Skip to main content

The Multifaceted Role of Cancer Associated Fibroblasts in Tumor Progression

  • Chapter
  • First Online:
Tumor-Associated Fibroblasts and their Matrix

Part of the book series: The Tumor Microenvironment ((TTME,volume 4))

Abstract

The fibroblast is a key player in the stroma of epithelial malignancies. Recently relatively specific fibroblast markers have been identified, facilitating the assessment of how fibroblasts and cancer cells interact. While the malignant cells activate fibroblasts in the tumor stroma, cancer associated fibroblasts secrete growth factors and build a permissive soil in which the cancer cells thrive. There is a great controversy in the research community today as to the possible existence of fibroblast mutations in epithelial cancers, which we will discuss. Furthermore, the prognostic role of fibrosis in tumors will be debated, along with future therapeutic strategies targeted at cancer associated fibroblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The FSP1-GFP mice were a kind gift from E.G. Neilson.

  2. 2.

    FSP1-Cre and R26R-EYFP reporter mice were kindly provided by E.G. Neilson and B. G. Neel respectively.

Abbreviations

αSMA:

α-Smooth muscle actin

bFGF:

Basic fibroblast growth factor

BMH:

Bone marrow-derived hematopoietic precursor cells

BMM:

Bone marrow-derived mesenchymal precursor cells

CAF:

Cancer associated fibroblast

CK5:

Cytokeratin 5

DAB:

3,3¢-diaminobenzidine

ECM:

Extracellular matrix

EMT:

Epithelial-to-mesenchymal transition

EndMT:

Endothelial-to-mesenchymal transition

ER:

Estrogen receptor

FAP:

Fibroblast activation protein

FSP1:

Fibroblast specific protein-1

HGF:

Hepatocyte growth factor

IGF:

Insulin-like growth factor

KGF:

Keratinocyte growth factor

MMP:

Matrix metalloproteinase

MMPI:

Matrix metalloproteinase inhibitor

NG2:

NG2 chondroitin sulfate proteoglycan

PDGF:

Platelet derived growth factor

SCC:

Squamous cell carcinoma

TGFb:

Transforming growth factor-b.

References

  • Aldinucci D et al (2004) Interactions between tissue fibroblasts in lymph nodes and Hodgkin/Reed-Sternberg cells. Leuk Lymphoma 45:1731–1739

    PubMed  CAS  Google Scholar 

  • Allinen M et al (2004) Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 6:17–32

    PubMed  CAS  Google Scholar 

  • Alphonso A, Alahari SK (2009) Stromal cells and integrins: conforming to the needs of the tumor microenvironment. Neoplasia 11:1264–1271

    PubMed  CAS  Google Scholar 

  • An JY et al (2008) Borrmann type IV: an independent prognostic factor for survival in gastric cancer. J Gastrointest Surg 12:1364–1369

    PubMed  Google Scholar 

  • Arendt LM et al (2009) Stroma in breast development and disease. Semin Cell Dev Biol 21:11–18

    PubMed  Google Scholar 

  • Bhowmick NA et al (2004a) Stromal fibroblasts in cancer initiation and progression. Nature 432:332–337

    CAS  Google Scholar 

  • Bhowmick NA et al (2004b) TGF-beta signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science 303:848–851

    CAS  Google Scholar 

  • Bilgen M et al (2003) Elastography imaging of small animal oncology models: a feasibility study. Ultrasound Med Biol 29:1291–1296

    PubMed  Google Scholar 

  • Birchmeier C et al (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4:915–925

    PubMed  CAS  Google Scholar 

  • Boomershine CS et al (2009) Autoimmune pancreatitis results from loss of TGFbeta signalling in S100A4-positive dendritic cells. Gut 58:1267–1274

    PubMed  CAS  Google Scholar 

  • Boyd NF et al (2007) Mammographic density and the risk and detection of breast cancer. N Engl J Med 356:227–236

    PubMed  CAS  Google Scholar 

  • Campbell I et al (2009) Clonal mutations in the cancer-associated fibroblasts: the case against genetic coevolution. Cancer Res 69:6765–6768, discussion 9

    PubMed  CAS  Google Scholar 

  • Cardone A et al (1997) Prognostic value of desmoplastic reaction and lymphocytic infiltration in the management of breast cancer. Panminerva Med 39:174–177

    PubMed  CAS  Google Scholar 

  • Chang HY et al (2004) Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biol 2:E7

    PubMed  Google Scholar 

  • Chen CY et al (2002) Peritoneal carcinomatosis and lymph node metastasis are prognostic indicators in patients with Borrmann type IV gastric carcinoma. Hepatogastroenterology 49:874–877

    PubMed  Google Scholar 

  • Chiquet M et al (2003) How do fibroblasts translate mechanical signals into changes in extracellular matrix production? Matrix Biol 22:73–80

    PubMed  CAS  Google Scholar 

  • Christensen JG et al (2003) A selective small molecule inhibitor of c-Met kinase inhibits c-Met-dependent phenotypes in vitro and exhibits cytoreductive antitumor activity in vivo. Cancer Res 63:7345–7355

    PubMed  CAS  Google Scholar 

  • Christensen JG et al (2007) Cytoreductive antitumor activity of PF-2341066, a novel inhibitor of anaplastic lymphoma kinase and c-Met, in experimental models of anaplastic large-cell lymphoma. Mol Cancer Ther 6:3314–3322

    PubMed  CAS  Google Scholar 

  • Cohen SJ et al (2008) Fibroblast activation protein and its relationship to clinical outcome in pancreatic adenocarcinoma. Pancreas 37:154–158

    PubMed  CAS  Google Scholar 

  • Conti JA et al (2008) The desmoplastic reaction surrounding hepatic colorectal adenocarcinoma metastases aids tumor growth and survival via alphav integrin ligation. Clin Cancer Res 14:6405–6413

    PubMed  CAS  Google Scholar 

  • Crawford Y et al (2009) PDGF-C mediates the angiogenic and tumorigenic properties of fibroblasts associated with tumors refractory to anti-VEGF treatment. Cancer Cell 15:21–34

    PubMed  CAS  Google Scholar 

  • De Santis R et al (2006) Low and high tenascin-expressing tumors are efficiently targeted by ST2146 monoclonal antibody. Clin Cancer Res 12:2191–2196

    PubMed  Google Scholar 

  • De Wever O et al (2008) Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 123:2229–2238

    PubMed  Google Scholar 

  • Desgrosellier JS, Cheresh DA (2010) Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer 10:9–22

    PubMed  CAS  Google Scholar 

  • Direkze NC et al (2004) Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts. Cancer Res 64:8492–8495

    PubMed  CAS  Google Scholar 

  • Direkze NC et al (2006) Bone marrow-derived stromal cells express lineage-related messenger RNA species. Cancer Res 66:1265–1269

    PubMed  CAS  Google Scholar 

  • Eder JP et al (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15:2207–2214

    PubMed  CAS  Google Scholar 

  • Eikesdal HP, Kalluri R (2009) Drug resistance associated with antiangiogenesis therapy. Semin Cancer Biol 19:310–317

    PubMed  CAS  Google Scholar 

  • Eikesdal HP et al (2002) Hyperthermia exhibits anti-vascular activity in the s.c. BT4An rat glioma -lack of interaction with the angiogenesis inhibitor batimastat. Int J Hyperthermia 18:141–152

    PubMed  CAS  Google Scholar 

  • Elenbaas B, Weinberg RA (2001) Heterotypic signaling between epithelial tumor cells and fibroblasts in carcinoma formation. Exp Cell Res 264:169–184

    PubMed  CAS  Google Scholar 

  • Eng C et al (2009) Genomic alterations in tumor stroma. Cancer Res 69:6759–6764

    PubMed  CAS  Google Scholar 

  • Farmer P et al (2009) A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer. Nat Med 15:68–74

    PubMed  CAS  Google Scholar 

  • Fiegl H et al (2006) Breast cancer DNA methylation profiles in cancer cells and tumor stroma: association with HER-2/neu status in primary breast cancer. Cancer Res 66:29–33

    PubMed  CAS  Google Scholar 

  • Finak G et al (2008) Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 14:518–527

    PubMed  CAS  Google Scholar 

  • Fries KM et al (1994) Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis. Clin Immunol Immunopathol 72:283–292

    PubMed  CAS  Google Scholar 

  • Galbraith CG, Sheetz MP (1998) Forces on adhesive contacts affect cell function. Curr Opin Cell Biol 10:566–571

    PubMed  CAS  Google Scholar 

  • Giovannini M et al (2009) Endoscopic ultrasound elastography for evaluation of lymph nodes and pancreatic masses: a multicenter study. World J Gastroenterol 15:1587–1593

    PubMed  Google Scholar 

  • Goetz C et al (2003) Locoregional radioimmunotherapy in selected patients with malignant glioma: experiences, side effects and survival times. J Neurooncol 62:321–328

    PubMed  CAS  Google Scholar 

  • Grigorian M et al (1994) Modulation of mts1 expression in mouse and human normal and tumor cells. Electrophoresis 15:463–468

    PubMed  CAS  Google Scholar 

  • Gupta PB et al (2007) Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Res 67:2062–2071

    PubMed  CAS  Google Scholar 

  • Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70

    PubMed  CAS  Google Scholar 

  • Hanson JA et al (2006) Gene promoter methylation in prostate tumor-associated stromal cells. J Natl Cancer Inst 98:255–261

    PubMed  CAS  Google Scholar 

  • Hardwick JC et al (2008) Bone morphogenetic protein signalling in colorectal cancer. Nat Rev Cancer 8:806–812

    Google Scholar 

  • Haslam SZ, Woodward TL (2003) Host microenvironment in breast cancer development: epithelial-cell-stromal-cell interactions and steroid hormone action in normal and cancerous mammary gland. Breast Cancer Res 5:208–215

    PubMed  CAS  Google Scholar 

  • Haviv I et al (2009) Origin of carcinoma associated fibroblasts. Cell Cycle 8:589–595

    PubMed  CAS  Google Scholar 

  • Henry LR et al (2007) Clinical implications of fibroblast activation protein in patients with colon cancer. Clin Cancer Res 13:1736–1741

    PubMed  CAS  Google Scholar 

  • Hill R et al (2005) Selective evolution of stromal mesenchyme with p53 loss in response to epithelial tumorigenesis. Cell 123:1001–1011

    PubMed  CAS  Google Scholar 

  • Hu M et al (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37:899–905

    PubMed  CAS  Google Scholar 

  • Hung SC et al (2005) Mesenchymal stem cell targeting of microscopic tumors and tumor stroma development monitored by noninvasive in vivo positron emission tomography imaging. Clin Cancer Res 11:7749–7756

    PubMed  CAS  Google Scholar 

  • Hwang RF et al (2008) Cancer-associated stromal fibroblasts promote pancreatic tumor progression. Cancer Res 68:918–926

    PubMed  CAS  Google Scholar 

  • Iacobuzio-Donahue CA et al (2002) The desmoplastic response to infiltrating breast carcinoma: gene expression at the site of primary invasion and implications for comparisons between tumor types. Cancer Res 62:5351–5357

    PubMed  CAS  Google Scholar 

  • Infante JR et al (2007) Peritumoral fibroblast SPARC expression and patient outcome with resectable pancreatic adenocarcinoma. J Clin Oncol 25:319–325

    PubMed  Google Scholar 

  • Inoue T et al (2005) Antibodies against macrophages that overlap in specificity with fibroblasts. Kidney Int 67:2488–2493

    PubMed  Google Scholar 

  • Ishii G et al (2003) Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction. Biochem Biophys Res Commun 309:232–240

    PubMed  CAS  Google Scholar 

  • Itoh A et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350

    PubMed  Google Scholar 

  • Jacoby RF et al (1997) A juvenile polyposis tumor suppressor locus at 10q22 is deleted from nonepithelial cells in the lamina propria. Gastroenterology 112:1398–1403

    PubMed  CAS  Google Scholar 

  • Kalluri R (2003) Basement membranes: structure, assembly and role in tumour angiogenesis. Nat Rev Cancer 3:422–433

    PubMed  CAS  Google Scholar 

  • Kalluri R, Neilson EG (2003) Epithelial-mesenchymal transition and its implications for fibrosis. J Clin Invest 112:1776–1784

    PubMed  CAS  Google Scholar 

  • Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    PubMed  CAS  Google Scholar 

  • Karnoub AE et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449:557–563

    PubMed  CAS  Google Scholar 

  • Kelsey JL et al (1993) Reproductive factors and breast cancer. Epidemiol Rev 15:36–47

    PubMed  CAS  Google Scholar 

  • Klopp AH et al (2007) Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res 67:11687–11695

    PubMed  CAS  Google Scholar 

  • Kurose K et al (2001) Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour-microenvironment interactions. Hum Mol Genet 10:1907–1913

    PubMed  CAS  Google Scholar 

  • Kurose K et al (2002) Frequent somatic mutations in PTEN and TP53 are mutually exclusive in the stroma of breast carcinomas. Nat Genet 32:355–357

    PubMed  CAS  Google Scholar 

  • Lafkas D et al (2008) P53 mutations in stromal fibroblasts sensitize tumors against chemotherapy. Int J Cancer 123:967–971

    PubMed  CAS  Google Scholar 

  • LaRue AC et al (2006) Hematopoietic origins of fibroblasts: I. In vivo studies of fibroblasts associated with solid tumors. Exp Hematol 34:208–218

    PubMed  CAS  Google Scholar 

  • Lebeau AM et al (2009) Targeting the cancer stroma with a fibroblast activation protein-activated promelittin protoxin. Mol Cancer Ther 8(5):1378–1386

    Google Scholar 

  • Livestro DP et al (2005) Biology of desmoplastic melanoma: a case-control comparison with other melanomas. J Clin Oncol 23:6739–6746

    PubMed  Google Scholar 

  • Maeshima AM et al (2002) Modified scar grade: a prognostic indicator in small peripheral lung adenocarcinoma. Cancer 95:2546–2554

    PubMed  Google Scholar 

  • Maffini MV et al (2004) The stroma as a crucial target in rat mammary gland carcinogenesis. J Cell Sci 117:1495–1502

    PubMed  CAS  Google Scholar 

  • Maffini MV et al (2005) Stromal regulation of neoplastic development: age-dependent normalization of neoplastic mammary cells by mammary stroma. Am J Pathol 167:1405–1410

    PubMed  Google Scholar 

  • Marx J (2008) Cancer biology. All in the stroma: cancer’s Cosa Nostra. Science 320:38–41

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Nakamura T (2006) Hepatocyte growth factor and the Met system as a mediator of tumor-stromal interactions. Int J Cancer 119:477–483

    PubMed  CAS  Google Scholar 

  • Mishra PJ et al (2008) Carcinoma-associated fibroblast-like differentiation of human mesenchymal stem cells. Cancer Res 68:4331–4339

    PubMed  CAS  Google Scholar 

  • Moinfar F et al (2000) Concurrent and independent genetic alterations in the stromal and epithelial cells of mammary carcinoma: implications for tumorigenesis. Cancer Res 60:2562–2566

    PubMed  CAS  Google Scholar 

  • Mori L et al (2005) Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow. Exp Cell Res 304:81–90

    PubMed  CAS  Google Scholar 

  • Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    PubMed  CAS  Google Scholar 

  • Mueller MM et al (2001) Tumor progression of skin carcinoma cells in vivo promoted by clonal selection, mutagenesis, and autocrine growth regulation by granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Am J Pathol 159:1567–1579

    PubMed  CAS  Google Scholar 

  • Mueller L et al (2007) Stromal fibroblasts in colorectal liver metastases originate from resident fibroblasts and generate an inflammatory microenvironment. Am J Pathol 171:1608–1618

    PubMed  CAS  Google Scholar 

  • Nakamura T et al (1997) Induction of hepatocyte growth factor in fibroblasts by tumor-derived factors affects invasive growth of tumor cells: in vitro analysis of tumor-stromal interactions. Cancer Res 57:3305–3313

    PubMed  CAS  Google Scholar 

  • Nyberg P et al (2005) Endogenous inhibitors of angiogenesis. Cancer Res 65:3967–3979

    PubMed  CAS  Google Scholar 

  • Olumi AF et al (1999) Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 59:5002–5011

    PubMed  CAS  Google Scholar 

  • Orimo A et al (2005) Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell 121:335–348

    PubMed  CAS  Google Scholar 

  • Ostermann E et al (2008) Effective immunoconjugate therapy in cancer models targeting a serine protease of tumor fibroblasts. Clin Cancer Res 14:4584–4592

    PubMed  CAS  Google Scholar 

  • Ostman A, Augsten M (2009) Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev 19(1):67–73

    Google Scholar 

  • Oudard S et al (2007) Treatment options in renal cell carcinoma: past, present and future. Ann Oncol 18 10:x25–x31

    PubMed  Google Scholar 

  • Paget S (1889) Distribution of secondary growths in cancer of the breast. Lancet 1:571–573

    Google Scholar 

  • Pallwein L et al (2008) Prostate cancer diagnosis: value of real-time elastography. Abdom Imaging 33:729–735

    PubMed  Google Scholar 

  • Park JC et al (2009) Clinicopathological aspects and prognostic value with respect to age: an analysis of 3362 consecutive gastric cancer patients. J Surg Oncol 99:395–401

    PubMed  Google Scholar 

  • Patocs A et al (2007) Breast-cancer stromal cells with TP53 mutations and nodal metastases. N Engl J Med 357:2543–2551

    PubMed  CAS  Google Scholar 

  • Pavlaki M, Zucker S (2003) Matrix metalloproteinase inhibitors (MMPIs): the beginning of phase I or the termination of phase III clinical trials. Cancer Metastasis Rev 22:177–203

    PubMed  CAS  Google Scholar 

  • Pavlides S et al (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    PubMed  CAS  Google Scholar 

  • Peruzzi B, Bottaro DP (2006) Targeting the c-Met signaling pathway in cancer. Clin Cancer Res 12:3657–3660

    PubMed  CAS  Google Scholar 

  • Pietras K et al (2008) Functions of paracrine PDGF signaling in the proangiogenic tumor stroma revealed by pharmacological targeting. PLoS Med 5:e19

    PubMed  Google Scholar 

  • Polyak K, Weinberg RA (2009) Transitions between epithelial and mesenchymal states: acquisition of malignant and stem cell traits. Nat Rev Cancer 9:265–273

    PubMed  CAS  Google Scholar 

  • Porter J (2010) Small molecule c-Met kinase inhibitors: a review of recent patents. Expert Opin Ther Pat 20:159–177

    PubMed  CAS  Google Scholar 

  • Qiu W et al (2008) No evidence of clonal somatic genetic alterations in cancer-associated fibroblasts from human breast and ovarian carcinomas. Nat Genet 40:650–655

    PubMed  CAS  Google Scholar 

  • Ricci F et al (2005) Stromal responses to carcinomas of the pancreas: juxtatumoral gene expression conforms to the infiltrating pattern and not the biologic subtype. Cancer Biol Ther 4:302–307

    PubMed  CAS  Google Scholar 

  • Santos AM et al (2009) Targeting fibroblast activation protein inhibits tumor stromagenesis and growth in mice. J Clin Invest 119:3613–3625

    PubMed  CAS  Google Scholar 

  • Sethi T et al (1999) Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat Med 5:662–668

    PubMed  CAS  Google Scholar 

  • Shao ZM et al (2000) Human breast carcinoma desmoplasia is PDGF initiated. Oncogene 19:4337–4345

    PubMed  CAS  Google Scholar 

  • Shibue T, Weinberg RA (2009) Integrin beta1-focal adhesion kinase signaling directs the proliferation of metastatic cancer cells disseminated in the lungs. Proc Natl Acad Sci U S A 106:10290–10295

    PubMed  CAS  Google Scholar 

  • Shimoda M et al (2010) Carcinoma-associated fibroblasts are a rate-limiting determinant for tumour progression. Semin Cell Dev Biol 21:19–25

    PubMed  CAS  Google Scholar 

  • Shiraishi H et al (2006) Early genetic instability of both epithelial and stromal cells in esophageal squamous cell carcinomas, contrasted with Barrett’s adenocarcinomas. J Gastroenterol 41:1186–1196

    PubMed  CAS  Google Scholar 

  • Skalli O et al (1989) Alpha-smooth muscle actin, a differentiation marker of smooth muscle cells, is present in microfilamentous bundles of pericytes. J Histochem Cytochem 37:315–321

    PubMed  CAS  Google Scholar 

  • Strutz F et al (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130:393–405

    PubMed  CAS  Google Scholar 

  • Studeny M et al (2004) Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 96:1593–1603

    PubMed  CAS  Google Scholar 

  • Sugimoto H et al (2006) Identification of fibroblast heterogeneity in the tumor microenvironment. Cancer Biol Ther 5:1640–1646

    PubMed  CAS  Google Scholar 

  • Thiery JP, Sleeman JP (2006) Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7:131–142

    PubMed  CAS  Google Scholar 

  • Tlsty TD (2001) Stromal cells can contribute oncogenic signals. Semin Cancer Biol 11:97–104

    PubMed  CAS  Google Scholar 

  • Tse JC, Kalluri R (2007) Mechanisms of metastasis: epithelial-to-mesenchymal transition and contribution of tumor microenvironment. J Cell Biochem 101:816–829

    PubMed  CAS  Google Scholar 

  • Tsujino T et al (2007) Stromal myofibroblasts predict disease recurrence for colorectal cancer. Clin Cancer Res 13:2082–2090

    PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (1993) The multistep nature of cancer. Trends Genet 9:138–141

    PubMed  CAS  Google Scholar 

  • Walter K et al (2008) Pancreatic cancer associated fibroblasts display normal allelotypes. Cancer Biol Ther 7:882–888

    PubMed  Google Scholar 

  • Weber F et al (2006) Total-genome analysis of BRCA1/2-related invasive carcinomas of the breast identifies tumor stroma as potential landscaper for neoplastic initiation. Am J Hum Genet 78:961–972

    PubMed  CAS  Google Scholar 

  • Weber F et al (2007) Microenvironmental genomic alterations and clinicopathological behavior in head and neck squamous cell carcinoma. JAMA 297:187–195

    PubMed  CAS  Google Scholar 

  • Yang WT et al (2010) Decreased TGFbeta signaling and increased COX2 expression in high risk women with increased mammographic breast density. Breast Cancer Res Treat 119:305–314.

    Google Scholar 

  • Zeisberg EM et al (2007a) Discovery of endothelial to mesenchymal transition as a source for carcinoma-associated fibroblasts. Cancer Res 67:10123–10128

    CAS  Google Scholar 

  • Zeisberg EM et al (2007b) Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nat Med 13(8):952–961

    Google Scholar 

  • Zeisberg M et al (2007) Fibroblasts derive from hepatocytes in liver fibrosis via epithelial to mesenchymal transition. J Biol Chem 282(32):23337–23347

    Google Scholar 

  • Zou HY et al (2007) An orally available small-molecule inhibitor of c-Met, PF-2341066, exhibits cytoreductive antitumor efficacy through antiproliferative and antiangiogenic mechanisms. Cancer Res 67:4408–4417

    PubMed  CAS  Google Scholar 

  • Zvaifler NJ (2006) Relevance of the stroma and epithelial-mesenchymal transition (EMT) for the rheumatic diseases. Arthritis Res Ther 8:210

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by National Institutes of Health Grant DK62987 and partially by National Institutes of Health Grants DK55001, DK61688, AA13913, and CA12550 and funds from the Department of Medicine for the Division of Matrix Biology at Beth Israel Deaconness Medical Center. This work was also supported by the Champalimaud Foundation. HPE was supported by grants from the University of Bergen and the Eckbo Legacy, Norway.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Eikesdal, H., Kalluri, R. (2011). The Multifaceted Role of Cancer Associated Fibroblasts in Tumor Progression. In: Mueller, M., Fusenig, N. (eds) Tumor-Associated Fibroblasts and their Matrix. The Tumor Microenvironment, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0659-0_19

Download citation

Publish with us

Policies and ethics