Skip to main content

A Paleoecological Perspective on Wetland Restoration

  • Chapter
  • First Online:
Wetlands
  • 3059 Accesses

Abstract

Paleoecological investigations of wetland sedimentary deposits offer the possibility of obtaining accurate reconstructions of base line conditions in the past. Plant remains, such as leaves, seeds, fruits, wood, and pollen, provide a window of variable temporal and spatial resolution into past environmental conditions at a particular site. These archives of physical and biological wetland ecosystem characteristics, if preserved, may be exploited to reconstruct the plant community at a single point in time. Moreover, changes in past plant community composition, hydrology, and the dynamics of wetland ecosystems through time may be better understood. This paper reviews the range of paleoecological information archived in wetland sedimentary deposits that may be understood in the restoration science context. This type of information gleaned by applying paleoecological techniques should provide reasonable targets for restoration ecologists working to improve the quality and quantity of ecosystem functions and services in wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbe TB, Montgomery DR (1996) Large woody debris jams, channel hydraulics, and habitat formation in large rivers. Regul Rivers: Res Manage 12:201–221

    Article  Google Scholar 

  • Abrams MD, Nowacki GJ (2008) Native Americans as active and passive promoters of mast and fruit trees in the eastern USA. Holocene 18:1123–1137

    Article  Google Scholar 

  • Anderson B, Rutherfurd I, Western A (2006) An analysis of the influence of riparian vegetation on the propagation of flood waves. Environ Model Software 21:1290–1296

    Article  Google Scholar 

  • Baker RG, Drake P (1994) Holocene history of prairie in midwestern United States: pollen versus plant macrofossils. Ecoscience 1:333–339

    Google Scholar 

  • Baker RG, Fredlund GG, Mandel RD, Bettis III EA (2000) Holocene environments of the central great plains: multi-proxy evidence from alluvial sequences, southeastern Nebraska. Quatern Int 67:75–88

    Article  Google Scholar 

  • Bakker JP, Poschlod P, Strijkstra RJ, Bekker RM, Thompson K (1996) Seed banks and seed dispersal: important topics for restoration ecology. Acta Bot Neerl 45:461–490

    Google Scholar 

  • Barnekow L, Loader NJ, Hicks S, Froyd CA, Goslar T (2007) Strong correlation between summer temperature and pollen accumulation rates for Pinus sylvestris, Picea abies and Betula spp. in a high-resolution record from northern Sweden. J Quatern Sci 22:653–658

    Article  Google Scholar 

  • Beaudoin AB (2007) On the laboratory procedure for processing unconsolidated sediment samples to concentrate subfossil seed and other plant macroremains. J Paleolimnol 37:301–308

    Article  Google Scholar 

  • Bedford B (1999) Cumulative effects on wetland landscapes: links to wetland restoration in the United States and Canada. Wetlands 19:775–788

    Article  Google Scholar 

  • Behrensmeyer AK, Hook RW (1992) Paleoenvironmental contexts and taphonomic modes in the terrestrial fossil record. In: Behrensmeyer AK, Damuth J, DiMichele WA, Potts R, Sues H-D, Wing SL (eds) Terrestrial ecosystems through time. University of Chicago Press, Chicago, pp 15–138

    Google Scholar 

  • Bennett KD, Hicks S (2005) Numerical analysis of surface and fossil pollen spectra from northern Fennoscandia. J Biogeogr 32:407–423

    Article  Google Scholar 

  • Bennett KD, Parducci L (2006) DNA from pollen: principles and potential. Holocene 16:1031–1034

    Article  Google Scholar 

  • Bennington JB, Dimichele WA, Badgley C, Bambach RK, Barrett PM, Behrensmeyer AK, Bobe R, Burnham RJ, Daeschler EB, Dam JV, Eronen JT, Erwin DH, Finnegan S, Holland SM, Hunt G, Jablonski D, Jackson ST, Jacobs BF, Kidwell SM, Koch PL, Kowalewski MJ, Labandeira CC, Looy CV, Lyons SK, Novack-Gottshall PM, Potts R, Roopnarine PD, Stromberg CA, Sues H, Wagner PJ, Wilf P, Wing SL (2009) Critical issues of scale in paleoecology. Palaios 24:1–4

    Article  Google Scholar 

  • Benthardt K, Koch M, Kropf M, Ulbel E, Webhofer J (2008) Comparison of two methods characterizing the seed bank of amphibious plants in submerged sediments. Aquat Bot 88:171–177

    Article  Google Scholar 

  • Berggren G (1969) Atlas of seeds and small fruits of northwest European plant species, part 2. Cyperaceae. Swedish Natural Science Research Council, Stockholm, p 68

    Google Scholar 

  • Berglund BE (1986) Handbook of Holocene paleoecology and paleohydrology. Wiley, New York, p 869

    Google Scholar 

  • Bilby RE, Bisson PA (1998) Function and distribution of large woody debris. In: Naiman RJ, Bilby BE, Kantor S (eds). River ecology and management: lessons from the pacific coastal ecoregion. Springer-Verlag, New York, pp 324–338

    Chapter  Google Scholar 

  • Birks HJB, Birks HH (1980) Quaternary paleoecology. Arnold, London, p 289

    Google Scholar 

  • Black BA, Abrams MD (2001) Analysis of temporal variation and species-site relationships of witness tree data southeastern Pennsylvania. Can J Forest Res 31:419–429

    Article  Google Scholar 

  • Bowen DE, Simon MP, Davis JW, Cope TM, Cusumano ZT, Hellmer JC, Winder VL, Soard SJ, Lidolph AM, Zielinski SE, James B, Runchey M, Hackmann T (2004) A list of plants observed along the lower Missouri River by the Lewis and Clark expedition in 1804 and 1806. Trans Kansas Acad Sci 107:55–68

    Article  Google Scholar 

  • Brown AD (2010) Pollen analysis and planted ancient woodland restoration strategies: a case study from the Wentwood, southeast Wales, UK. Veg Hist Archaeobot 19:79–90

    Article  Google Scholar 

  • Brown KJ, Pasternack GB (2005) A paleoenvironmental reconstruction to aid in the restoration of floodplain and wetland habitat on an upper deltaic plain, California, USA. Environ Conserv 32:1–14

    Article  CAS  Google Scholar 

  • Burney DA, Burney LP (2007) Paleoecology and “inter-situ” restoration on Kaua’i, Hawai’i. Front Ecol Environ 5:483–490

    Article  Google Scholar 

  • Burnham RJ, Wing SL, Parker GG (1992) The reflection of deciduous forest communities in leaf litter: implications for autochthonous litter assemblages from the fossil record. Paleobiology 18:30–49

    Google Scholar 

  • Cairns J, Heckman JR (1996) Restoration ecology: the state of an emerging field. Ann Rev Energy Environ 21:167–189

    Article  Google Scholar 

  • Calcotte R (1995) Pollen source area and pollen productivity: evidence from forest hollows. J Ecol 83:591–602

    Article  Google Scholar 

  • Calcotte R (1998) Identifying forest stand types using pollen from forest hollows. Holocene 8:423–432

    Article  Google Scholar 

  • Carmichael D (1980) A record of environmental change during recent millenia in the Hackensack tidal marsh, New Jersey. Bull Torrey Bot Club 107:514–524

    Article  Google Scholar 

  • Chase MW, Fay MF (2009) Barcoding of plants and fungi. Science 325:682–683

    Article  PubMed  CAS  Google Scholar 

  • Clague JJ, Turner RJW, Reyes AV (2003) Record of recent river channel instability, Cheakamus Valley, British Columbia. Geomorphology 53:317–332

    Article  Google Scholar 

  • Clewell AF, Rieger JP (1997) What practitioners need from restoration ecologists. Restor Ecol 5:350–354

    Article  Google Scholar 

  • de Wet A, Williams CJ, Tomlinson J, Carlson Loy E (2011) Stream and sediment dynamics in response to Holocene landscape changes in Lancaster County, Pennsylvania. In: LePage BA (ed) Wetlands—integrating multidisciplinary concepts. Springer, Dordrecht

    Google Scholar 

  • DiMichele WA, Gastaldo RA (2008) Plant paleoecology in deep time. Ann Mo Bot Gard 95:144–198

    Article  Google Scholar 

  • Egawa C, Koyama A, Tsuyuzaki S (2009) Relationships between the developments of seedbank, standing vegetation and litter in a post-mined peatland. Plant Ecol 203:217–228

    Article  Google Scholar 

  • Ehrenfeld JG (2000a) Defining the limits of restoration: the need for realistic goals. Restor Ecol 8:2–9

    Article  Google Scholar 

  • Ehrenfeld JG (2000b) Evaluating wetlands within an urban context. Ecol Eng 15:253–265

    Article  Google Scholar 

  • Ferguson DK, Hofmann CC, Denk T (1999) Taphonomy: field techniques in modern environments. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. Geological Society, London, pp 210–213

    Google Scholar 

  • Ficetola GF, Miaud C, Pompanon F, Taberlet P (2008) Species detection using environmental DNA from water samples. Biol Lett 4:423–425

    Article  PubMed  Google Scholar 

  • Finkeldey R, Leinemann L, Gailing O (2010) Molecular genetic tools to infer the origin of forest plants and wood. Appl Microbiol Biotechnol 85:1251–1258

    Article  PubMed  CAS  Google Scholar 

  • Flood RJ (1986) Seed identification handbook. National Institute of Agricultural Botany, Cambridge, p 72

    Google Scholar 

  • Gastaldo RA, Douglass DP, McCarroll SM (1987) Origin, characteristics and provenance of plant macrodetritus in a Holocene crevasse splay, Mobile Delta, Alabama. Palaios 2:229–240

    Article  Google Scholar 

  • Gastaldo RA, Bearce SC, Degges C, Hunt RJ, Peebles MW, Violette DL (1989) Biostratinomy of a Holocene oxbow lake: a backswamp to mid-channel transect. Rev Palaeobot Palynol 58:47–60

    Article  Google Scholar 

  • Gastaldo RA, Riegel W, Püttmann W, Linnemann UH, Zetter R (1998) A multidisciplinary approach to reconstruct the late Oligocene vegetation in central Europe. Rev Palaeobot Palynol 101:71–94

    Article  Google Scholar 

  • Grimm EC (1993) Tilia (Version 2.0.b.4) and Tilia Graph (Version 2.0.b.5). Illinois State Museum, Springfield

    Google Scholar 

  • Gross KL (1990) A comparison of methods for estimating seed numbers in the soil. J Ecol 78:1079–1093

    Article  Google Scholar 

  • Gugerli F, Parducci L, Petit RJ (2005) Ancient plant DNA: review and prospects. New Phytol 166:409–418

    Article  PubMed  CAS  Google Scholar 

  • Gurnell A, Tockner K, Edwards P, Petts G (2005) Effects of deposited wood on biocomplexity of river corridors. Front Ecol Environ 3:377–382

    Article  Google Scholar 

  • Gurnell AM, Piégay H, Swanson F, Gregory S (2002) Large wood and fluvial processes. Freshwater Biology 74:601–619

    Google Scholar 

  • Gwin SE, Kentula ME, Shaffer PW (1999) Evaluating the effects of wetland regulation through hydrogeomorphic classification and landscape profiles. Wetlands 19:477–489

    Article  Google Scholar 

  • Heusser CJ (1949) A note on buried cedar logs at Secaucus. N J Bull Torrey Bot Club 76:305–306

    Article  Google Scholar 

  • Heusser CJ (1963) Pollen diagrams from three former cedar bogs in the Hackensack tidal marsh, northeastern New Jersey. Bull Torrey Bot Club 90:16–28

    Article  Google Scholar 

  • Hilderbrand RH, Watts AC, Randle AM (2005) The myths of restoration ecology. Ecol Soc 10:19

    Google Scholar 

  • Hoadley RB (1990) Identifying wood: accurate results with simple tools. The Tauton Press, Newtown, p 240

    Google Scholar 

  • Hobbs RJ, Harris JA (2001) Restoration ecology: repairing the Earth’s ecosystems in the new millennium. Restor Ecol 9:239–246

    Article  Google Scholar 

  • Hobbs RJ, Norton DA (2004) Ecological filters, thresholds and gradients in resistance to ecosystem reassembly. In: Temperton V, Hobbs RJ, Halle RJ, Fattorini M (eds) Assembly rules and ecosystem restoration. Island Press, Washington, pp 72–95

    Google Scholar 

  • Hofreiter M, Mead JI, Martin P, Poinar HN (2003) Molecular caving. Curr Biol 13:R693–R695

