Skip to main content

Brackish water as an environment

  • Chapter
  • First Online:
Biological Oceanography of the Baltic Sea

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andersen NM, Cheng L (2004) The marine insect Halobates (Heteroptera: Gerridae): biology, adaptations, distribution and phylogeny. Oceanography and Marine Biology: An Annual Review 42:119–180

    Google Scholar 

  • Anonymous (1958) The venice system for the classification of marine waters according to salinity. Limnology and Oceanography 3:346–347

    Article  Google Scholar 

  • Anonymous (1959) Final resolution of the symposium on the classification of brackish waters. Archo Oceanography Limnology 11(Supplement):243–245

    Google Scholar 

  • Bayly IAE (1967) The general biological classification of aquatic environments with special reference to those of Australia. In: Weatherley AH (ed) Australian inland waters and their fauna. Australian National University Press, Canberra, pp 78–104

    Google Scholar 

  • Benner R (2002) Chemical composition and reactivity. In: Hansell D, Carlson CA (eds) Biogeochemistry of dissolved organic matter. Academic Press, London, pp 59–90

    Chapter  Google Scholar 

  • Blümel C, Domin A, Krause JC, Schubert M, Schiewer U, Schubert H (2002) Der historische Makrophytenbewuchs der inneren Gewässer der deutschen Ostseeküste. Rostocker Meeresbiologische Beiträge 9:5–111 [in German]

    Google Scholar 

  • Debye (1954) The collected papers of Peter J. W. Debye. Interscience, New York-London 700 pp

    Google Scholar 

  • den Hartog C (1964) Typologie des Brackwassers. Helgoländer Meereswissenschaftliche Beiträge 10:377–390 [in German]

    Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton NJ 512 pp

    Google Scholar 

  • Fofonoff NP, Lewis EL (1979) A practical salinity scale. Journal of the Oceanographical Society of Japan 35:63–64

    Article  Google Scholar 

  • Forch C, Knudsen M, Sörensen SPL (1902) Berichte über die Konstantenbestimmungen zur Aufstellung der Hydrographischen Tabellen. Kongelige Danske Videnskabernes Selskabs Skrifter Naturvidenskabelige og Mathematiske Afhandlinger 7(1):1–151 [in German]

    Google Scholar 

  • Frankignoulle M, Vieira Borges A (2001) Direct and indirect pCO2 measurements in a wide range of pCO2 and salinity values (the Scheldt Estuary). Aquatic Geochemistry 7:267–273

    Article  CAS  Google Scholar 

  • Gold T (1999) The deep hot biosphere: the myth of fossil fuels. Springer, New York, NY 243 pp

    Book  Google Scholar 

  • HELCOM (1990) Second periodic assessment of the state of the marine environment of the Baltic Sea Area, 1984–1988. Baltic Sea Environment Proceedings 35B:1–432

    Google Scholar 

  • IOC SCOR IAPSO (2010) The international thermodynamic equation of seawater—2010: calculation and use of thermodynamic properties. Intergovernmental Oceanographic Commission, UNESCO Manuals and Guides 56:1–196

    Google Scholar 

  • Jerlov NG (1951) Optical studies of ocean water. Reports of the Swedish Deep-Sea Expedition 1947–1948, 3:73-97

    Google Scholar 

  • Johnson KM, Wills KD, Buttler DB, Johnson WK, Wong CS (1993) Coulometric total carbon dioxide analysis for marine studies: maximizing the performance of an automated gas extraction system and coulometric detector. Marine Chemistry 44:167–187

    Article  CAS  Google Scholar 

  • Karp-Boss L, Boss E, Jumars PA (1996) Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanography and Marine Biology: An Annual Review 34:71–107

    Google Scholar 

  • Kinne O (1971) Salinity: animals—invertebrates. In: Kinne O (ed) Marine ecology, vol 1., Environmental factors, Part 2 John Wiley and Sons, New York NY, pp 821–996

    Google Scholar 

  • Knudsen M (1901) Hydrographical tables. GEC Gad, Copenhagen 63 pp

    Google Scholar 

  • Körtzinger A, Thomas H, Schneider B, Gronau N, Mintrop L, Duinker JC (1996) At sea intercomparison of two newly designed underway pCO2 system—encouraging results. Marine Chemistry 52:133–145

    Article  Google Scholar 

  • Kremling K (1972) Untersuchungen über die chemische Zusammensetzung des Meerwassers aus der Ostsee III, Frühjahr 1969—Herbst 1970. Kieler Meeresforschungen 28:99–118 [in German]

    CAS  Google Scholar 

  • Kremling K (1995) Ionenanomalien. In: Rheinheimer G (ed) Meereskunde der Ostsee, 2nd edn. Springer, Berlin, pp 88–91 [in German]

    Google Scholar 

  • Langlois VJ, Andersen A, Bohr T, Visser AW, Kiørboe T (2009) Significance of swimming and feeding currents for nutrient uptake in osmotrophic and interception-feeding flagellates. Aquatic Microbial Ecology 54:35–44

    Article  Google Scholar 

  • Lewis EL, Perkin RG (1978) Salinity: its definition and calculation. Journal of Geophysical Research 83:466–478

    Article  CAS  Google Scholar 

  • Lloyd GER (1974) Early greek science: thales to aristotle. WW Norton and Company, New York NY 156 pp

    Google Scholar 

  • Marcet A (1819) Über das specifische Gewicht, die Temperatur und die Salze des Meerwassers in verschiedenen Theilen des Weltmeers und in eingeschlossenen Meeren. Annals of Physics 10:113–158 [in German]

    Article  Google Scholar 

  • Miller SL (1953) A production of amino acids under possible primitive earth conditions. Science 117:528–529

    Article  CAS  Google Scholar 

  • Millero FJ (1995) Thermodynamics of the carbon dioxide system in the oceans. Geochimica et Cosmochimica Acta 59:661–677

    Article  CAS  Google Scholar 

  • Purcell EM (1977) Life at low Reynolds numbers. American Journal of Physics 45:3–11

    Article  Google Scholar 

  • Rahm G (1928) Tardigrada. In: Grimpe O (ed) Die Tierwelt der Nord- und Ostsee Leipzig, 11(1b):1–25 [in German]

    Google Scholar 

  • Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebrate Survival Journal 4:65–81

    Google Scholar 

  • Redeke HC (1922) Zur Biologie der niederländischen Brackwassertypen. Bijdragen tot de Dierkunde 22:329–335 [in German]

    Google Scholar 

  • Schubert H, Sagert S, Forster RM (2001) Evaluation of the different levels of variability in the underwater light field of a shallow estuary. Helgoland Marine Research 55:12–22

    Article  Google Scholar 

  • Schwoerbel J (1977) Einführung in die Limnologie, 3rd edn. Gustav Fischer, Jena, 191 [in German]

    Google Scholar 

  • Seckbach J (ed) (2012) Genesis—in the beginning: precursors of life, chemical models and early biological evolution. Springer, Berlin 934 pp

    Google Scholar 

  • Talley LD, Pickard GL, Emery WJ, Swift JH (2011) Descriptive physical oceanography: an introduction, 6th edn. Academic Press, London 560 pp

    Google Scholar 

  • UNESCO (1981) Tenth report of the joint panel on oceanographic tables and standards. UNESCO Technical Papers in Marine Science 36:1–25

    Google Scholar 

  • Välikangas I (1926) Planktologische Untersuchungen im Hafengebiet von Helsingfors. Acta Zoologica Fennica 1:1–298 [in German]

    Google Scholar 

  • Välikangas I (1933) Über die Biologie der Ostsee als Brackwassergebiet. Verhandlungen der Internationalen Vereinigung für theoretische und angewandte Limnologie 6:62–112 [in German]

    Google Scholar 

  • van den Berg CMG (1995) Evidence for organic complexation of iron in seawater. Marine Chemistry 50:139–157

    Article  Google Scholar 

  • Wächtershäuser G (1988) Pyrite formation, the first energy source for life: a hypothesis. Systematic and Applied Microbiology 10:207–210

    Article  Google Scholar 

  • Wallace WJ (1974) The development of the chlorinity/salinity concept. Elsevier, Amsterdam 227 pp

    Google Scholar 

  • Wesslander K, Omstedt A, Schneider B (2010) Inter-annual and seasonal variations of the air-sea CO2 balance in the southern Baltic Sea and the Kattegat. Continental Shelf Research 30:1511–1521

    Article  Google Scholar 

  • Wooster WS, Lee AJ, Dietrich G (1969) Redefinition of salinity. Limnology and Oceanography 14:437–438

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hendrik Schubert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schubert, H., Schories, D., Schneider, B., Selig, U. (2017). Brackish water as an environment. In: Snoeijs-Leijonmalm, P., Schubert, H., Radziejewska, T. (eds) Biological Oceanography of the Baltic Sea. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0668-2_1

Download citation

Publish with us

Policies and ethics