Advertisement

Plant Development Models

  • Isabelle Chuine
  • Koen Kramer
  • Heikki Hänninen
Part of the Tasks for Vegetation Science book series (TAVS, volume 39)

Abstract

Phenology modeling has a long history starting in 1735 with a publication by (1735). Reaumur suggested that differences between years and locations in the date of phenological events could be explained by differences in daily temperatures from an arbitrary date to the date of the phenological event considered. This is still the most important assumption in plant phenology modeling. The main advances in phenology modeling took place in the late 20th century (Table 1) for two main reasons: (i) the revolution in computer science, and (ii) concerns about global climate change. Global warming is expected to have major impacts on plant functions and fitness, as increasing temperatures will change the timing of phenological events.

Keywords

Statistical and mechanistic models Budburst Flowering Frost hardiness Species range 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  1. Andersen, T. B., A model to predict the beginning of the pollen season, Grana, 30, 269–275, 1991.CrossRefGoogle Scholar
  2. Anderson, J. L., C. D. Kesner, and E. A. Richardson, Validation of chill unit and flower bud phenology models for Montmorency sour cherry, Acta Hort, 184, 71–77, 1986.Google Scholar
  3. Ashcroft, G. L., E. A. Richardson, and S. D. Seeley, A statistical method of determining chill unit and growing degree hour requirements for deciduous fruit trees, Hort Sci., 12, 347–348, 1977.Google Scholar
  4. Bach, W., Development of climatic scenarios from general circulation models, in The impact of climatic variations on agriculture, Vol. 1: Assessment on Cool Temperate and Cold Regions, edited by Parry, M. L., T. R. Carter and N. T. Konijn, pp. 125–157, Kluwer Academic Publishers, Dordrecht, 1987.Google Scholar
  5. Boyer, W. D., Air temperature, heat sums, and pollen shedding phenology of longleaf pine, Ecology, 54, 421–425, 1973.CrossRefGoogle Scholar
  6. Campbell, R. K., and A. I. Sugano, Phenology of bud burst in Douglas-fir related to provenance, photoperiod, chilling and flushing temperature, Bot. Gaz., 136, 290–298, 1975.CrossRefGoogle Scholar
  7. Cannell, M. G. R., Chilling, thermal time and the dates of flowering of trees, in Manipulation of fruiting, edited by C. J. Wright, pp. 99–113, Butterworth and Co, London, 1989.Google Scholar
  8. Cannell, M. G. R., M. B. Murray, and L. J. Sheppard, Frost avoidance by selection for late budburst in Picea sitchensis, J. Appl. Ecol., 22, 931–941, 1985.CrossRefGoogle Scholar
  9. Cannell, M. G. R., and R. I. Smith, Thermal time, chill days and prediction of budburst in Picea sitchensis, J. Appl. Ecol., 20, 951–963, 1983.CrossRefGoogle Scholar
  10. Cannell, M. G. R., and R. I. Smith, Climatic warming, spring budburst and frost damage on trees, J. Appl. Ecol., 23, 177–191, 1986.CrossRefGoogle Scholar
  11. Chatfield, C., Problem solving: a statistician guide, Chapman and Hall, London, 261 pp., 1988.Google Scholar
  12. Chuine, I., A unified model for the budburst of trees, J. Theor. Biol., 207, 337–347, 2000.PubMedCrossRefGoogle Scholar
  13. Chuine, I., and E. Beaubien, Phenology is a major determinant of temperate tree distributions, Ecol. Letters, 4, 500–510, 2001.CrossRefGoogle Scholar
  14. Chuine, I., P. Cour, and D. D. Rousseau, Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing, Plant, Cell and Env., 21, 455–466, 1998.CrossRefGoogle Scholar
  15. Chuine, I., P. Cour, and D. D. Rousseau, Selecting models to predict the timing of flowering of temperate trees: implication for tree phenology modelling, Plant, Cell and Env., 22, 1–13, 1999.CrossRefGoogle Scholar
  16. Ellis, R. H., E. H. Roberts, and R. J. Summerfield, Variation in the optimum temperature for rates of seedling emergence and progress towards flowering among six genotypes of faba bean (Vicia faba), Ann. Bot., 62, 119–126, 1988.Google Scholar
  17. Emberlin, J., J. Mullins, J. Corden, W. Millington, M. Brooke, M. Savage, and S. Jones, The trend to earlier Birch pollen season in the U. K.: a biotic response to changes in weather conditions?, Grana, 36, 29–33, 1997.CrossRefGoogle Scholar
  18. Falusi, M., and R. Calamassi, Geographic variation and bud dormancy in beech seedlings (Fagus sylvatica L), Ann. Sci. For., 53, 967–979, 1996.CrossRefGoogle Scholar
  19. Frenguelli, G., and E. Bricchi, The use of pheno-climatic model for forecasting the pollination of some arboreal taxa, Aerobiologia, 14, 39–44, 1998.CrossRefGoogle Scholar
  20. Frenguelli, G., E. Bricchi, B. Romano, M. F. Ferranti, and E. Antognozzi, The role of air temperature in determining dormancy release and flowering of Corylus avellana L., Aerobiologia, 8, 415–418, 1992.CrossRefGoogle Scholar
  21. Frenguelli, G., E. Bricchi, B. Romano, G. Mincigriucci, and F. T. M. Spieksma, A predictive study on the beginning of pollen season for Gramineae and Olea europaea L., Aerobiologia, 5, 64–70, 1989.CrossRefGoogle Scholar
  22. Frenguelli, G., T. M. Spieksma, E. Bricchi, B. Romano, G. Mincigrucci, A. H. Nikkels, W. Dankaart, and F. Ferranti, The influence of air temperature on the starting dates of the pollen season of Alnus and Poplulus, Grana, 30, 196–200, 1991.CrossRefGoogle Scholar
  23. Häkkinen, R., Statistical evaluation of bud development theories: application to bud burst of Betula pendula leaves, Tree Physiol., 19, 613–618, 1999.PubMedGoogle Scholar
  24. Häkkinen, R., T. Linkosalo, and P. Hari, Methods for combining phenological time series: application to bud burst in birch (Betula pendula) in Central Finland for the period 1896-1955., Tree Physiol., 15, 721–736, 1995.PubMedGoogle Scholar
  25. Häkkinen, R., T. Linkosalo, and P. Hari, Effects of dormancy and environmental factors on timing of bud burst in Betula pendula, Tree Physiol., 18, 707–712, 1998.Google Scholar
  26. Hänninen, H., Effects of temperature on dormancy release in woody plants: implications of prevailing models., Silva Fenn., 21, 279–299, 1987.Google Scholar
  27. Hänninen, H., Modeling dormancy release in trees from cool and temperate regions, in Process modeling of forest growth responses to environmental stress, edited by R. K. Dixon, R. S. Meldahl, G. A. Ruark and W. G. Warren, pp. 159–165, Timber Press, Portland, 1990a.Google Scholar
  28. Hänninen, H., Modelling bud dormancy release in trees from cool and temperate regions., Acta Forest. Fenn., 213, 1–47, 1990b.Google Scholar
  29. Hänninen, H., Does climatic warming increase the risk of frost damage in northern trees?, Plant, Cell and Env., 14, 449–454, 1991.CrossRefGoogle Scholar
  30. Hänninen, H., Effects of climatic change on trees from cool and temperate regions: an ecophysiological approach to modelling of budburst phenology, Can. J. Bot., 73, 183–199, 1995.CrossRefGoogle Scholar
  31. Hänninen, H., and P. Hari, The implications of geographical variation in climate for differentiation of bud dormancy ecotypes in Scots pine, Acta Forest. Fenn., 254, 11–21, 1996.Google Scholar
  32. Hänninen, H., S. Kellomäki, K. Laitinen, B. Pajari and, T. Repo, Effect of increased winter temperature on the onset of height growth of Scots pine: a field test of a phenological model, Silva Fenn., 27, 251–257, 1993.Google Scholar
  33. Heide, O. M., Dormancy release in beech buds (Fagus sylvatica) requires both chilling and long days, Physio. Plant., 89, 187–191, 1993.CrossRefGoogle Scholar
  34. Hunter, A. F., and M. J. Lechowicz, Predicting the timing of budburst in temperate trees, J. of Appl. Ecol., 29, 597–604, 1992.CrossRefGoogle Scholar
  35. Kellomäki, S., H. Hänninen, and M. Kolström, Computations on frost damage to Scots pine under climatic warming in boreal conditions, Ecol. Appl., 5, 42–52, 1995.CrossRefGoogle Scholar
  36. Kikuzawa, K., A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern., Am. Nat., 138, 1250–1263, 1991.CrossRefGoogle Scholar
  37. Kikuzawa, K., The basis for variation in leaf longevity of plants, Vegetatio, 121, 89–100, 1995a.CrossRefGoogle Scholar
  38. Kikuzawa, K., Leaf phenology as an optimal strategy for carbon gain in plants, Can. J. Bot. 73, 158–163, 1995b.CrossRefGoogle Scholar
  39. Kikuzawa, K., Geographical distribution of leaf life span and species diversity of trees simulated by a leaf-longevity model., Vegetatio, 122, 61–67, 1996.CrossRefGoogle Scholar
  40. Kikuzawa, K., and G. Kudo, Effects of the length of the snow-free period on leaf longevity in alpine shrubs: a cost-benefit model, Oikos, 73, 214–220, 1995.CrossRefGoogle Scholar
  41. Kobayashi, K. D., and L. H. Fuchigami, Modeling bud development during the quiescent phase in red-osier dogwood (Cornus sericea L.), Agr. Meteo., 28, 75–84, 1983a.CrossRefGoogle Scholar
  42. Kobayashi, K. D., and L. H. Fuchigami, Modelling temperature effects in breaking rest in Red-osier Dogwood (Cornus sericea L.), Ann. Bot., 52, 205–215, 1983b.Google Scholar
  43. Kobayashi, K. D., L. H. Fuchigami, and M. J. English, Modelling temperature requirements for rest development in Cornus sericea, J. Am. Soc. Hor. Sci., 107, 914–918, 1982.Google Scholar
  44. Kramer, K., A modelling analysis of the effects of climatic warming on the probability of spring frost damage to tree species in The Netherlands and Germany, Plant, Cell and Env., 17, 367–377, 1994a.CrossRefGoogle Scholar
  45. Kramer, K., Selecting a model to predict the onset of growth of Fagus sylvatica., J. Appl. Ecol., 31, 172–181, 1994b.CrossRefGoogle Scholar
  46. Kramer, K., Modelling comparison to evaluate the importance of phenology for the effects of climate change in growth of temperate-zone deciduous trees, Clim. Res., 5, 119–130, 1995a.CrossRefGoogle Scholar
  47. Kramer, K., Phenotypic plasticity of the phenology of seven European tree species in relation to climatic warming, Plant, Cell and Env., 18, 93–104, 1995b.CrossRefGoogle Scholar
  48. Kramer, K., A. D. Friend, and I. Leinonen, Modelling comparison to evaluate the importance of phenology and spring frost damage for the effects of climate change on growth of mixed temperate-zone deciduous forests, Clim. Res., 7, 31–41, 1996.CrossRefGoogle Scholar
  49. Kramer, K., I. Leinonen, and D. Loustau, The importance of phenology for the evaluation of impacts of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview, Int. J. Biometeorol., 44, 67–75, 2000.PubMedCrossRefGoogle Scholar
  50. Kramer, K., and G. M. J. Mohren, Sensitivity of FORGRO to climatic change scenarios: a case study on Betula pubescens, Fagus sylvatica and Quercus robur in the Netherlands, Clim. Change, 34, 231–237, 1996.CrossRefGoogle Scholar
  51. Kupias, R. and Y. Mäkinen, Correlations of Alder pollen occurrence to climatic variables, First international conference on aerobiology, Munich, 1980.Google Scholar
  52. Lamb, R. C., Effects of temperature above and below freezing on the breaking of rest in the Latham raspberry, J. Am. Soc. Hort. Sci., 51, 313–315, 1948.Google Scholar
  53. Landsberg, J. J., Apple fruit bud development and growth; analysis and an empirical model., Ann. Bot., 38, 1013–1023, 1974.Google Scholar
  54. Lechowicz, M. J., and T. Koike, Phenology and seasonality of woody plants: An unappreciated element in global change research., Can. J. Bot., 73, 147–148, 1995.CrossRefGoogle Scholar
  55. Leinonen, I., A simulation model for the annual frost hardiness and freeze damage of Scots Pine, Ann. Bot., 78, 687–693, 1996.CrossRefGoogle Scholar
  56. Leinonen, I., and K. Kramer, Applications of phenological models to predict the future carbon sequestration potential of Boreal forests, Clim. Change, 55, 99–113, 2002.CrossRefGoogle Scholar
  57. Leinonen, I., T. Repo, H. Hänninen, and K. Burr, A second-order dynamics model for the frost hardiness of trees., Ann. Bot., 76, 89–95, 1995.CrossRefGoogle Scholar
  58. Lescourret, F., N. Blecher, R. Habib, J. Chadboeuf, D. Agostini, O. Paliiy, B. Vaissière, and I. Poggi, Development of a simulation model for studying kiwi fruit orchard management, Agr. Syst., 59, 215–239, 1999.CrossRefGoogle Scholar
  59. Lieth, H., Phenology in productivity studies, in Analysis of temperate forest ecosystems, 1, edited by D. E. Reichle, pp. 29–55, Springer Verlag, Heidelberg, 1970.Google Scholar
  60. Lieth, H., The phenological viewpoint in productivity studies, in Productivity of forest ecosystems. Proceedings of the Brussels Symposium by UNESCO., edited by P. Duvigneaud, pp 71–83, UNESCO, Paris, 1971.Google Scholar
  61. Linkosalo, T., Regularities and patterns in the spring phenology of some boreal trees, Silva Fenn., 33, 237–245, 1999.Google Scholar
  62. Linkosalo, T., T. Carter, R. Häkkinen, and P. Hari, Predicting spring phenology and frost damage risk of Betula spp. under climatic warming: a comparison of two models, Tree Physiol., 20, 1175–1182, 2000.PubMedGoogle Scholar
  63. Linkosalo, T., R. Häkkinen, and P. Hari, Improving the reliability of a combined phenological times series by analyzing observation quality, Tree Physiol., 16, 661–664, 1996.PubMedGoogle Scholar
  64. Marletto, V., G. P. Branzi, and M. Sirotti, Forecasting flowering dates of lawn species with air temperature: application boundaries of the linear approach, Aerobiologia, 8, 75–83, 1992.CrossRefGoogle Scholar
  65. Menzel, A, and P. Fabian, Growing season extended in Europe, Nature, 397, 659, 1999.CrossRefGoogle Scholar
  66. Mohren, G. M. J., Simulation of forest growth, applied to Douglas fir stands in the Netherlands, Wageningen Agricultural University, Wageningen, The Netherlands, 184 pp., 1987.Google Scholar
  67. Mohren, G. M. J., H. H. Bartelink, K. Kramer, F. Magnani, S. Sabaté and D. Loustau, Modelling long-term effects of CO2 increase and climate change on European forests, with emphasis on ecosystem carbon budgets, in Forest ecosystem modelling, upscaling and remote sensing, edited by R. J. M. Ceulemans, F. Veroustreate, V. Gond, and J. B. H. F. V. Rensbergen, pp. 179–192, SPB Academic Publishing, The Hague, 1999.Google Scholar
  68. Murray, M. B., G. R. Cannell, and R. I. Smith, Date of budburst of fifteen tree species in Britain following climatic warming., J. Appl. Ecol., 26, 693–700, 1989.CrossRefGoogle Scholar
  69. Murray, M. B., R. I. Smith, I. D. Leith, D. Fowler, H. S. Lee, A. D. Friend, and P. G. Jarvis, Effects of elevated CO2, nutrition and climatic warming on bud phenology in Sitka spruce (Picea sitchensis) and their impact on the risk of frost damage, Tree Physiol., 14, 691–706, 1994.PubMedGoogle Scholar
  70. Nizinski, J. J., and B. Saugier, A model of leaf budding and development for a mature Quercus forest., J. Appl. Ecol., 25, 643–652, 1988.CrossRefGoogle Scholar
  71. Oliveira, M., Calculation of budbreak and flowering base temperatures for Vitis vinifera cv. Touriga Francesa in the Douro region of Portugal, Am. J. Enol. Vitic., 49, 74–78, 1998.Google Scholar
  72. Osborne, C. P., I. Chuine, D. Viner, and F. I. Woodward, Olive phenology as a sensitive indicator of future climatic warming in the Mediterranean, Plant, Cell and Env., 23, 701–710, 2000.CrossRefGoogle Scholar
  73. Phillipp, M., J. Böcher, O. Mattson, and S. L. J. Woodell, A quantitative approach to the sexual reproductive biology and population structure in some Arctic flowering plants: Dryas integrifolia, Silene acaulis and Ranunculus nivalis, Medd Grönl Biosciences, 34, 1–60, 1990.Google Scholar
  74. Pigott, C. D., and J. P. Huntley, Factors controlling the distribution of Tilia cordata at the Northern limits of its geographical range. III Nature and cause of seed sterility, New Phytol., 87, 817–839, 1981.CrossRefGoogle Scholar
  75. Pipper, E. L., K. L. Boote, J. W. Jones, and S. S. Grimm, Comparison of two phenology models for predicting flowering and maturity date of soybean, Crop Sci., 36, 1606–1614, 1996.CrossRefGoogle Scholar
  76. Pouget, R., Recherches physiologiques sur le repos végétatifs de la vigne (Vitis vinifera L;): la dormance des bourgeons et le mécanisme de sa disparition, INRA, Paris, 1963.Google Scholar
  77. Pouget, R., Etude du rythme végétatif: caractères physiologiques liés à la précocité de débourrement chez la vigne, Annales de l’amélioration des plantes, 16, 6–100, 1966.Google Scholar
  78. Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in Pascal, Cambridge University Press, Cambridge, 759 pp., 1989.Google Scholar
  79. Reaumur, R. A. F. de, Observations du thermomètre, faites à Paris pendant l*#x2019;année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l*#x2019;Amérique., Memoires de l’Académie des Sciences de Paris, 1735.Google Scholar
  80. Reich, P. B., Phenology of tropical forests: patterns, causes, and consequences, Can. J. Bot. 73, 164–174, 1994.CrossRefGoogle Scholar
  81. Repo, T., A. Mäkelä, and H. Hänninen, Modelling frost resistance of trees, Silva Carelica, 15, 61–74, 1990.Google Scholar
  82. Richardson, E. A., S. D. Seeley, and D. R. Walker, A model for estimating the completion of rest for ‘Redhaven’ and ‘Elberta’ peach trees, Hort. Science, 9, 331–332, 1974.Google Scholar
  83. Roberts, E. H., R. J. Summerfiled, R. H. Ellis, and K. A. Stewart, Photothermal time for flowering in lentils (Lens culinaris) and the analysis of potential vernalization responses, Ann. Bot., 61, 23–39, 1988.Google Scholar
  84. Robertson, G. W., A biometeorological time scale for a cereal crop involving day and night temperatures and photoperiod, Int. J. Biometeorol., 12, 191–223, 1968.CrossRefGoogle Scholar
  85. Sarvas, R., Investigations on the annual cycle of development on forest trees active period, Communicationes Instituti Forestalis Fenniae, 76, 110, 1972.Google Scholar
  86. Sarvas, R., Investigations on the annual cycle of development of forest trees: Autumn dormancy and winter dormancy, Communicationes Instituti Forestalis Fenniae, 84, 1–101, 1974.Google Scholar
  87. Schwartz, M. D., Spring index models: an approach to connecting satellite and surface phenology, in Phenology in seasonal climates I, edited by H. Lieth and M. D. Schwartz, pp. 23–38, Backhuys Publishers, Leiden, 1997.Google Scholar
  88. Schwartz, M. D., Green-wave phenology, Nature, 394, 839–840, 1998.CrossRefGoogle Scholar
  89. Schwartz, M. D., Advancing to full bloom: planning phenological research for the 21st century, Int. J. Biometeorol., 42, 113–118, 1999.CrossRefGoogle Scholar
  90. Schwartz, M. D., and G. A. Marotz, An approach to examining regional atmosphere-plant interactions with phenological data, J. Biogeograph., 13, 551–560, 1986.CrossRefGoogle Scholar
  91. Schwartz, M. D., and G. A. Marotz, Synoptic events and spring phenology, Phys. Geog., 9, 151–161, 1988.Google Scholar
  92. Sinclair, T. R., S. Kitani, J. Bruniard and T. Horide, Soybean flowering date: linear and logistic models based on temperature and photoperiod, Crop Sci., 31, 786–790, 1991.CrossRefGoogle Scholar
  93. Spieksma, F. T. H., J. Emberlin, M. Hjelmroos, S. Jäger, and R.M. Leuschner, Atmospheric birch (Betula) pollen in Europe: trends and fluctuations in annual quantities and the starting dates of the seasons, Grana, 34, 51–57, 1995.CrossRefGoogle Scholar
  94. Swartz, H. J., and L.E. Powell, The effect of long chilling requirement on time of bud break in apple, Acta Horticulturae, 120, 173–177, 1981.Google Scholar
  95. Thorhallsdottir, T. E., Flowering phenology in the central highland of Iceland and implications for climatic warming in the Arctic, Oecologia, 114, 43–49, 1998.CrossRefGoogle Scholar
  96. Vegis, A., Dormancy in higher plants, Annual review of plant physiology, 15, 185–224, 1964.CrossRefGoogle Scholar
  97. Vesala, T., J. Haataja, P. Aalto, N. Altimir, G. Buzorius, E. Garam, K. Hämeri, H. Ilvesniemi, V. Jokinen, P. Keronen, T. Lahti, T. Markkanen, J.M. Mäkelä, E. Nikinmaa, S. Palmroth, L. Palva, T. Pohja, J. Pumpanen, Ü. Rannik, E. Siivola, H. Ylitalo, P. Hari, and M. Kulmala, Long-term field measurements of atmosphere-surface interactions in boreal forest combining forest ecology, micrometeorology, aerosol physics and atmospheric chemistry, Trends in Heat, Mass and Momentum Transfer, 4, 17–35, 1998.Google Scholar
  98. Winter, F., A simulation model of phenology and corresponding frost resistance in ‘Golden delicious’ apple, Acta Horticulturae, 184, 103–107, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Isabelle Chuine
    • 1
  • Koen Kramer
    • 2
  • Heikki Hänninen
    • 3
  1. 1.CEFE-CNRSMontpellierFrance
  2. 2.Alterra, Department of Ecology and EnvironmentWageningen UniversityWageningenThe Netherlands
  3. 3.Department of Ecology and SystematicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations