Aquatic Plants and Animals

  • Wulf Greve
Part of the Tasks for Vegetation Science book series (TAVS, volume 39)


Oceans cover 70.8% of the earth to a mean depth of 3,729 m and thereby provide a volume of 1,350 millions km3 of inhabitable biosphere (Gerlach, 1994). (1983) calculated that this volume forms 99.5% of the earth’s biosphere (Figure 1). This large volume of the biosphere contributes only about 40% of global primary production, however, as productivity is limited by light and by nutrients. Light penetrates just the upper 100 m of the water, and the majority of ocean zones lack nutrients, except in regions with upwelling, currents from less productive areas, or run-off from the coasts. These processes depend on wind speed, wind direction, and the rainfall pattern in the catchment areas of rivers (which in turn vary seasonally). Light, wind, temperature, and production conditions are more constant in the depths of lakes and oceans.

Key words

Aquatic Marine Fresh water Hydrosphere Ecology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Adrian, R., Calanoid-cyclopoid interactions: evidence from an 11-year field study in a eutrophic lake, Freshwater Biology, 38, 315–325, 1997.CrossRefGoogle Scholar
  2. Adrian, R., N. Walz, T. Hintze, S. Hoeg and R. Rusche, 1999, Effects of ice duration on plankton succession during spring in a shallow polymictic lake, Freshwater Biology, 41, 621–632.CrossRefGoogle Scholar
  3. Alderdice, D. F. and C. R. Forrester, Some effects of salinity and temperature on early development and survival of English sole (Parophyrus vetulus), J. Fish. Res. Bd. Can., 25, 495–521, 1968.CrossRefGoogle Scholar
  4. Alheit, J., and E. Hagen, Long-term climate forcing of European herring and sardine populations. Fish. Oceanogr., 6, 130–139, 1997.CrossRefGoogle Scholar
  5. Arasaki, S., A comparison of the phenology of intertidal Porphyra on the coasts of Japan and western North America, Proceedings of the International Seaweed Symposium, 8, 273–277, 1981.Google Scholar
  6. Avila, M., R. Otaiza, R. Norambuena and M. Nunez, Biological basis for the management of ‘luga negra’ (Sarcothalia crispata Gigartinales, Rhodophyta) in southern Chile, Hydrobiologia, 326-327, 245–252, 1996.CrossRefGoogle Scholar
  7. Beleheradek, J., Temperature and living matter, in Protoplasma Monogr., Borntraeger, Berlin, 1935.Google Scholar
  8. Breeman, A. M., E. J. S. Meulenhoff and M. D. Guiry, Life history regulation and phenology of the red alga Bonnemaisonia hamifera, Helgol. Meeresunters., 42(3–4), 535–551, 1988.CrossRefGoogle Scholar
  9. Caspers, H., Rhythmische Erscheinungen in der Fortpflanzung von Clunio marinus (dipt. Chiron.) und das Problem der lunaren Periodizität bei Organismen, Arch. Hydrobiol. (Suppl. Bd), 18, 415–594, 1951.Google Scholar
  10. Chamberlain, Y. M., Trichocyte occurrence and phenology in four species of Pneophyllum (Rhodophyta, Corallinaceae) from the British Isles, Br. Phycol. J., 20, 375–379, 1985.CrossRefGoogle Scholar
  11. Childress, J., Oceanic Biology: Lost in Space?, in Oceanography, the present and the future, edited by G. B. Peters, pp. 127–135, Springer-Verlag, New York, 1983.Google Scholar
  12. Clifton, K. E. and L. M. Clifton, The phenology of sexual reproduction by green algae (Bryopsidales) on Caribbean coral reefs, J. Phycology, 35, 24–34, 1999.CrossRefGoogle Scholar
  13. Colebrook, J. M., Continuous Plankton Records: Methods of analysis, 1950–1959, Bull. Mar. Ecol., 5, 51–64, 1960.Google Scholar
  14. Colebrook, J. M., Continuous Plankton Records: Zooplankton and Environment, North-East Atlantic and North Sea, 1948–1975, Oceanol. Acta, 1(1), 9–23, 1978.Google Scholar
  15. Conand, F., Life history of the silverside Atherinomorus lacunosus (Atherinidae) in New Caledonia, J. Fish Biology, 42, 851–863, 1993.CrossRefGoogle Scholar
  16. Cushing, D. H., Recent studies on long term changes in the sea, Freshwater Biol., 23, 71–84, 1990.CrossRefGoogle Scholar
  17. Dahms, H. U., Dormancy in the Copepoda — an overview, Hydrobiologia, 306, 199–211, 1995.CrossRefGoogle Scholar
  18. Deshmukhe, G. V. and M. Tatewaki, Phenology of brown alga Coilodesme japonica (Phaeophyta, Dictyosiphonales) with respect to the host-specificity along Muroran coast, North Pacific Ocean, Japan, Indian Journal of Marine Sciences, 30, 161–165, 2001.Google Scholar
  19. Elton, C., Animal Ecology, Methuen, London, 207 pp., 1927.Google Scholar
  20. Franke, H.-D., Photopollution: Coastal artificial light affects reproductive synchronisation in a litoral polychaete, Verhandlungen der Deutschen Zoologischen Gesellschaft, 83, 481, 1990.Google Scholar
  21. Garrido, C. L., and B. J. Barber, Effects of temperature and food ration on gonads and oogenesis of the green sea urchin, Strongylocentrotus droebachiensis, Marine Biology, 138, 447–456, 2001.CrossRefGoogle Scholar
  22. Gerlach, S. A., Marine Systeme, Springer, Berlin, 226 pp., 1994.Google Scholar
  23. Gerten, D. and R. Adrian, Differences in the persistency of the North Atlantic Oscillation signal among lakes, Limnol. Oceanogr., Vol. Suppl., 448–455, 2001Google Scholar
  24. Giese, A. C., Comparative physiology: annual reproductive cycles of marine invertebrates, A. Rev. Physiol., 21, 547–576, 1959.CrossRefGoogle Scholar
  25. Greve, W., Planktonic Spermatophores found in a culture device with spionid Polychaetes, Helgol. Wiss. Meeresunters, 26, 370–374, 1974.CrossRefGoogle Scholar
  26. Greve, W., Mutual predation causes bifurcations in pelagic ecosystems: the simulation model PLITCH (PLanktonic swITCH), experimental tests, and theory, ICES Journal of marine Science, 52, 505–510, 1995.CrossRefGoogle Scholar
  27. Greve, W., U. Lange, F. Reiners and J. Nast, Predicting the Seasonality of North Sea Zooplankton, in Burning issues of North Sea ecology, Proceedings of the 14th international Senckenberg Conference North Sea 2000, edited by I. Kröncke, M. Türkay and J. Sündermann, pp. 263–268, Senckenbergiana marit., Frankfurt am Main, 2001.Google Scholar
  28. Greve, W., and F. Reiners, Plankton time — space dynamics in German Bight — a systems approach, Oecologia, 77, 487–496, 1988.CrossRefGoogle Scholar
  29. Greve, W. and F. Reiners, Biocoenotic process patterns in German Bight, in Biology and Ecology of Shallow Coastal Waters, edited by A. Eleftheriou, A. Ansell and C. J. Smith, pp. 67–71, Olsen and Olsen, Fredensborg, Denmark, 1995.Google Scholar
  30. Gwada, P., T. Makoto and Y. Uezu, Leaf phenological traits in the mangrove Kandelia candel (L.) Druce, Aquatic Botany, 68, 1–14, 2000.CrossRefGoogle Scholar
  31. Hardege, J. D., and M. G. Bentley, Spawning synchrony in Arenicola marina: evidence for sex pheromonal control, Proc. Royal Soc. London, Series B. Biol.Sci. 264, 1941–1047, 1997.Google Scholar
  32. Harrington, R. W., Effects of four combinations of temperature and daylength on the ovogenetic cycle of a low-latitude fish, Fundulus confluentus GOODE and BEAN, Zoologica, N. Y., 44, 149–168, 1959.Google Scholar
  33. Henry, E. C., Regulation of reproduction in brown algae by light and temperature, Botanica Marina, 31, 353–357, 1988.CrossRefGoogle Scholar
  34. Heyen, H., H. Fock, and W. Greve, Detecting relationships between the interannual variability in ecological time series and climate using a multivariate statistical approach — a case study on Helgoland Roads zooplankton, Clim. Res., 10, 179–191, 1998.CrossRefGoogle Scholar
  35. Hogg, I. D., D. D. Williams, J. M. Eadie and S. A. Butt, The consequences of global warming for stream invertebrates: A field simulation, J. Thermal Biol., 20, 199–206, 1995.CrossRefGoogle Scholar
  36. Howell, S. N. G., J. R. King and C. Corben, First prebasic molt in herring-, Thayer’s-, and glaucous-winged gulls, J. Field Ornithology, 70, 543–554, 1999.Google Scholar
  37. International Council for the Exploration of the Sea (ICES), Report of the Working Group on Zooplankton Ecology, ICES CM, C:07, 1–57, 2002.Google Scholar
  38. Joedicke, R., Autumnal phenology of central European Odonata. 2. Observations in the Lower Rhine Region, Germany, Opuscula Zoologica Fluminensia (Opusc. Zool. Flumin.), 159, 1–20, 1998.Google Scholar
  39. Juanes, F., J. A. Buckel and D. O. Conover, Accelerating the onset of piscivory: intersection of predator and prey phonologies, J. Fish Biology, 45, 41–54, 1994.CrossRefGoogle Scholar
  40. Junk, W. J., P. B. Bayley and R. E. Sparks, The Flood Pulse Concept in River-Floodplain Systems, in Proceedings of the International Large River Symposium, edited by D. P. Dodge, pp. 110–127, 1989.Google Scholar
  41. Kinne, O., The effects of temperature and salinity on marine and brackish water animals, I. Temperature. Oceanogr. Mar. Biol. A. Rev., 1, 301–340, 1963.Google Scholar
  42. Kröncke, I., J. W. Dippner, H. Heyen and B. Zeiss, Long-term changes in macrofaunal communities off Norderney (East Frisia, Germany) in relation to climate variability, Marine Ecology Progress Series, 167, 25–36, 1998.CrossRefGoogle Scholar
  43. Lake, P. S., Of Floods and Droughts: River and Stream Ecosystems of Australia, in River and Stream Ecosystems, edited by C. E. Cushing, K. W. Cummins, and G. W. Minshall, pp. 659–694, Elsevier, Amsterdam, 1995.Google Scholar
  44. Lampitt, R. S., Evidence for the seasonal deposition of detritus to the deep-sea floor and its subsequent resuspension, Deep-Sea Research, 32, 885–897, 1985.CrossRefGoogle Scholar
  45. Lange, U. and W. Greve, Does temperature determine the spawning time, recruitment and distribution of flatfish via its influence on the rate of gonadal maturation?, Deutsche Hydrographishe Zeitschrift, 49(2/3), 251–263, 1997.CrossRefGoogle Scholar
  46. Lenz, J., Introduction, in Zooplankton Methodology Manual, edited by P. H. W. R. P. Haris, J. Lenz, H. R. Skjoldal, and M. Huntley, pp. 1–32, Academic Press, San Diego, 2000.Google Scholar
  47. Lindley, J. A., and S. D. Batten, Long-term variability in the diversity of North Sea zooplankton, J. Mar. Biol. Ass U.K., 82(3), 1–40, 2002.Google Scholar
  48. Lüning, K., and I. tom Dieck, Environmental Triggers in Algal Seasonality, Botanica Marina, 32, 389–397, 1989.CrossRefGoogle Scholar
  49. Marine Zooplankton Colloquium, Future marine zooplankton research-a perspective, Mar. Ecol. Prog. Ser., 222, 297–308, 2001.CrossRefGoogle Scholar
  50. Menzel, A., Trends in phenological phases in Europe between 1951 and 1996, Int. J. Biometeorol., 44, 76–81, 2000.PubMedCrossRefGoogle Scholar
  51. Mihuc, T. B. and D. W. Toetz, Phenology of aquatic macroinvertebrates in an alpine wetland, Hydrobiologia, 330, 131–136, 1996.CrossRefGoogle Scholar
  52. Miller, C. B., T. J. Cowles, P. H. Wiebe, N. J. Copley, H. Grigg, Phenology in Calanus finmarchicus; hypotheses about control mechanisms, Mar. Ecol. Prog. Ser., 72, 79–91, 1991.CrossRefGoogle Scholar
  53. Molenaar, F. J., A. M. Breemann, and L. A. H. Venekamp, Latitudinal Trends in the Growth and Reproductive Seasonality of Delesseria sanguinea, Membranoptera alata, and Phycodrys rubens (Rhodophyta), J. Phycol, 33, 330–343, 1997.CrossRefGoogle Scholar
  54. Neumann, D., Genetic adaption in emergence time of Clunio populations to different tidal conditions, Helgoländer wiss. Meeresunters, 15, 163–171, 1967.CrossRefGoogle Scholar
  55. Oestvedt, O.-J., Zooplankton investigation from Weather Ship M in the Norwegian Sea, 1948–1949, Hvalradets Skrifter, Scientific Results of Marine Biological Research, 40, 1–93, 1955.Google Scholar
  56. Oliveira, E. C., T. N. Corbisier, V. R. De Eston and O. Ambrosio, Jr., Phenology of a seagrass (Halodule wrightii) bed on the southeast coast of Brazil, Aquatic Botany, 56, 25–33, 1997.CrossRefGoogle Scholar
  57. Orton, J. H., Sea-temperature, breeding and distribution of marine animals, J. Mar. biol. Ass. U.K., 12, 330–366, 1920.Google Scholar
  58. Parsons, T. R., M. Takahashi and B. Hargrave, Biological Oceanographic Processes 3rd. edition, Pergamon Press, Oxford, New York, 330 pp., 1984.Google Scholar
  59. Pohlmann, T., Simulating the heat storage in the North Sea with a three-dimensional circulation model, Cont. Shelf Res., 16, 195–213, 1996.CrossRefGoogle Scholar
  60. Reid, P. C., B. Planque, and M. Edwards, Is observed variability in the long-term results of the Continuous Plankton Recorder survey a response to climate change?, Fisheries Oceanography, 7(3/4), 282–288, 1998.CrossRefGoogle Scholar
  61. Reyes, J., M. Sanson and J. Afonso-Carrillo, Distribution and reproductive phenology of the seagrass Cymodocea nodosa (Ucria) Ascherson in the Canary Islands, Aquatic Botany 50, 171–180, 1995.CrossRefGoogle Scholar
  62. Sartorius, S. S., and P. C. Rosen, Breeding phenology of the lowland leopard frog (Rana yavapaiensis): Implications for conservation and ecology, Southwestern Naturalist, 45, 267–273, 2000.CrossRefGoogle Scholar
  63. Sewell, M. A., and C. M. Young, Temperature limits to fertilization and early development in the tropical sea urchin Exhinometra lucunter, J. Exp. Mar. Biol. Ecol., 47, 291–305, 1999.CrossRefGoogle Scholar
  64. Schmiedl G., A. Mitschele, S. Beck, K. Emeis, C. Helleben, H. Schulz, M. Sperling, Benthic foraminiferal record of ecosystem variability in the eastern Mediterranean Sea during times of saprobel S5 and S6 deposition, Palaeogeography, Palaeoclimatology, Palaeoecology, 190, 139–164, 2003.CrossRefGoogle Scholar
  65. Southward, A. J., E. I. Butler and P. Pennycuick, Recent cyclic changes in climate and in abundance of marine life, Nature, 253, 714–717, 1975.CrossRefGoogle Scholar
  66. Stanwell-Smith, D., and L. S. Peck, Temperature and embryonic development in relation to spawning and field occurrence of larvae of three Antarctic echinoderms, Biol. Bull. Mar. Biol. Lab. Woods Hole, 194, 44–52, 1998.CrossRefGoogle Scholar
  67. Straile, D., and R. Adrian, The North Atlantic Oscillation and plankton dynamics in two European lakes — two variations on a general theme, Global Change Biology, 6, 663–670, 2000CrossRefGoogle Scholar
  68. Summers, W. C., Ecological implications of life stage timing determined from the cultivation of Rossia pacifica (Mollusca: Cephalopoda), Vie Milieu., 35(3/4), 249–254, 1985.Google Scholar
  69. Tesch, F. W., Witterungsabhängigkeit der Brutentwicklung und Nachwuchsförderung bei Lucioperca lucioperca L., Kurze Mitteilungen aus dem Institut für Fischereibiologie der Universität Hamburg 12, 37–44, 1962.Google Scholar
  70. Uhlig, G., and G. Sahling, Noctiluca scintillans: zeitliche Verteilung bei Helgoland und räumliche Verbreitung in der Deutschen Bucht (Langzeitreihen 1970–1993), Ber. Biol. Anst. Helgoland, 9, 1–127, 1995.Google Scholar
  71. Van der Veer, H.W., and M. J. N. Bergmann, Predation by crustaceans on a newly settled O-group plaice Pleuronectes platessa in the Western wadden sea, Mar. Ecol. Prog. Ser., 35, 203–215, 1987.CrossRefGoogle Scholar
  72. Wagner, R. and O. Gathmann, Long-term studies on aquatic dance flies (Diptera, Empididae) 1883–1993: Distribution and size patterns along the stream, abundance changes between years and the influence of environmental factors of the community, Archiv fuer Hydrobiologie, 137, 385–410, 1996.Google Scholar
  73. Walther, G.-R., Eric Post, Peter Convey, Annette Menzel, Camille Parmesan, Trevor J. C. Beebee, Jean-Marc Fromentin, Ove Hoeg-Guldberg and Franz Bairlein, Ecological responses to recent climate change, Nature, 416, 389–395, 2002.PubMedCrossRefGoogle Scholar
  74. Werner, B., Verbreitung und jahreszeitliches Auftreten Rathkea octopunctata (M. Sars) und Bougainvillia superciliaris (L. Agassiz), (Athecata-Anthomedusae), Ein Beitrag zur kausalen marinen Tiergeographie, Kieler Meeresforsch, 18, 55–66, 1962.Google Scholar
  75. Wiencke, C., I. Bartsch, B. Bischoff, A. F. Peters and A. M. Breeman, Temperature Requirements and Biogeography of Antarctic, Arctic and Amphiequatorial Seaweeds. Botanica Marina, 37, 247–259, 1994.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Wulf Greve
    • 1
  1. 1.German Center for Marine Biodiversity Research(Senckenberg Research Institute)HamburgGermany

Personalised recommendations