Skip to main content

Nanomaterials for Defense Applications

  • Conference paper
  • First Online:
Intelligent Textiles and Clothing for Ballistic and NBC Protection

Abstract

Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nanotechnology Definition by the United States National Science Foundation. www.nano.gov. Accessed on 1 July 2011

  2. Qian L, Hinestroza JP (2004) Application of nanotechnology for high performance textiles. J Text Appar Technol Manag 4(1):1–7

    Google Scholar 

  3. Thandavamoorthy S, Gopinath N, Ramkumar SS (2006) Self-assembled honeycomb polyurethane nanofibers. J Appl Polym Sci 101(5):31

    Article  Google Scholar 

  4. Subbiah T, Bhat GS, Tock RW, Parameswaran S, Ramkumar SS (2005) Electrospinning of nanofibers. J Appl Polym Sci 96(2):557–569

    Article  Google Scholar 

  5. Ramkumar S, Singh V (2011) Nanofibers: new developments. Nonwovens Ind 42(4):52–58

    Google Scholar 

  6. Jones R (2004) The future of nanotechnology. Phys World 17(8):25–29

    Google Scholar 

  7. Demirdjian ZS (2011) Problems and prospects of nanotechnology: implications for marketing innovations. In: The academy of business and administrative sciences conference, Quebec City, Canada

    Google Scholar 

  8. Knol WHC (2004) Nanotechnology and business opportunities: scenarios as awareness instrument. In: Proceedings of the 12th annual international conference on high technology small firms, Enschede, the Netherlands, pp 609–621

    Google Scholar 

  9. Cooley JF (1902) Apparatus for electrically dispersing fluids. US Patent 692631

    Google Scholar 

  10. Morton WJ (1902) Method of dispersing fluids. US Patent 0705691

    Google Scholar 

  11. Formhals A (1940) Artificial thread and method of producing same. US Patent 2187306

    Google Scholar 

  12. Yarin AL, Sinha-Ray S, Pourdeyhimi B (2011) Meltblowing: multiple polymer jets and fiber-size distribution and lay-down patterns. Polymer 52(13):2929–2938

    Article  Google Scholar 

  13. Jirsak O, Sanetrnik F, Chaloupek J, Martinova L, Lukas D, Kotek V (2005) A method of nanofibres production from polymer solution using electrostatic spinning and a device for carrying out the method. World Patent WO2005024101

    Google Scholar 

  14. Jirsak O, Dao TA (2009) Production, properties and end-uses of nanofibres. In: Nanotechnology in construction 3, Proceedings, pp 95–99

    Google Scholar 

  15. Wang X, Niu HT, Lin T, Wang XG (2009) Needleless electrospinning of nanofibers with a conical wire coil. Polym Eng Sci 49(8):1582–1586

    Article  Google Scholar 

  16. Niu HT, Lin T, Wang XG (2009) Needleless electrospinning. I. A comparison of cylinder and disk nozzles. J Appl Polym Sci 114(6):3524–3530

    Article  Google Scholar 

  17. Lin T, Wang X, Wang X, Niu H (2010) Electrostatic spinning assembly. World Patent WO2010043002

    Google Scholar 

  18. Kim YM, Ahn KR, Sung YB, Jang RS (2009) Manufacturing device and the method of preparing for the nanofibers via electro-blown spinning process. US Patent 7618579

    Google Scholar 

  19. Peng M, Sun QJ, Ma QL, Li P (2008) Mesoporous silica fibers prepared by electroblowing of a poly(methyl methacrylate)/tetraethoxysilane mixture in N, N-dimethylformamide. Micropor Mesopor Mater 115(3):562–567

    Article  Google Scholar 

  20. Lozano K, Sarkar K (2009) Methods and apparatuses for making superfine fibers. US Patent Appln. 20090280325 A1

    Google Scholar 

  21. Lozano K, Sarkar K (2009) Superfine fiber creating spinneret and uses thereof. US Patent Appln. 20090280207 A1

    Google Scholar 

  22. Lozano K, Sarkar K (2009) Superfine fiber creating spinneret and uses thereof. US Patent Appln. 20090269429 A1

    Google Scholar 

  23. Lozano K, Sarkar K (2009) Superfine fiber creating spinneret and uses thereof. US Patent Appln. 20090232920 A1

    Google Scholar 

  24. Sarkar K, Gomez C, Zambrano S, Ramirez M, de Hoyos E, Vasquez H, Lozano K (2010) Electrospinning to forcespinning(TM). Mater Today 13(11):12–14

    Article  Google Scholar 

  25. Barakat NAM, Abadir MF, Sheikh FA, Kanjwal MA, Park SJ, Kim HY (2010) Polymeric nanofibers containing solid nanoparticles prepared by electrospinning and their applications. Chem Eng J 156(2):487–495

    Article  Google Scholar 

  26. Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma ZW, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  Google Scholar 

  27. Popov AP, Priezzhev AV, Lademann J, Myllyla R (2005) TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens. J Phys D Appl Phys 38(15):2564–2570

    Article  ADS  Google Scholar 

  28. Qi KH, Wang XW, Xin JH (2011) Photocatalytic self-cleaning textiles based on nanocrystalline titanium dioxide. Text Res J 81(1):101–110

    Article  Google Scholar 

  29. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos Sci Technol 63(15):2223–2253

    Article  Google Scholar 

  30. Gibson PW, Schreuder-Gibson HL, Rivin D (1999) Electrospun fiber mats: transport properties. Am Inst Chem Eng J 45(1):190–195

    Article  Google Scholar 

  31. Haider S, Park SY (2009) Preparation of the electrospun chitosan nanofibers and their applications to the adsorption of Cu(II) and Pb(II) ions from an aqueous solution. J Membr Sci 328(1–2):90–96

    Article  Google Scholar 

  32. Chen L, Bromberg L, Hatton TA, Rutledge GC (2007) Catalytic hydrolysis of p-nitrophenyl acetate by electrospun polyacrylamidoxime nanofibers. Polymer 48(16):4675–4682

    Article  Google Scholar 

  33. Bromberg L, Hatton TA (2005) Nerve agent destruction by recyclable catalytic magnetic nanoparticles. Ind Eng Chem Res 44(21):7991–7998

    Article  Google Scholar 

  34. Deng CM, Gong P, He QG, Cheng JG, He C, Shi LQ, Zhu DF, Lin T (2009) Highly fluorescent TPA-PBPV nanofibers with amplified sensory response to TNT. Chem Phys Lett 483(4–6):219–223

    Article  ADS  Google Scholar 

  35. Mylvaganam K (2008) Carbon nanotubes build better protective body armor. Adv Mater Process 166(1):24–24

    Google Scholar 

  36. Tepper F, Kaledin L (2007) Coll 477-Nanostructured chem-bio nonwoven filter. Abstracts of Papers of the Am Chem Soc 234

    Google Scholar 

  37. Koper OB, Klabunde JS, Marchin GL, Klabunde KJ, Stoimenov P, Bohra L (2002) Nanoscale powders and formulations with biocidal activity toward spores and vegetative cells of Bacillus species, viruses, and toxins. Curr Microbiol 44(1):49–55

    Article  Google Scholar 

  38. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  Google Scholar 

  39. Makhluf S, Dror R, Nitzan Y, Abramovich Y, Jelinek R, Gedanken A (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as a bacteriocide. Adv Funct Mater 15(10):1708–1715

    Article  Google Scholar 

  40. Mahato TH, Prasad GK, Singh B, Acharya J, Srivastava AR, Vijayaraghavan R (2009) Nanocrystalline zinc oxide for the decontamination of sarin. J Hazard Mater 165(1–3):928–932

    Article  Google Scholar 

  41. Prasad GK, Mahato TH, Singh B, Ganesan K, Pandey P, Sekhar K (2007) Detoxification reactions of sulphur mustard on the surface of zinc oxide nanosized rods. J Hazard Mater 149:460–464

    Article  Google Scholar 

  42. Sun K, Li ZH (2011) Preparations, properties and applications of chitosan based nanofibers fabricated by electrospinning. Expr Polym Lett 5(4):342–361

    Article  Google Scholar 

  43. Ramaseshan R, Ramakrishna S (2007) Zinc titanate nanofibers for the detoxification of chemical warfare simulants. J Am Ceram Soc 90(6):1836–1842

    Article  Google Scholar 

  44. Sberveglieri G, Baratto C, Comini E, Faglia G, Ferroni M, Pardo M, Ponzoni A, Vomiero A (2009) Semiconducting tin oxide nanowires and thin films for chemical warfare agents detection. Thin Solid Films 517(22):6156–6160

    Article  ADS  Google Scholar 

  45. Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45(5):1992–1998

    Article  Google Scholar 

  46. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  Google Scholar 

  47. Hobson ST, Braue EH, Lehnert EK, Klabunde KJ, Decker S, Hill CL, Rhule J, Boring E, Koper O (2002) Active topical skin protectants using combinations of reactive nanoparticles and polyoxometalates or metal salts. US Patent 6410603

    Google Scholar 

  48. Koper O, Lucas E, Klabunde KJ (1999) Development of reactive topical skin protectants against sulfur mustard and nerve agents. J Appl Toxicol 19:S59–S70

    Article  Google Scholar 

  49. Wagner GW, Bartram PW, Koper O, Klabunde KJ (1999) Reactions of VX, GD, and HD with nanosize MgO. J Phys Chem B 103(16):3225–3228

    Article  Google Scholar 

  50. Wagner GW, Procell LR, O’Connor RJ, Munavalli S, Carnes CL, Kapoor PN, Klabunde KJ (2001) Reactions of VX, GB, GD, and HD with nanosize Al2O3. Formation of aluminophosphonates. J Am Chem Soc 123(8):1636–1644

    Article  Google Scholar 

  51. Sundarrajan S, Ramakrishna S (2007) Fabrication of nanocomposite membranes from nanofibers and nanoparticles for protection against chemical warfare stimulants. J Mater Sci 42(20):8400–8407

    Article  ADS  Google Scholar 

  52. Wang F, Gu HW, Swager TM (2008) Carbon nanotube/polythiophene chemiresistive sensors for chemical warfare agents. J Am Chem Soc 130(16):5392–5393

    Article  Google Scholar 

  53. Rajagopalan S, Koper O, Decker S, Klabunde KJ (2002) Nanocrystalline metal oxides as destructive adsorbents for organophosphorus compounds at ambient temperatures. Chem Eur J 8(11):2602–2607

    Article  Google Scholar 

  54. Son WK, Youk JH, Lee TS, Park WH (2004) Preparation of antimicrobial ultrafine cellulose acetate fibers with silver nanoparticles. Macromol Rapid Commun 25(18):1632–1637

    Article  Google Scholar 

  55. Houskova V, Stengl V, Bakardjieva S, Murafa N, Kalendova A, Oplustil F (2007) Zinc oxide prepared by homogeneous hydrolysis with thioacetamide, its destruction of warfare agents, and photocatalytic activity. J Phys Chem A 111(20):4215–4221

    Article  Google Scholar 

  56. Pelletier DA, Suresh AK, Holton GA, McKeown CK, Wang W, Gu BH, Mortensen NP, Allison DP, Joy DC, Allison MR, Brown SD, Phelps TJ, Doktycz MJ (2010) Effects of engineered cerium oxide nanoparticles on bacterial growth and viability. Appl Environ Microbiol 76(24):7981–7989

    Article  Google Scholar 

  57. Prasad GK, Agarwal GS, Singh B, Rai GP, Vijayaraghavan R (2009) Photocatalytic inactivation of Bacillus anthracis by titania nanomaterials. J Hazard Mater 165(1–3):506–510

    Article  Google Scholar 

  58. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E-coli as a model for Gram-negative bacteria. J Coll Interface Sci 275(1):177–182

    Article  Google Scholar 

  59. Wei DW, Sun WY, Qian WP, Ye YZ, Ma XY (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344(17):2375–2382

    Article  Google Scholar 

  60. Stengl V, Marikova M, Bakardjieva S, Subrt J, Oplustil F, Olsanska M (2005) Reaction of sulfur mustard gas, soman and agent VX with nanosized anatase TiO2 and ferrihydrite. J Chem Technol Biotechnol 80(7):754–758

    Article  Google Scholar 

  61. Saxena A, Singh B, Srivastava AK, Suryanarayana MVS, Ganesan K, Vijayaraghavan R, Dwivedi KK (2008) Al2O3 nanoparticles with and without polyoxometalates as reactive sorbents for the removal of sulphur mustard. Micropor Mesopor Mater 115(3):364–375

    Article  Google Scholar 

  62. Prasad GK, Mahato TH, Pandey P, Singh B, Suryanarayana MVS, Saxena A, Shekhar K (2007) Reactive sorbent based on manganese oxide nanotubes and nanosheets for the decontamination of 2-chloro-ethyl ethyl sulphide. Micropor Mesopor Mater 106:256–261

    Article  Google Scholar 

  63. Sundarrajan S, Chandrasekaran AR, Ramakrishna S (2010) An update on nanomaterials-based textiles for protection and decontamination. J Am Ceram Soc 93(12):3955–3975

    Article  Google Scholar 

  64. Ramaseshan R, Sundarrajan S, Liu YJ, Barhate RS, Lala NL, Ramakrishna S (2006) Functionalized polymer nanofibre membranes for protection from chemical warfare stimulants. Nanotechnology 17(12):2947–2953

    Article  ADS  Google Scholar 

  65. Thavasi V, Singh G, Ramakrishna S (2008) Electrospun nanofibers in energy and environmental applications. Energy Environ Sci 1(2):205–221

    Article  Google Scholar 

  66. Schreuder-Gibson H, Gibson P, Wadsworth L, Hemphill S, Vontorcik J (2002) Effect of filter deformation on the filtration and air flow for elastomeric nonwoven media. Adv Filtr Sep Technol 15:525–537

    Google Scholar 

  67. Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z (2005) Electrospinning and nanofibers. World Scientific Printers, Singapore

    Book  Google Scholar 

  68. Kharat DK, Muthurajan H, Praveenkumar B (2006) Present and futuristic military applications of nanodevices. Synth React Inorg Metal-Org Nano-Metal Chem 36(2):231–235

    Google Scholar 

  69. Barhate RS, Ramakrishna S (2007) Nanofibrous filtering media: filtration problems and solutions from tiny materials. J Membr Sci 296(1–2):1–8

    Article  Google Scholar 

  70. Hedge RR, Atul D, Kamath MG (2005) Nanofiber nonwovens. http://web.utk.edu/~mse/pages/Textiles/Nanofiber%20Nonwovens.htm. Accessed on 6 Dec 2010

  71. Graham K, Ouyang M, Raether T, Grafe T, McDonald B, Knauf P (2002) Polymeric nanofibers in air filtration applications. In: Proceedings of the American Filtration Seperation Society, Galveston, TX

    Google Scholar 

  72. Graham K, Gogins M, Schreuder-Gibson H (2004) Incorporation of electrospun nanofibers into functional structures. Int Nonwovens J 13(2):21–27

    Google Scholar 

  73. Nanofibers: a novel approach to filtration. http://www.epa.gov/ncer/sbir/success/pdf/nanofibers.pdf. Accessed on 6 Dec 2010

  74. Lalagiri M, Singh V, Ramkumar SS (2011) Filtration efficiency of the composite media prepared by meltblown & electrospun nanofibers. In: Proceedings of the beltwide cotton conferences, National Cotton Council, Atlanta

    Google Scholar 

  75. Timothy G, Mark G, Marty B, James S, Ric C (2001) Nanofibers in filtration applications in transportation. In: Filtration 2001 International conference and exposition of the INDA (Association of the Nonwovens Fabric Industry), Chicago, IL

    Google Scholar 

  76. Go twice the distance with Donaldson Enduranceâ„¢ air filters. http://www.donaldson.com/en/engine/support/datalibrary/000165.pdf. Accessed on 11 July 2011

  77. Yoon K, Kim K, Wang XF, Fang DF, Hsiao BS, Chu B (2006) High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer 47(7):2434–2441

    Article  Google Scholar 

  78. http://www.strem.com/uploads/resources/documents/strem_nano_defense.pdf. Accessed on 1 July 2011

  79. Moon J, Park JA, Lee SJ, Zyung T, Kim ID (2010) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuator B-Chem 149(1):301–305

    Article  Google Scholar 

  80. Weng SH, Zhou JZ, Lin ZH (2010) Preparation of one-dimensional (1D) polyaniline-polypyrrole coaxial nanofibers and their application in gas sensor. Synthetic Met 160(11–12):1136–1142

    Article  Google Scholar 

  81. Lim SK, Hwang SH, Chang D, Kim S (2010) Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens Actuator B-Chem 149(1):28–33

    Article  Google Scholar 

  82. Song XF, Liu L (2009) Characterization of electrospun ZnO-SnO2 nanofibers for ethanol sensor. Sens Actuators A Phys 154(1):175–179

    Article  Google Scholar 

  83. Nan-Rong C, Chunmeng L, Jingjiao G, James LL, Arthur JE (2007) Growth and alignment of polyaniline nanofibers with superhydrophobic, superhydrophilic and other properties. Nat Nanotechnol. doi:10.1038/nnano.2007.147

  84. Mahajan YR (2010) Carbon nanotubes and the pursuit of ultimate body armor. http://www.nanowerk.com/spotlight/spotid=17548.php. Accessed on 6 Dec 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seshadri S. Ramkumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Turaga, U., Singh, V., Lalagiri, M., Kiekens, P., Ramkumar, S.S. (2012). Nanomaterials for Defense Applications. In: Kiekens, P., Jayaraman, S. (eds) Intelligent Textiles and Clothing for Ballistic and NBC Protection. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0576-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-0576-0_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-0575-3

  • Online ISBN: 978-94-007-0576-0

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics