Skip to main content

High Altitude Climates

  • Chapter

Part of the book series: Tasks for Vegetation Science ((TAVS,volume 39))

Abstract

The disappearance of snow cover appears to be the primary factor influencing phenology at high altitudes in the temperate zone. Not enough is known yet about other high-altitude areas without significant snow cover to confirm what is controlling their phenologies. One consequence of the importance of snow in controlling phenology is that flowering, and other phenological events involving both plants and animals, can be highly variable because of variation across years in snowpack depth and across space because of aspect and microsite differences in snow accumulation and melting. A consequence of this variation may be that no single set of phenological and physiological characteristics is optimally adapted to all of this variability, which would then encourage the evolution and maintenance of a diversity of adaptive strategies in high altitude communities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References Cited

  • Adams, V. D., Temporal patterning of blooming phenology in Pedicularis on Mount Rainier, Can. J. Botany, 61, 786–6791, 1983.

    Article  Google Scholar 

  • Akhalkatsi, M., and J. Wagner, Reproductive phenology and seed development of Gentianella caucasea in different habitats in the central Caucasus, Flora, 191, 161–168, 1996.

    Google Scholar 

  • Arroyo, M. T. K., J. J. Armesto, and C. Villagran, Plant phenological patterns in the high Andean Cordillera of central Chile, J. Ecology, 69, 205–223, 1981.

    Article  Google Scholar 

  • Bauer, P. J., Bumblebee pollination relationships on the Beartooth Plateau tundra of southern Montana, Amer. J. Botany, 70, 134–144, 1983.

    Article  Google Scholar 

  • Beattie, A., D. Breedlove, and P. Ehrlich, The ecology of the pollinators and predators of Frasera speciosa, Ecology, 54, 81–91, 1973.

    Google Scholar 

  • Billings, W. D., and L. C. Bliss, An alpine snowbank environment and its effects on vegetation, plant development, and productivity, Ecology, 40, 388–397, 1959.

    Article  Google Scholar 

  • Billings, W. D., and H. A. Mooney, The ecology of arctic and alpine plants, Biological Reviews of the Cambridge Philosophical Society, 43, 481–529, 1968.

    Article  Google Scholar 

  • Bliss, L. C., A comparison of plant development in microenvironments of arctic and alpine tundras, Ecol. Monographs, 26, 303–337, 1956.

    Article  Google Scholar 

  • Bliss, L. C., Arctic and alpine plant life cycles, Annual Review of Ecology and Systematics, 2, 405–438, 1971.

    Article  Google Scholar 

  • Bradley, N. L., A. C. Leopold, J. Ross, and W. Huffaker, Phenological changes reflect climate change in Wisconsin, Proc. Nat. Acad. Science (USA), 96, 9701–9704, 1999.

    Article  CAS  Google Scholar 

  • Brown, J. L., S.-H. Li, and N. Bhagabati, Long-term trend toward earlier breeding in an American bird: A response to global warming?, Proc. Nat. Acad. Science(USA), 96, 5565–5569, 1999.

    Article  CAS  Google Scholar 

  • Caine, N., Declining ice thickness on an alpine lake is generated by increased winter precipitation, Climatic Change, 54, 463–470, 2002.

    Article  Google Scholar 

  • Canaday, B. B., and R. W. Fonda, The influence of subalpine snowbanks on vegetation pattern, production, and phenology, Bull. Torrey Botanical Club, 101, 340–350, 1974.

    Article  Google Scholar 

  • Cayan, D. R., S. A. Kammerdiener, M. D. Dettinger, J. M. Caprio, and D. H. Peterson, Changes in the onset of spring in the western United States, Bull. Amer. Meteorol. Soc., 82, 399–415, 2001.

    Article  Google Scholar 

  • Douglas, G. W., and L. C. Bliss, Alpine and high subalpine plant communities of the North Cascades Range, Washington and British Columbia, Ecol. Monographs, 47, 113–150, 1977.

    Article  Google Scholar 

  • Dunne, J. A., J. Harte, and K. J. Taylor, Subalpine meadow flowering phenology responses to climate change: integrating experimental and gradient methods, Ecol. Monographs, 73, 69–86, 2003.

    Article  Google Scholar 

  • Fitter, A. H., and R. S. R. Fitter, Rapid changes in flowering time in British plants, Science, 296, 1689–1691, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Forbis, T. A., and P. K. Diggle, Subnivean embryo development in the alpine herb Caltha leptosepala (Ranunculaceae), Can. J. Botany (Revue Canadienne de Botanique), 79, 635–642, 2001.

    Google Scholar 

  • Galen, C., and M. L. Stanton, Consequences of emergence phenology for reproductive success in Ranunculus adoneus (Ranunculaceae), Amer. J. Botany, 78, 978–988, 1991.

    Article  Google Scholar 

  • Galen, C., and M. L. Stanton, Short-term responses of alpine buttercups to experimental manipulations of growing season length, Ecology, 74, 1052–1058, 1993.

    Article  Google Scholar 

  • Giorgi, F., W. Hurrell, M. Marinucci, and M. Beniston, Elevation dependency of the surface climate change signal: a model study, J. Climate, 10, 288–296, 1997.

    Article  Google Scholar 

  • Gómez, J. M., Phenotypic selection on flowering synchrony in a high mountain plant, Hormathophylla spinosa (Cruciferae), J. Ecology, 81, 605–613, 1993.

    Article  Google Scholar 

  • Grabherr, G., M. Gottfried, A. Gruber, and H. Pauli, Patterns and current changes in alpine plant diversity, in Arctic and alpine biodiversity: patterns, causes and ecosystem consequences, Ecological Studies, edited by F. S. Chapin, III and C. Koerner, pp. 167–181, Springer Verlag, Berlin, 1995.

    Google Scholar 

  • Guisan, A., and J.-P. Theurillat, Equilibrium modeling of alpine plant distribution: how far can we go?, Phytocoenologia, 30, 353–384, 2000.

    Google Scholar 

  • Heide, O., Daylength and thermal time responses of budburst during dormancy release in some northern deciduous trees, Physiologia Plantarum, 88, 531–540, 1993.

    Article  Google Scholar 

  • Henry, G. H. R., and U. Molau, Tundra plants and climate change: the International Tundra Experiment (ITEX), Global Change Biology, 3,Suppl. 1, 1–9, 1997.

    Article  Google Scholar 

  • Hofer, H. R., Veränderungen in der Vegetation von 14 Gipfeln des Berninagebietes zwischen 1905 und 1985, Berichte des Geobotanischen Instituts der ETH Zürich, Stiftung Rüubel, 58, 39–54, 1992.

    Google Scholar 

  • Hoffmann, A. J., and M. J. Walker, Growth habits and phenology of drought-deciduous species in an altitudinal gradient, Can. J. Botany, 58, 1789–1796, 1980.

    Article  Google Scholar 

  • Holway, J. G., and R. T. Ward, Snow and meltwater effects in an area of Colorado alpine, Amer. Midland Naturalist, 69, 189–197, 1963.

    Article  Google Scholar 

  • Holway, J. G., and R. T. Ward, Phenology of alpine plants in northern Colorado, Ecology, 46, 73–83, 1965.

    Article  Google Scholar 

  • Inouye, D. W., The ecological and evolutionary significance of frost in the context of climate change, Ecol. Letters, 3, 457–463, 2000.

    Article  Google Scholar 

  • Inouye, D. W., B. Barr, K. B. Armitage, and B. D. Inouye, Climate change is affecting altitudinal migrants and hibernating species, Proc. Nat. Acad. Science(USA), 97, 1630–1633, 2000.

    Article  CAS  Google Scholar 

  • Inouye, D. W., M. Morales, and G. Dodge, Variation in timing and abundance of flowering by Delphinium barbeyi Huth (Ranunculaceae): the roles of snowpack, frost, and La Niña, in the context of climate change, Oecologia, 139, 543–550, 2002.

    Article  Google Scholar 

  • Inouye, D. W., and G. H. Pyke, Pollination biology in the Snowy Mts. of Australia, with comparisons with montane Colorado, U. S. A., Australian J. Ecology, 13, 191–210, 1988.

    Article  Google Scholar 

  • Jackson, L. E., and L. C. Bliss, Distribution of ephemeral herbaceous plants near treeline in the Sierra Nevada, California, U.S.A., Arctic and Alpine Research, 14, 33–42, 1982.

    Article  Google Scholar 

  • Jackson, L.E., and L. C. Bliss, Phenology and water relations of three plant life-forms in a dry treeline meadow, Ecology, 65, 1302–1314, 1984.

    Article  Google Scholar 

  • Kelly, D., A. L. Harrison, W. G. Lee, I. J. Payton, P. R. Wilson, and E. M. Schauber, Predator satiation and extreme mast seeding in 11 species of Chionochloa (Poaceae), Oikos, 90, 477–488, 2000.

    Article  Google Scholar 

  • Kittel, T. G. F., P. E. Thornton, J. A. Royle, and T. N. Chase, Climates of the Rocky Mountains: historical and future patterns, in Rocky Mountain Futures: An Ecological Perspective, edited by J. Baron, D. Fagre and R. Hauer, pp. 59–82, Island Press, Covelo, CA, 2002.

    Google Scholar 

  • Knight, D. H., B. S. Rogers, and C. R. Kyte, Understory plant growth in relation to snow duration in Wyoming subalpine forest, Bull. Torrey Botanical Club, 104, 314–319, 1977.

    Article  Google Scholar 

  • Kudo, G., Effects of snow-free period on the phenology of alpine plants inhabiting snow patches, Arctic and Alpine Research, 23, 436–443, 1991.

    Article  Google Scholar 

  • Kudo, G., Performance and phenology of alpine herbs along a snow-melting gradient, Ecological Research, 7, 297–304, 1992.

    Article  Google Scholar 

  • Langvatn, R., S. D. Albon, T. Burkey, and T. H. Clutton Brock, Climate, plant phenology and variation in age of first reproduction in a temperate herbivore, J. Animal Ecology, 65, 653–670, 1996.

    Article  Google Scholar 

  • Lynov, Y. S., Phenological inversions in alpine terrain, Western Tien Shan, Ékologiya, 4, 29–33, 1984.

    Google Scholar 

  • Mark, A. F., Floral initiation and development in New Zealand alpine plants, New Zealand J. Botany, 8, 67–75, 1970.

    Google Scholar 

  • Melampy, M. N., Flowering phenology, pollen flow and fruit production in the Andean shrub Befaria resinosa, Oecologia, 73, 293–300, 1987.

    Google Scholar 

  • Meloche, C. G., and P. K. Diggle, Preformation, architectural complexity, and developmental flexibility in Acomastylis rossii (Rosaceae), Amer. J. Botany, 88, 980–991, 2001.

    Article  Google Scholar 

  • Merrill, E. H., and M. S. Boyce, Summer range and elk population dynamics in Yellowstone National Park, in The Greater Yellowstone Ecosystem: Redefining America’s Wildlife Heritage, edited by R. B. Keiter and M. S. Boyce, pp. 263–273, Yale University Press, New Haven, 1991.

    Google Scholar 

  • Mitton, J. B., K. B. Sturgeon, and M. L. Davis, Genetic differentiation in ponderosa pine along a steep elevational transect, Silvae Genetica, 29, 100–103, 1980.

    Google Scholar 

  • Molau, U., Relationships between flowering phenology and life history strategies in tundra plants, Arctic and Alpine Research, 25, 391–402, 1993.

    Article  Google Scholar 

  • Moonen, A. C., L. Ercoli, M. Mariotti, and A. Masoni, Climate change in Italy indicated by agrometeorological indices over 122 years, Agricul. Forest Meteorol., 111, 13–27, 2002.

    Article  Google Scholar 

  • Mooney, H. A., K. S. Williams, D. E. Lincoln, and P. R. Ehrlich, Temporal and spatial variability in the interaction between the checkerspot butterfly, Euphydryas calcedona and its principal food source, the Californian shrub, Diplacus aurantiacus, Oecologia, 50, 195–198, 1981.

    Article  Google Scholar 

  • Morton, M. L., Comparison of reproductive timing to snow conditions in wild onions and White-Crowned Sparrows at high altitude, Great Basin Naturalist, 54, 371–375, 1994.

    Google Scholar 

  • Myking, T., and O. M. Heide, Dormancy release and chilling requirement of buds of latitudinal ecotypes of Betula pendula and B. pubescens, Tree Physiology, 15, 697–704, 1995.

    PubMed  Google Scholar 

  • Peñuelas, J., and I. Filella, Responses to a warming world, Science, 294, 793–795, 2001.

    Article  PubMed  Google Scholar 

  • Peñuelas, J., I. Filella, and P. Comas, Changed plant and animal life cycles from 1952 to 2000 in the Mediterranean region, Global Change Biology, 8, 531–544, 2002.

    Article  Google Scholar 

  • Ralph, C. P., Observations on Azorella compacta (Umbelliferae), a tropical Andean cushion plant, Biotropica, 10, 62–67, 1978.

    Article  Google Scholar 

  • Ratcliffe, M. J., and R. Turkington, Comparative phenology of some alpine vascular plant species on Lakeview Mountain, Southern British Columbia, Canadian Field Naturalist, 103, 348–352, 1989.

    Google Scholar 

  • Rees, M., D. Kelly, and O. N. Bjornstad, Snow tussocks, chaos, and the evolution of mast seeding, Amer. Naturalist, 160, 44–59, 2002.

    Article  Google Scholar 

  • Resvoll, T. R., Om planter som passer til kort og kold sommer (in Norwegian), Arciv Mathematik Naturvidenskab, 35, 1–224, 1917.

    Google Scholar 

  • Reynolds, D. N., Alpine annual plants: phenology, germination, photosynthesis, and growth in three Rocky Mountain species, Ecology, 65, 759–766, 1984.

    Article  Google Scholar 

  • Richardson, S. G., and F. B. Salisbury, Plant responses to the light penetrating snow, Ecology, 58, 1152–1158, 1977.

    Article  Google Scholar 

  • Roy, D. B., and T. H. Sparks, Phenology of British butterflies and climate change, Global Change Biology, 6, 407–416, 2000.

    Article  Google Scholar 

  • Sagarin, R., and F. Micheli, Climate change in nontraditional data sets, Science, 294, 811, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Sakin, M., J. F. Hancock, and J. J. Luby, Identifying new sources of genes that determine cyclic flowering in Rocky Mountain populations of Fragaria virginiana ssp glauca Staudt, J. Amer. Soc. Hort. Science, 122, 205–210, 1997.

    Google Scholar 

  • Schuster, W. S., D. L. Alles, and J. B. Mitton, Gene flow in limber pine: evidence from pollination phenology and genetic differentiation along an elevational transect, Amer. J. Botany, 76, 1395–1403, 1989.

    Article  Google Scholar 

  • Stanton, M. L., and C. Galen, Life on the edge: Adaptation versus environmentally mediated gene flow in the snow buttercup, Ranunculus adoneus, Amer. Naturalist, 150, 143–178, 1997.

    Article  Google Scholar 

  • Stanton, M. L., C. Galen, and J. Shore, Population structure along a steep environmental gradient: Consequences of flowering time and habitat variation in the snow buttercup, Ranunculus adoneus, Evolution, 51, 79–94, 1997.

    Google Scholar 

  • Stenström, M., and U. Molau, Reproductive ecology of Saxifraga oppositifolia: phenology, mating system, and reproductive success, Arctic and Alpine Research, 24, 337–343, 1992.

    Article  Google Scholar 

  • Suzuki, S., and G. Kudo, Responses of alpine shrubs to simulated environmental change during three years in the mid-latitude mountain, northern Japan, Ecography, 25, 553–564, 2000.

    Article  Google Scholar 

  • Taylor, O. R., Jr., and D. W. Inouye, Synchrony and periodicity of flowering in Frasera speciosa (Gentianaceae), Ecology, 66, 521–527, 1985.

    Article  Google Scholar 

  • Theurillat, J. P., and A. Guisan, Potential impact of climate change on vegetation in the European Alps: A review, Climatic Change, 50, 77–109, 2001.

    Article  CAS  Google Scholar 

  • Theurillat, J. P., and A. Schlüssel, Phenology and distribution strategy of key plant species within the subalpine-alpine ecocline in the Valaisan Alps (Switzerland), Phytocoenologia, 30, 439–456, 2000.

    Google Scholar 

  • Totland, Ø. Pollination in alpine Norway: flowering phenology, insect visitors, and visitation rates in two plant communities, Can. J. Botany (Revue Canadienne de Botanique), 71, 1072–1079, 1993.

    Article  Google Scholar 

  • Totland, Ø. Effects of flowering time and temperature on growth and reproduction in Leontodon autumnalis var. taraxaci a late-flowering alpine plant, Arctic and Alpine Research, 29, 285–290, 1997.

    Article  Google Scholar 

  • Visser, M. E., and L. J. M. Holleman, Warmer springs disrupt the synchrony of oak and winter moth phenology, Proceedings of the Royal Society B, 268, 1–6, 2001.

    Article  Google Scholar 

  • Wagner, J., and E. Mitterhofer, Phenology, seed development, and reproductive success of an alpine population of Gentianella germanica in climatically varying years, Botanica Acta, 111, 159–166, 1998.

    Google Scholar 

  • Wagner, J., and B. Reichegger, Phenology and seed development of the alpine sedges Carex curvula and Carex firma in response to contrasting topoclimates, Arctic and Alpine Research, 29, 291–299, 1997.

    Article  Google Scholar 

  • Walker, M. D., R. C. Ingersoll, and P. J. Webber, Effects of interannual climate variation on phenology and growth of two alpine forbs, Ecology, 76, 1067–1083, 1995.

    Article  Google Scholar 

  • Walther, G.-R., E. Post, P. Convey, A. Menzel, C. Pamesan, T. J. C. Beebee, J.-M. Fromentin, O. Hoegh-Guldberg, and F. Bairlein, Ecological responses to recent climate change, Nature, 416, 389–395, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Wardle, P., Alpine timberlines, in Arctic and alpine environments, edited by J. D. Ives and R. G. Barry, pp. 371–402, Methuen, London, 1974.

    Google Scholar 

  • Wielgolaski, F. E., and L. Kärenlampi, Plant phenology of Fennoscandinan tundra areas, in Fennoscandian Tundra Ecosystems, Part 1., vol. 16, Ecological Studies: Analysis and Synthesis, edited by F. E. Wielgolaski, pp. 94–102, Springer-Verlag, Berlin, 1975.

    Google Scholar 

  • Williams, M. C., and E. H. Cronin, Dormancy, longevity, and germination of seeds of three larkspurs and western false hellebore, Weeds, 8, 452–461, 1968.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Inouye, D.W., Wielgolaski, F.E. (2003). High Altitude Climates. In: Schwartz, M.D. (eds) Phenology: An Integrative Environmental Science. Tasks for Vegetation Science, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0632-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0632-3_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-1580-9

  • Online ISBN: 978-94-007-0632-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics