Skip to main content

High-Grade Gliomas: Dendritic Cell Therapy

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 2

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 2))

  • 1763 Accesses

Abstract

The relationship between the development of a tumor and the immune system is depicted by the fundamental model of “cancer immunoediting”: a tumor will only grow if the immune system is not capable of eliminating immune-resistant tumor cells (“tumor immune escape”). Both the adaptive and innate immunity play a key-role in this process. Multiple tumor-associated antigens have been described in gliomas and the expression of these antigens is very heterogeneous with important inter- and intra-individual differences. This is in contrast with other tumors, such as malignant melanoma, where tumor-associated antigens are almost universally expressed in all tumor cells. Several studies have shown that antigens can drain from the central nervous system to the cervical lymph nodes, where antigen-specific T cells can be activated by antigen-presenting cells. These activated T cells can subsequently migrate into the brain parenchyma to the sites of antigen challenge. This points to possible, naturally occurring immune responses eventually also against tumors, and indicates that the central nervous system is not an “immune-silent” environment. Therefore, it seems that the immune system can provide us with some interesting tools to treat gliomas. Several types of immunotherapy have been used and the most promising strategy for the induction of durable immune responses seems to be active, specific immunotherapy, or the so-called tumor vaccination. Further research has to be done, however, to establish the value of this form of immunotherapy in the treatment of gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abou-Ghazal M, Yang DS, Qiao W, Reina-Ortiz C, Wei J, Kong LY, Fuller GN, Hiraoka N, Priebe W, Sawaya R, Heimberger AB (2008) The incidence, correlation with tumor-infiltrating inflammation, and prognosis of phosphorylated STAT3 expression in human gliomas. Clin Cancer Res 14:8228–8235

    Article  PubMed  CAS  Google Scholar 

  • Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T, Yoshida J (2001) Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 50:463–468

    Article  PubMed  CAS  Google Scholar 

  • Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW (2010a) Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr. Blood Cancer 54:519–525

    Google Scholar 

  • Ardon H, Van Gool S, Lopes IS, Maes W, Sciot R, Wilms G, Demaerel P, Bijttebier P, Claes L, Goffin J, Van Calenbergh F, De Vleeschouwer S (2010b) Integration of autologous dendritic cell-based immunotherapy in the primary treatment for patients with newly diagnosed glioblastoma multiforme: a pilot study. J Neurooncol. [Epub ahead of print]

    Google Scholar 

  • Balkwill F (2004) The significance of cancer cell expression of the chemokine receptor CXCR4. Semin Cancer Biol 14:171–179

    Article  PubMed  CAS  Google Scholar 

  • Banissi C, Ghiringhelli F, Chen L, Carpentier AF (2009) Treg depletion with a low-dose metronomic temozolomide regimen in a rat glioma model. Cancer Immunol Immunother 58:1627–1634

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  • Borghaei H, Smith MR, Campbell KS (2009) Immunotherapy of cancer. Eur J Pharmacol 625:41–54

    Article  PubMed  CAS  Google Scholar 

  • Bradbury MW, Cserr HF, Westrop RJ (1981) Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 240:F329–F336

    PubMed  CAS  Google Scholar 

  • Bradbury PA, Shepherd FA (2008) Immunotherapy for lung cancer. J Thorac Oncol 3:S164–S170

    Article  PubMed  Google Scholar 

  • Choi BD, Archer GE, Mitchell DA, Heimberger AB, McLendon RE, Bigner DD, Sampson JH (2009) EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol 19:713–723

    Article  PubMed  CAS  Google Scholar 

  • Ciesielski MJ, Apfel L, Barone TA, Castro CA, Weiss TC, Fenstermaker RA (2006) Antitumor effects of a xenogeneic survivin bone marrow derived dendritic cell vaccine against murine GL261 gliomas. Cancer Immunol Immunother 55:1491–1503

    Article  PubMed  CAS  Google Scholar 

  • Copier J, Dalgleish AG, Britten CM, Finke LH, Gaudernack G, Gnjatic S, Kallen K, Kiessling R, Schuessler-Lenz M, Singh H, Talmadge J, Zwierzina H, Hakansson L (2009) Improving the efficacy of cancer immunotherapy. Eur J Cancer 45:1424–1431

    Article  PubMed  CAS  Google Scholar 

  • Cserr HF, Knopf PM (1992) Cervical lymphatics, the blood-brain barrier and the immunoreactivity of the brain: a new view. Immunol Today 13:507–512

    Article  PubMed  CAS  Google Scholar 

  • De Vleeschouwer S, Fieuws S, Rutkowski S, Van Calenbergh F, Van Loon J, Goffin J, Sciot R, Wilms G, Demaerel P, Warmuth-Metz M, Soerensen N, Wolff JE, Wagner S, Kaempgen E, Van Gool SW (2008) Postoperative adjuvant dendritic cell-based immunotherapy in patients with relapsed glioblastoma multiforme. Clin Cancer Res 14:3098–3104

    Article  PubMed  Google Scholar 

  • De Vleeschouwer S, Rapp M, Sorg RV, Steiger HJ, Stummer W, Van Gool S, Sabel M (2006) Dendritic cell vaccination in patients with malignant gliomas: current status and future directions. Neurosurgery 59:988–999

    PubMed  Google Scholar 

  • De Vleeschouwer S, Van Calenbergh F, Demaerel P, Flamen P, Rutkowski S, Kaempgen E, Wolff JE, Plets C, Sciot R, Van Gool SW (2004) Transient local response and persistent tumor control of recurrent malignant glioma treated with combination therapy including dendritic cell therapy. J Neurosurg Pediatrics 100:492–497

    Article  Google Scholar 

  • De Vleeschouwer S, Van Gool SW, Van Calenbergh F (2005) Immunotherapy for malignant gliomas: emphasis on strategies of active specific immunotherapy using autologous dendritic cells. Childs Nerv Syst 21:7–18

    Article  PubMed  Google Scholar 

  • Dhodapkar KM, Cirignano B, Chamian F, Zagzag D, Miller DC, Finlay JL, Steinman RM (2004) Invariant natural killer T cells are preserved in patients with glioma and exhibit antitumor lytic activity following dendritic cell-mediated expansion. Int J Cancer 109:893–899

    Article  PubMed  CAS  Google Scholar 

  • Dix AR, Brooks WH, Roszman TL, Morford LA (1999) Immune defects observed in patients with primary malignant brain tumors. J Neuroimmunol 100:216–232

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD (2002) Cancer immunoediting: from immunosurveillance to tumor escape. Nat Immunol 3:991–998

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Dunn IF, Curry WT (2007) Focus on TILs: prognostic significance of tumor infiltrating lymphocytes in human glioma. Cancer Immun 7:12

    PubMed  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004a) The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–148

    Article  PubMed  CAS  Google Scholar 

  • Dunn GP, Old LJ, Schreiber RD (2004b) The three Es of cancer immunoediting. Annu Rev Immunol 22:329–360

    CAS  Google Scholar 

  • Editorial note Future Oncol (2009) Phase III trial indicates potential for melanoma vaccine. Future Oncol 5:759–761

    Article  Google Scholar 

  • Elliott LH, Brooks WH, Roszman TL (1987) Activation of immunoregulatory lymphocytes obtained from patients with malignant gliomas. J Neurosurg 67:231–236

    Article  PubMed  CAS  Google Scholar 

  • Engell-Noerregaard L, Hansen TH, Andersen MH, Thor Straten P, Svane IM (2009) Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother 58:1–14

    Article  PubMed  CAS  Google Scholar 

  • Eramo A, Ricci-Vitiani L, Zeuner A, Pallini R, Lotti F, Sette G, Pilozzi E, Larocca LM, Peschle C, De Maria R (2006) Chemotherapy resistance of glioblastoma stem cells. Cell Death Differ. 13:1238–1241

    Article  PubMed  CAS  Google Scholar 

  • Fecci PE, Mitchell DA, Whitesides JF, Xie W, Friedman AH, Archer GE, Herndon JE, Bigner DD, Dranoff G, Sampson JH (2006) Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res 66:3294–3302

    Article  PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F (2004) CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol 34:336–344

    Article  PubMed  CAS  Google Scholar 

  • Ghiringhelli F, Menard C, Puig PE, Ladoire S, Roux S, Martin F, Solary E, Le Cesne A, Zitvogel L, Chauffert B (2007) Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56:641–648

    Article  PubMed  CAS  Google Scholar 

  • Gilboa E, Nair SK, Lyerly HK (1998) Immunotherapy of cancer with dendritic-cell-based vaccines. Cancer Immunol Immunother 46:82–87

    Article  CAS  Google Scholar 

  • Grange JM, Krone B, Stanford JL (2009) Immunotherapy for malignant melanoma–tracing Ariadne’s thread through the labyrinth. Eur J Cancer 45:2266–2273

    Article  PubMed  CAS  Google Scholar 

  • Grauer OM, Nierkens S, Bennink E, Toonen LW, Boon L, Wesseling P, Sutmuller RP, Adema GJ (2007) CD4+FoxP3+ regulatory T cells gradually accumulate in gliomas during tumor growth and efficiently suppress antiglioma immune responses in vivo. Int J Cancer 121:95–105

    Article  PubMed  CAS  Google Scholar 

  • Grauer OM, Sutmuller RP, van Maren W, Jacobs JF, Bennink E, Toonen LW, Nierkens S, Adema GJ (2008) Elimination of regulatory T cells is essential for an effective vaccination with tumor lysate-pulsed dendritic cells in a murine glioma model. Int J Cancer 122:1794–1802

    Article  PubMed  CAS  Google Scholar 

  • Grauer OM, Wesseling P, Adema GJ (2009) Immunotherapy of diffuse gliomas: biological background, current status and future developments. Brain Pathol 19:674–693

    Article  PubMed  CAS  Google Scholar 

  • Hau P, Jachimczak P, Bogdahn U (2009) Treatment of malignant gliomas with TGF-beta2 antisense oligonucleotides. Expert Rev Anticancer Ther 9:1663–1674

    Article  PubMed  CAS  Google Scholar 

  • Hau P, Jachimczak P, Schlingensiepen R, Schulmeyer F, Jauch T, Steinbrecher A, Brawanski A, Proescholdt M, Schlaier J, Buchroithner J, Pichler J, Wurm G, Mehdorn M, Strege R, Schuierer G, Villarrubia V, Fellner F, Jansen O, Straube T, Nohria V, Goldbrunner M, Kunst M, Schmaus S, Stauder G, Bogdahn U, Schlingensiepen KH (2007) Inhibition of TGF-beta2 with AP 12009 in recurrent malignant gliomas: from preclinical to phase I/II studies. Oligonucleotides 17:201–212

    Article  PubMed  CAS  Google Scholar 

  • Heath WR, Carbone FR (2001) Cross-presentation, dendritic cells, tolerance and immunity. Annu Rev Immunol 19:47–64

    Article  PubMed  CAS  Google Scholar 

  • Heimberger AB, Abou-Ghazal M, Reina-Ortiz C, Yang DS, Sun W, Qiao W, Hiraoka N, Fuller GN (2008) Incidence and prognostic impact of FoxP3+ regulatory T cells in human gliomas. Clin Cancer Res 14:5166–5172

    Article  PubMed  CAS  Google Scholar 

  • Hemmati HD, Nakano I, Lazareff JA, Masterman-Smith M, Geschwind DH, Bronner-Fraser M, Kornblum HI (2003) Cancerous stem cells can arise from pediatric brain tumors. Proc Natl Acad Sci USA 100:15178–15183

    Article  PubMed  CAS  Google Scholar 

  • Insug O, Ku G, Ertl HC, Blaszczyk-Thurin M (2002) A dendritic cell vaccine induces protective immunity to intracranial growth of glioma. Anticancer Res 22:613–621

    PubMed  CAS  Google Scholar 

  • Kakimi K, Nakajima J, Wada H (2009) Active specific immunotherapy and cell-transfer therapy for the treatment of non-small cell lung cancer. Lung Cancer 65:1–8

    Article  PubMed  Google Scholar 

  • Kikuchi T, Akasaki Y, Abe T, Fukuda T, Saotome H, Ryan JL, Kufe DW, Ohno T (2004) Vaccination of glioma patients with fusions of dendritic and glioma cells and recombinant human interleukin 12. J Immunother 27:452–459

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi T, Akasaki Y, Irie M, Homma S, Abe T, Ohno T (2001) Results of a phase I clinical trial of vaccination of glioma patients with fusions of dendritic and glioma cells. Cancer Immunol Immunother 50:337–344

    Article  PubMed  CAS  Google Scholar 

  • Kjaergaard J, Wang LX, Kuriyama H, Shu S, Plautz GE (2005) Active immunotherapy for advanced intracranial murine tumors by using dendritic cell-tumor cell fusion vaccines. J Neurosurg 103:156–164

    Article  PubMed  CAS  Google Scholar 

  • Liau LM, Black KL, Martin NA, Sykes SN, Bronstein JM, Jouben-Steele L, Mischel PS, Belldegrun A, Cloughesy TF (2000) Treatment of a Glioblastoma patient by vaccination with autologous dendritic cells pulsed with allogeneic Major Histocompatibility Complex Class I-matched tumor peptides: case report. Neurosurgical Focus 9:e8

    Article  PubMed  CAS  Google Scholar 

  • Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF, Roth MD (2005) Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 11:5515–5525

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  Google Scholar 

  • Macdonald DR, Cascino TL, Schold SC Jr, Cairncross JG (1990) Response criteria for phase II studies of supratentorial malignant glioma. J Clin Oncol 8:1277–1280

    PubMed  CAS  Google Scholar 

  • Maes W, Rosas GG, Verbinnen B, Boon L, De Vleeschouwer S, Ceuppens JL, Van Gool SW (2009) DC vaccination with anti-CD25 treatment leads to long-term immunity against experimental glioma. Neuro Oncol 11:529–542

    Article  PubMed  CAS  Google Scholar 

  • Maldonado-Lopez R, Moser M (2001) Dendritic cell subsets and the regulation of Th1/Th2 responses. Semin Immunol 13:275–282

    Article  PubMed  CAS  Google Scholar 

  • Malmberg KJ (2004) Effective immunotherapy against cancer: a question of overcoming immune suppression and immune escape? Cancer Immunol Immunother 53:879–892

    Article  PubMed  CAS  Google Scholar 

  • McDermott DF (2009) Immunotherapy of metastatic renal cell carcinoma. Cancer 115:2298–2305

    Article  PubMed  CAS  Google Scholar 

  • McMahon EJ, Bailey SL, Miller SD (2006) CNS dendritic cells: critical participants in CNS inflammation? . Neurochem Int 49:195–203

    Article  PubMed  CAS  Google Scholar 

  • Mu LJ, Gaudernack G, Saeboe-Larssen S, Hammerstad H, Tierens A, Kvalheim G (2003) A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scand J Immunol 58:578–586

    Article  PubMed  CAS  Google Scholar 

  • Ni HT, Spellman SR, Jean WC, Hall WA, Low WC (2001) Immunization with dendritic cells pulsed with tumor extract increases survival of mice bearing intracranial gliomas. J Neurooncol 51:1–9

    Article  PubMed  CAS  Google Scholar 

  • Norden AD, Drappatz J, Wen PY (2009) Antiangiogenic therapies for high-grade glioma. Nat Rev Neurol 5:610–620

    Article  PubMed  CAS  Google Scholar 

  • Okada H, Lieberman FS, Walter KA, Lunsford LD, Kondziolka DS, Bejjani GK, Hamilton RL, Torres-Trejo A, Kalinski P, Cai Q, Mabold JL, Edington HD, Butterfield LH, Whiteside TL, Potter DM, Schold SC Jr, Pollack IF (2007) Autologous glioma cell vaccine admixed with interleukin-4 gene transfected fibroblasts in the treatment of patients with malignant gliomas. J Transl Med 5:67

    Article  PubMed  Google Scholar 

  • Pellegatta S, Poliani PL, Corno D, Grisoli M, Cusimano M, Ubiali F, Baggi F, Bruzzone MG, Finocchiaro G (2006a) Dendritic cells pulsed with glioma lysates induce immunity against syngeneic intracranial gliomas and increase survival of tumor-bearing mice. Neurol Res 28:527–531

    Article  PubMed  CAS  Google Scholar 

  • Pellegatta S, Poliani PL, Corno D, Menghi F, Ghielmetti F, Suarez-Merino B, Caldera V, Nava S, Ravanini M, Facchetti F, Bruzzone MG, Finocchiaro G (2006b) Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 66:10247–10252

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff RM, Kivisakk P, Kidd G (2003) Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol 3:569–581

    Article  PubMed  CAS  Google Scholar 

  • Rech AJ, Vonderheide RH (2009) Clinical use of anti-CD25 antibody daclizumab to enhance immune responses to tumor antigen vaccination by targeting regulatory T cells. Ann NY Acad Sci 1174:99–106

    Article  PubMed  CAS  Google Scholar 

  • Roszman T, Elliott L, Brooks W (1991) Modulation of T-cell function by gliomas. Immunol Today 12:370–374

    Article  PubMed  CAS  Google Scholar 

  • Rutkowski S, De Vleeschouwer S, Kaempgen E, Wolff JEA, Kuhl J, Demaerel P, Warmuth-Metz M, Flamen P, Van Calenbergh F, Plets C, Sörensen N, Opitz A, Van Gool SW (2004) Surgery and adjuvant dendritic cell-based tumour vaccination for patients with relapsed malignant glioma, a feasibility study. Br J Cancer 91:1656–1662

    PubMed  CAS  Google Scholar 

  • Saito R, Mizuno M, Nakahara N, Tsuno T, Kumabe T, Yoshimoto T, Yoshida J (2004) Vaccination with tumor cell lysate-pulsed dendritic cells augments the effect of IFN-beta gene therapy for malignant glioma in an experimental mouse intracranial glioma. Int J Cancer 111:777–782

    Article  PubMed  CAS  Google Scholar 

  • Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB, Grabbe S, Rittgen W, Edler L, Sucker A, Zimpfer-Rechner C, Berger T, Kamarashev J, Burg G, Jonuleit H, Tuttenberg A, Becker JC, Keikavoussi P, Kämpgen E, Schuler G (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17:563–570

    Article  PubMed  CAS  Google Scholar 

  • Schneider T, Becker A, Ringe K, Reinhold A, Firsching R, Sabel BA (2008) Brain tumor therapy by combined vaccination and antisense oligonucleotide delivery with nanoparticles. J Neuroimmunol 195:21–27

    Article  PubMed  CAS  Google Scholar 

  • Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63:5821–5828

    PubMed  CAS  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

    Article  PubMed  CAS  Google Scholar 

  • Sorg RV, Ozcan Z, Brefort T, Fischer J, Ackermann R, Muller M, Wernet P (2003) Clinical-scale generation of dendritic cells in a closed system. J Immunother 26:374–383

    Article  PubMed  Google Scholar 

  • Su YB, Sohn S, Krown SE, Livingston PO, Wolchok JD, Quinn C, Williams L, Foster T, Sepkowitz KA, Chapman PB (2004) Selective CD4+ lymphopenia in melanoma patients treated with temozolomide: a toxicity with therapeutic implications. J Clin Oncol 22:610–616

    Article  PubMed  CAS  Google Scholar 

  • Terando AM, Faries MB, Morton DL (2007) Vaccine therapy for melanoma: current status and future directions. Vaccine 25(Suppl 2):B4–B16

    Article  PubMed  CAS  Google Scholar 

  • Thurner B, Roder C, Dieckmann D, Heuer H, Kruse M, Glaser A, Keikavoussi P, Kämpgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223:1–15

    Article  PubMed  CAS  Google Scholar 

  • Tuyaerts S, Aerts JL, Corthals J, Neyns B, Heirman C, Breckpot K, Thielemans K, Bonehill A (2007) Current approaches in dendritic cell generation and future implications for cancer immunotherapy. Cancer Immunol Immunother 56:1513–1537

    Article  PubMed  CAS  Google Scholar 

  • Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C, De Greef C, Van Riet I, Thielemans K (2002) Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods 264:135–151

    Article  PubMed  CAS  Google Scholar 

  • Van Gool S, Maes W, Ardon H, Verschuere T, Van Cauter S, De Vleeschouwer S (2009) Dendritic cell therapy of high-grade gliomas. Brain Pathol 19:694–712

    Article  PubMed  Google Scholar 

  • Van Poppel H, Joniau S, Van Gool SW (2009) Vaccine therapy in patients with renal cell carcinoma. Eur Urol 55:1333–1342

    Article  PubMed  Google Scholar 

  • Verhoeff JJ, van Tellingen O, Claes A, Stalpers LJ, van Linde ME, Richel DJ, Leenders WP, van Furth WR (2009) Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer 9:444

    Google Scholar 

  • Walker DG, Laherty R, Tomlinson FH, Chuah T, Schmidt C (2008) Results of a phase I dendritic cell vaccine trial for malignant astrocytoma: potential interaction with adjuvant chemotherapy. J Clin Neurosci 15:114–121

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CJ, Black KL, Liu G, Mazer M, Zhang XX, Pepkowitz S, Goldfinger D, Ng H, Irvin D, Yu JS (2008) Vaccination elicits correlated immune and clinical responses in glioblastoma multiforme patients. Cancer Res 68:5955–5964

    Article  PubMed  CAS  Google Scholar 

  • Wheeler CJ, Black KL, Liu G, Ying H, Yu JS, Zhang W, Lee PK (2003) Thymic CD8(+) T cell production strongly influences tumor antigen recognition and age-dependent glioma mortality. J Immunol 171:4927–4933

    PubMed  CAS  Google Scholar 

  • Yamanaka R (2009) Dendritic-cell- and peptide-based vaccination strategies for glioma. Neurosurg Rev 32:265–273

    Article  PubMed  Google Scholar 

  • Yamanaka R, Abe T, Yajima N, Tsuchiya N, Homma J, Kobayashi T, Narita M, Takahashi M, Tanaka R (2003) Vaccination of recurrent glioma patients with tumour lysate-pulsed dendritic cells elicits immune responses: results of a clinical phase I/II trial. Br J Cancer 89:1172–1179

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka R, Homma J, Yajima N, Tsuchiya N, Sano M, Kobayashi T, Yoshida S, Abe T, Narita M, Takahashi M, Tanaka R (2005) Clinical evaluation of dendritic cell vaccination for patients with recurrent glioma: results of a clinical phase I/II trial. Clin Cancer Res 11:4160–4167

    Article  PubMed  CAS  Google Scholar 

  • Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ (2004) Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 64:4973–4979

    Article  PubMed  CAS  Google Scholar 

  • Yu JS, Wheeler CJ, Zeltzer PM, Ying H, Finger DN, Lee PK, Yong WH, Incardona F, Thompson RC, Riedinger MS, Zhang W, Prins RM, Black KL (2001) Vaccination of malignant glioma patients with peptide-pulsed dendritic cells elicits systemic cytotoxicity and intracranial T-cell infiltration. Cancer Res 61:842–847

    PubMed  CAS  Google Scholar 

  • Zitvogel L, Tesniere A, Kroemer G (2006) Cancer despite immunosurveillance: immunoselection and immunosubversion. Nat Rev Immunol 6:715–727

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This translational research program has been supported by the Olivia Hendrickx Research Fund (http://www.olivia.be). Support was also obtained from Electrabel Netmanagement Vlaanderen, CAF Belgium, Baxter, the Herman Memorial Research Fund (http://www.hmrf.be), the James E. Kearney Memorial Fund and gifts from private families and service clubs. Additionally, grants were obtained from “Stichting tegen Kanker,” IWT (TBM project), the Stem Cell Institute Leuven, the Emmanuel van der Schueren Fund, the International Union against Cancer, the Klinisch Onderzoeksfonds UZ Leuven, and the Fund for Scientific Research – Flanders (FWO-V). We are very grateful for the technical assistance from KatjaVandenbrande, Goedele Stegen, Vallentina Schaiko, Elke Nackers and Anaïs Van Hoylandt. We thank the neurooncology team in the hospital for fruitful patient discussion, and the staff of the Laboratory of Experimental Immunology for basic scientific discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven De Vleeschouwer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Ardon, H., De Vleeschouwer, S., Van Calenbergh, F., Van Gool, S.W. (2011). High-Grade Gliomas: Dendritic Cell Therapy. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 2. Tumors of the Central Nervous System, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0618-7_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0618-7_32

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0617-0

  • Online ISBN: 978-94-007-0618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics