Skip to main content

Newly Diagnosed Glioma: Diagnosis Using Positron Emission Tomography with Methionine and Fluorothymidine

  • Chapter
  • First Online:
Tumors of the Central Nervous System, Volume 2

Part of the book series: Tumors of the Central Nervous System ((TCNS,volume 2))

  • 1754 Accesses

Abstract

The purpose of this prospective study was to clarify the individual and combined role of MET-PET and FLT-PET in tumor detection, noninvasive grading, and assessment of the cellular proliferation rate in newly diagnosed histologically verified gliomas of different grades. Sixty-two patients with newly diagnosed gliomas were investigated with MET-PET before surgery. Thirty-six patients were also examined with FLT-PET. MET and FLT uptakes were assessed by the standardized uptake value of the tumor showing the maximum uptake (SUVmax), and the ratio to uptake in the normal brain parenchyma (T/N ratio). All tumors were graded by the WHO grading system using surgical specimens and the proliferation activity of the tumors was determined by measuring the Ki-67 index obtained by immunohistochemical staining. On visual analysis, MET exhibited a slightly higher sensitivity (88.7%) in tumor detection than FLT (86.1%) and both tracers were 100% sensitive for malignant gliomas. Low-grade gliomas that were false negative on MET-PET were also false negative on FLT-PET. Although the difference in the MET SUVmax and T/N ratio between grade II and grade III gliomas was statistically significant (P < 0.05), there was a significant overlap of MET uptake in the tumors. The difference in the MET SUVmax and T/N ratio between grade III and grade IV gliomas was not statistically significant. Low-grade gliomas with oligodendroglial components had relatively high MET uptake compared to grade II astrocytoma. The difference in the FLT SUVmax and T/N ratio between grade III and grade IV gliomas was statistically significant (P < 0.001). However, the difference in the FLT SUVmax and T/N ratio between grade II and grade III gliomas was not statistically significant. Grade III gliomas with non-contrast enhancement on MR images had very low FLT uptake. In 36 patients who underwent PET examination with both tracers, a significant but relatively weak correlation was observed between the individual SUV max of MET and FLT (r = 0.52, P < 0.05) and T/N ratio of MET and FLT (r = 0.49, P < 0.05). FLT SUVmax in the tumor had a higher correlation (r = 0.81, P < 0.001) with the Ki-67 proliferation index than MET SUVmax (r = 0.40, P < 0.05). PET studies using MET and FLT are useful for tumor detection in newly diagnosed gliomas. However, there is no complimentary information in tumor detection with simultaneous measurements of MET- and FLT-PET in low grade gliomas. FLT-PET seems to be superior to MET-PET in noninvasive tumor grading and assessment of proliferation activity in gliomas of different grade.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Been LB, Suumeijer AJH, Cobben DCP, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672

    Article  PubMed  Google Scholar 

  • Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B (2006) Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 246:85–94

    Article  PubMed  Google Scholar 

  • Cao Y, Tsien CI, Shen Z, Tatro DS, Ten Haken R, Kessier ML, Chenevert TL, Lawrence TS (2005) Use of magnetic resonance imaging to assess blood-brain/blood-gliomas barrier opening during conformal radiotherapy. J Clin Oncol 23:4127–4136

    Article  PubMed  Google Scholar 

  • Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 27:1432–1437

    PubMed  CAS  Google Scholar 

  • Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L, Mischel P, Czernin J, Phelps ME, Silverman DHS (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  • Chen W, Delaloye S, Silverman DHS, Geist C, Czernin J, Sayre J, Satyamurthy N, Pope W, Lai A, Phelps ME, Cloughesy T (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721

    Article  PubMed  CAS  Google Scholar 

  • Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ, Ra YS, Yeo JS, Ryu JS, Moon DH (2005) [18F]3-deoxy-3-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32:653–659

    Article  PubMed  Google Scholar 

  • Galldiks N, Kracht LW, Berthold F, Miletic H, Klein JC, Herholz K, Jacobs AH, Heiss WD (2009) [11C]-L-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 96:231–239

    Article  PubMed  Google Scholar 

  • Galldiks N, Kracht LW, Burghaus L, Thomas A, Jacobs AH, Heiss WD, Herholz K (2006) Use of 11C-methionine PET to monitor the effects of temozolomide chemotherapy in malignant gliomas. Eur J Nucl Med Mol Imaging 33:516–524

    Article  PubMed  CAS  Google Scholar 

  • Hatakeyama T, Kawai N, Nishiyama Y, Yamamoto Y, Sasakawa Y, Ichikawa T, Tamiya T (2008) 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 35:2009–2017

    Article  PubMed  CAS  Google Scholar 

  • Herholz K, Hölzer T, Bauer B, Schröder R, Voges J, Ernestus RI, Mendoza G, Weber-Luxenburger G, Löttgen J, Thiel A, Wienhard K, Heiss WD (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    PubMed  CAS  Google Scholar 

  • Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G, Galldiks N, Klein JC, Sobesky J, Hilker R, Vollmar S, Herholz K, Wienhard K, Heiss WD (2005) 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958

    PubMed  CAS  Google Scholar 

  • Kaschten B, Stevenaert A, Sadzot B, Deprez M, Degueldre C, Fiore GD, Luxen A, Reznik M (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  • Kim S, Chung JK, Im SH, Jeong JM, Lee DS, Kim DG, Jung HW, Lee MC (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59

    Article  PubMed  CAS  Google Scholar 

  • Kracht LW, Friese M, Herholz K, Schroeder R, Bauer B, Jacobs A, Heiss WD (2003) Methyl-[11C]-L-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    Article  PubMed  CAS  Google Scholar 

  • Miwa K, Shinoda J, Yano H, Okumura A, Iwama T, Nakahashi T, Sakai N (2004) Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry 75:1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR, Link JM, Krohn KA (2006) Kinetic analysis of 3-deoxy-3-18F-fluorothymidine in patients with gliomas. J Nucl Med 47:1612–1621

    PubMed  CAS  Google Scholar 

  • Nariai T, Tanaka Y, Wakimoto H, Aoyagi M, Tamaki M, Ishikawa K, Senda M, Ishii K, Hirakawa K, Ohno K (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    Article  PubMed  Google Scholar 

  • Nojiri T, Nariai T, Aoyagi M, Senda M, Ishii K, Ishiwata K, Ohno K (2009) Contributions of biological tumor parameters to the incorporation rate of L-[methyl-11C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol 93:233–241

    Article  PubMed  CAS  Google Scholar 

  • Nuutinen J, Sonninen P, Lehikoinen P, Sutinen E, Valavaara R, Eronen E, Norrgård S, Kulmala J, Teräs M, Minn H (2000) Radiotherapy treatment planning and long-term follow-up with [11C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52

    Article  PubMed  CAS  Google Scholar 

  • Ogawa T, Hatazawa J, Inugami A, Murakami M, Fujita H, Shimosegawa E, Noguchi K, Okudera T, Kanno I, Uemura K, Hadeishi H, Sasajima T (1995) Carbon-11-methionone PET evaluation of intracerebral hematoma: distinguishing neoplastic from non-neoplastic hematoma. J Nucl Med 36:2175–2179

    PubMed  CAS  Google Scholar 

  • Okubo S, Zhen HN, Kawai N, Nishiyama Y, Haba R, Tamiya T (2010) Correlation of L-methyl-11C-methionine (MET) uptake with L-type amino acid transporter 1 in human gliomas. J Neurooncol 99:217–225

    Article  PubMed  CAS  Google Scholar 

  • Ribom D, Engler H, Blomquist E, Smits A (2002) Potential significance of 11C- methionine PET as a marker for the radiosensitivity of low grade gliomas. Eur J Nucl Med 29:632–640

    Article  CAS  Google Scholar 

  • Ribom D, Eriksson A, Hartman M, Engler H, Nilsson A, Långström B, Bolander H, Bergström M, Smits A (2001) Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 92:2541–2549

    Article  Google Scholar 

  • Saga T, Kawashima H, Araki N, Takahashi JA, Nakashima Y, Higashi T, Oya N, Murai T, Hojo M, Hashimoto N, Manabe T, Hiraoka M, Togashi K (2006) Evaluation of primary brain tumors with FLT-PET: usefulness and limitations. Clin Nucl Med 31:774–780

    Article  PubMed  Google Scholar 

  • Sato N, Suzuki M, Kuwata N, Kuroda K, Wada T, Beppu T, Sera K, Sasaki T, Ogawa A (1999) Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 22:210–214

    Article  PubMed  CAS  Google Scholar 

  • Schwartz JL, Tamura Y, Jordan R, Grierson JR, Hrohn KA (2003) Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 44:2027–2032

    PubMed  CAS  Google Scholar 

  • Shiels AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  Google Scholar 

  • Tsuyuguchi N, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Takami T, Otsuka Y, Sakamoto S, Ohata K, Goto T, Hara M (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible?. J Neurosurg 98:1056–1064

    Article  PubMed  Google Scholar 

  • Tsuyuguchi N, Takami T, Sunada I, Iwai Y, Yamanaka K, Tanaka K, Nishikawa M, Ohata K, Torii K, Morino M, Nishio A, Hara M (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery -in malignant glioma-. Ann Nucl Med 18:291–296

    Article  PubMed  CAS  Google Scholar 

  • Ullrich RT, Kracht L, Brunn A, Herholz K, Frommolt P, Miletic H, Deckert M, Heiss WD, Jacobs AH (2009) Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 50:1962–1968

    Article  PubMed  Google Scholar 

  • Van Laere K, Ceyssens S, Van Calenbergh F, de Groot T, Menten J, Falmen P, Bormans G, Mortelmans L (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Kawai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kawai, N., Nishiyama, Y., Tamiya, T. (2011). Newly Diagnosed Glioma: Diagnosis Using Positron Emission Tomography with Methionine and Fluorothymidine. In: Hayat, M. (eds) Tumors of the Central Nervous System, Volume 2. Tumors of the Central Nervous System, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0618-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0618-7_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0617-0

  • Online ISBN: 978-94-007-0618-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics