • van den Hoek C (1987) The possible significance of long-range dispersal for the biogeography of seaweeds. Helgoländer Meeresuntersuchungen 41:261–272

    Article  Google Scholar 

  • Vermeer CP, Escher M, Portielje R, de Klein JJM (2003) Nitrogen uptake and translocation by Chara. Aquatic Botany 76:245–258

    Article  CAS  Google Scholar 

  • Vesakoski O, Boström C, Ramsay T, Jormalainen V (2008) Sexual and local divergence in host exploitation in the marine herbivore Idotea balthica (Isopoda). Journal of Experimental Marine Biology and Ecology 367:118–126

    Article  Google Scholar 

  • von Wachenfeldt T (1975) Marine benthic algae and the environment in the Öresund I-III. University of Lund, 328 pp [PhD Thesis]

    Google Scholar 

  • Vuorinen I, Antsulevich AE, Maximovich NV (2002) Spatial distribution and growth of the common mussel Mytilus edulis L. in the archipelago of SW Finland, northern Baltic Sea. Boreal Environment Research 7:41–52

    Google Scholar 

  • Wærn M (1945) Remarks on some Swedish Sphacelariaceae. Svensk Botanisk Tidskrift 39:396–420

    Google Scholar 

  • Wærn M (1952) Rocky-shore algae in the Öregrund archipelago. Acta Phytogeographica Suecica 30:1–298

    Google Scholar 

  • Wærn M (1965) A vista on the marine vegetation. Acta Phytogeographica Suecica 50:13–27

    Google Scholar 

  • Wallentinus I (1979) Environmental influence on benthic macrovegetation in the Trosa-Askö area, northern Baltic Proper. II. The ecology of macroalgae and submersed phanerogams. Contributions from the Askö Laboratory, Stockholm University 25:1–210

    Google Scholar 

  • Wallentinus I (1984) Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies. Marine Biology 80:215–225

    Article  CAS  Google Scholar 

  • Wallentinus I, Pedersén M, Snoeijs P (1992) A tribute to Mats Wærn – the nestor of modern Swedish phycology. Acta Phytogeographica Suecica 78:1–9

    Google Scholar 

  • Wennberg T (1992) Colonization and succession of macroalgae on a breakwater in Laholm Bay, a eutrophicated brackish water area (SW Sweden). Acta Phytogeographica Suecica 78:65–77

    Google Scholar 

  • Westerbom M, Jattu S (2006) Effects of wave exposure on the sublittoral distribution of blue mussels Mytilus edulis in a heterogeneous archipelago. Marine Ecology Progress Series 306:191–200

    Article  Google Scholar 

  • Westerbom M, Kilpi M, Mustonen O (2002) Blue mussels, Mytilus edulis, at the edge of the range: population structure, growth and biomass along a salinity gradient in the northeastern Baltic Sea. Marine Biology 140:991–999

    Article  Google Scholar 

  • Wikström SA, von Wachenfeldt T, Kautsky L (2002) Establishment of the exotic species Fucus evanescens C. Ag. (Phaeophyceae) in Öresund, southern Sweden. Botanica Marina 45:510–517

    Article  Google Scholar 

  • Wójcik D, Normant M, Dmochowska B, Fowler A (2015) Impact of Chinese mitten crab Eriocheir sinensis on blue mussel Mytilus edulis trossulus – laboratory studies of claw strength, handling behavior, consumption rate, and size selective predation. Oceanologia 57:263–270

    Article  Google Scholar 

  • Worm B, Lotze HK, Bostrom C, Engkvist R, Labanauskas V, Sommer U (1999) Marine diversity shift linked to interactions among grazers, nutrients and propagule banks. Marine Ecology Progress Series 185:309–314

    Article  Google Scholar 

  • Worm B, Lotze HK, Sommer U (2001) Algal propagule banks modify competition, consumer and resource control on Baltic rocky shores. Oecologia 128:281–293

    Article  Google Scholar 

  • Yang B, Bhattacharyya S, Linhardt R, Tobacman J (2012) Exposure to common food additive carrageenan leads to reduced sulfatase activity and increase in sulfated glycosaminoglycans in human epithelial cells. Biochimie 94:1309–1316

    Article  CAS  Google Scholar 

  • Yousef MAM, Schubert H, von Nordheim H (eds) (2001) Charophytes in the Baltic Sea: threats and conservation. Schriftenreihe für Landschaftspflege und Naturschutz 72:1–44

    Google Scholar 

  • Zettler ML, Gosselck F (2006) Benthic assessment of marine areas of particular ecological importance within the German Baltic Sea EEZ. In: von Nordheim H, Boedeker D, Krause JC (eds) Progress in marine conservation in Europe – NATURA 2000 sites in German offshore waters. Springer, Berlin, pp 141–156

    Google Scholar 

  • Zulkifly SB, Graham JM, Young EB, Mayer RJ, Piotrowski MJ et al (2013) The genus Cladophora Kützing (Ulvophyceae) as a globally distributed ecological engineer. Journal of Phycology 49:1–17

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pauline Snoeijs-Leijonmalm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kautsky, H., Martin, G., Snoeijs-Leijonmalm, P. (2017). The phytobenthic zone. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_11

Download citation

Publish with us

Policies and ethics