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth PM, Forrest LL, Spouge JL, Hajibabaei M, Ratnasingham S, van der Bank M, Chase MW, Cowan RS, Erickson DL, Fazekas AJ, Graham SW, James KE, Kim K, Kress WJ, Schneider H, van AlphenStahl J, Barrett SC, van den Berg C, Bogarin D, Burgess KS, Cameron KM, Carine M, Chacón J, Clark A, Clarkson JJ, Conrad F, Devey DS, Ford CS, Hedderson TA, Hollingsworth ML, Husband BC, Kelly LJ, Kesanakurti PR, Kim JS, Kim Y, Lahaye R, Lee H, Long DG, Madriñán S, Maurin O, Meusnier I, Newmaster SG, Park C, Percy DM, Petersen G, Richardson JE, Salazar GA, Savolainen V, Seberg O, Wilkinson MJ, Yi D, Little DP (2009) A DNA barcode for land plants. Proc Natl Acad Sci U S A 106:12794–12797

    Article  CAS  Google Scholar 

  • Hopfensperger KN (2007) A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116:1438–1448

    Article  Google Scholar 

  • Hough RB (1957) Hough’s encyclopaedia of American woods. R. Speller, New York

    Google Scholar 

  • Houlahan J, Findlay CS (2004) Estimating the “critical” distance at which adjacent land-use degrades wetland water and sediment quality. Landscape Ecol 19:677–690

    Article  Google Scholar 

  • Hurd EG, Goodrich S, Shaw NL (1994) Field guide to intermountain rushes. General Technical Report INT-306. Intermontane Research Station. Forest Service, United States Department of Agriculture, Ogden, p 56

    Google Scholar 

  • Hurd EG, Shaw NL, Mastrogiuseppe J, Smithman LC, Goodrich S (1998) Field guide to intermountain sedges. General Technical Report RMRS-GTR-10. Rocky Mountain Research Station. Forest Service, United States Department of Agriculture, Ogden, p 282

    Google Scholar 

  • Hyatt TL, Naiman RJ (2001) The residence time of large woody debris in the Queets River, Washington. Ecol Appl 11:191–202

    Article  Google Scholar 

  • Jackson ST (1997) Documenting natural and human-caused plant invasions using paleoecological methods. In: Luken JO, Thieret JW (eds) Assessment and management of plant invasions. Springer Verlag, New York, pp 37–55

    Chapter  Google Scholar 

  • Jackson ST, Hobbs RJ (2009) Ecological restoration in the light of ecological history. Science 325:567–569

    Article  PubMed  CAS  Google Scholar 

  • Jacobson GL, Bradshaw RH (1981) The selection of sites for paleoenvironmental studies. Quatern Res 16:80–96

    Article  Google Scholar 

  • Jones JB, Smock LA (1991) Transport and retention of particulate organic matter in two low-gradient headwater streams. J NABS 10:115–126

    Google Scholar 

  • Jones TP, Rowe NP (1999) Fossil plants and spores. The Geological Society Publishing House, London, p 396

    Google Scholar 

  • Juggins S (2007) C2 Version 1.5: software for ecological and palaeoecological data analysis and visualisation. University of Newcastle, Newcastle upon Tyne

    Google Scholar 

  • Jutila HM (2003) Germination in Baltic coastal wetland meadows: similarities and differences between vegetation and seed bank. Plant Ecol 166:275–293

    Article  Google Scholar 

  • Keane RE, Hessburg PF, Landres PB, Swanson FJ (2009) The use of historical range and variability (HRV) in landscape management. For Ecol Manag 258:1025–1037

    Article  Google Scholar 

  • Kellogg R, Rowe S (1981) An anatomical method for differentiating woods of western and mountain hemlock, a research note. Wood Fiber Sci 13:166–168

    Google Scholar 

  • Kooistra MJ, Kooistra LI, van Rijn P, Sass-Klaassen U (2006) Woodlands of the past—the excavation of wetland woods at Zwolle-Stadshagen (the Netherlands): reconstruction of the wetland wood in its environmental context. Neth J Geosci—Geol Mijnbouw 85:37–60

    Google Scholar 

  • Kowalski K, Wilcox D (1999) Use of historical and geospatial data to guide the restoration of a Lake Erie coastal marsh. Wetlands 19:858–868

    Article  Google Scholar 

  • Laderman AD (2003) Why does the freshwater genus Chamaecyparis hug marine coasts? In: Atkinson RB, Belcher RT, Brown DA, Perry JE (eds) Atlantic white cedar restoration ecology and management: proceedings of a symposium. Christopher Newport University, Newport News, pp 1–30

    Google Scholar 

  • Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in managing ecological systems. Ecol Appl 9:1179–1188

    Google Scholar 

  • Larson PR (1963) Stem development of forest trees. Forest Sci Monograph 5:1–42

    Google Scholar 

  • Lavoie C, Zimmermann C, Pellerin S (2001) Peatland restoration in southern Québec (Canada): a paleoecological perspective. Ecoscience 8:247–258

    Google Scholar 

  • LeBlanc DC (1990) Relationship between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Can J For Res 20:1399–1407

    Article  Google Scholar 

  • Leck MA, Leck CF (2005) Vascular plants of a Delaware River tidal freshwater wetland and adjacent terrestrial areas: seed bank and vegetation comparisons of reference and constructed marshes and annotated species list. J Torrey Bot Soc 132:323–354

    Article  Google Scholar 

  • Leck MA, Schütz W (2005) Regeneration of Cyperaceae, with particular reference to seed ecology and seed banks. Perspect Plant Ecol Evol Syst 7:95–133

    Article  Google Scholar 

  • Liepelt S, Sperisen C, Deguilloux M, Petit RJ, Kissling R, Spencer M, de Beaulieu J, Taberlet P, Gielly L, Ziegenhagen B (2006) Authenticated DNA from ancient wood remains. Ann Bot (Lond) 98:1107–1111

    Article  CAS  Google Scholar 

  • Magee TK, Ernst TL, Kentula ME, Dwire KA (1999) Floristic comparison of freshwater wetlands in an urbanizing environment. Wetlands 19:517–534

    Article  Google Scholar 

  • Magee TK, Kentula ME (2005) Response of wetland plant species to hydrologic conditions. Wetlands Ecol Manage 13:163–181

    Article  Google Scholar 

  • Magyari E, Sümegi P, Braun M, Jakab G, Molnár M (2001) Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from North-East Hungary. J Ecol 89:1019–1032

    Article  CAS  Google Scholar 

  • Marshall S (2004) The Meadowlands before the commission: three centuries of human use and alteration of the Newark and Hackensack Meadows. Urban Habitats 2:4–27

    Google Scholar 

  • Martin AC, Barkley WD (1961) Seed identification manual. University of California Press, Berkeley, p 221

    Google Scholar 

  • Mauchamp A (1997) Threats from alien plant species in the Galápagos Islands. Conserv Biol 11:260–263

    Article  Google Scholar 

  • Middleton BA (2003) Soil seed banks and the potential restoration of forested wetlands after farming. J Appl Ecol 40:1025–1034

    Article  Google Scholar 

  • Montgomery FH (1976) Seeds and fruits of plants of Eastern Canada and Northeastern United States. University of Toronto Press, Toronto, p 232

    Google Scholar 

  • Mylecraine KA, Zimmermann GL, Kuser JE (2005) Performance of Atlantic White-Cedar plantings along water table gradients at two sites in the New Jersey Pinelands. In: Burke MK, Sheridan P (eds) Atlantic white cedar: ecology, restoration, and management. Proceedings of the Arlington Echo Symposium. United States Department of Agriculture, Forest Service, Southern Research Station, Asheville, pp 7–10

    Google Scholar 

  • National Research Council (1992) Restoration of aquatic ecosystems: science, technology, and public policy. The National Academies Press, Washington, p 576

    Google Scholar 

  • Neill C, Bezerra MO, McHorney R, O’Dea CB (2009) Distribution, species composition and management implications of seed banks in southern New England coastal plain ponds. Biol Conserv 142:1350–1361

    Article  Google Scholar 

  • Palmer MA, RF Ambrose, Poff NL (1997) Ecological theory and community restoration ecology. Restor Ecol 5:291–300

    Article  Google Scholar 

  • Panshin AJ, deZeeuw C (1980) Textbook of wood technology: structure, identification, properties, and uses of the commercial woods of the United States and Canada, 4th edn. McGraw-Hill Book Co., New York, p 736

    Google Scholar 

  • Parducci L, Suyama Y, Lascoux M, Bennett K (2005) Ancient DNA from pollen: a genetic record of population history in Scots pine. Mol Ecol 14:2873–2882

    Article  PubMed  CAS  Google Scholar 

  • Payette S, Delwaide A (2004) Dynamics of subarctic wetland forests over the past 1500 years. Ecol Monographs 74:373–391

    Article  Google Scholar 

  • Pederson DC, Peteet DM, Kurdyla D, Guilderson T (2005) Medieval warming, little ice age, and european impact on the environment during the last millennium in the lower Hudson Valley, New York, USA. Quatern Res 63:238–249

    Article  Google Scholar 

  • Peglar SM (1993) The mid-Holocene Ulmus decline at Diss Mere, Norfolk, UK: A year-by-year pollen stratigraphy from annual laminations. Holocene 3:1–13

    Article  Google Scholar 

  • Pellerin S, Lavoie C (2003) Reconstructing the recent dynamics of mires using a multitechnique approach. J Ecol 91:1008–1021

    Article  Google Scholar 

  • Peterson JE, Baldwin AH (2004) Variation in wetland seed banks across a tidal freshwater landscape. Am J Bot 91:1251–1259

    Article  PubMed  Google Scholar 

  • Poiani K, Johnson WC (1988) Evaluation of the emergence method in estimating seed bank composition of prairie wetlands. Aquat Bot 32:91–97

    Article  Google Scholar 

  • Pregitzer KS, Reed DD, Bornhorst TJ, Foster DR, Mroz GD, McLachlan JS, Laks PE, Stokke DD, Martin PE, Brown SE (2000) A buried spruce forest provides evidence at the stand and landscape scale for the effects of environment on vegetation at the Pleistocene/Holocene boundary. J Ecol 88:45–53

    Article  Google Scholar 

  • Price JN, Wright BR, Gross CL, Whalley WRDB (2010) Comparison of seedling emergence and seed extraction techniques for estimating the composition of soil seed banks. Methods Ecol Evol. doi:10.1111/j.2041-210X.2010.00011.x

    Google Scholar 

  • Rheinhardt RD, McKenney-Easterling M, Brinson MM, Masina-Rubbo J, Brooks RP, Whigham DF, O’Brien D, Hite JT, Armstrong BK (2009) Canopy composition and forest structure provide restoration targets for low-order riparian ecosystems. Restor Ecol 17:51–59

    Article  Google Scholar 

  • Rich F (1989) A review of the taphonomy of plant remains in lacustrine sediments. Rev Palaeobot Palynol 58:33–46

    Article  Google Scholar 

  • Roberts HA (1981) Seed banks in soils. Adv Appl Biol 6:1–55

    Google Scholar 

  • Ruhlman MB, Nutter WL (1999) Channel morphology evolution and overbank flow in the Georgia Piedmont. J Am Water Resour Assoc 35:277–290

    Article  Google Scholar 

  • Schauffler M, Jacobson GL Jr (2002) Persistence of coastal spruce refugia during the Holocene in northern New England, USA, detected by stand-scale pollen stratigraphies. J Ecol 90:235–250

    Article  Google Scholar 

  • Schlumbaum A, Tensen M, Jaenicke-Despres V (2008) Ancient plant DNA in archaeobotany. Veg Hist Archaeobot 17:233–244

    Article  Google Scholar 

  • Schopmeyer CS (1974) Seeds of woody plants in the United States, Agriculture Handbook 450. United States Department of Agriculture, Forest Service, Washington, p 883

    Google Scholar 

  • Schweingruber FH (1990) Microscopic wood anatomy; structural variability of stems and twigs in recent and subfossil woods from Central Europe, 3rd edn. Eidgen–ssische Forschungsanstalt WSL, Birmensdorf, p 226

    Google Scholar 

  • Shure DJ, Gottschalk MR, Parsons KA (1986) Litter decomposition processes in a floodplain forest. Am Midl Nat 115:314–327

    Article  CAS  Google Scholar 

  • Sipple W (1972) The past and present flora and vegetation of the Hackensack Meadows. Bartonia 4:4–25

    Google Scholar 

  • Society for Ecological Restoration International Science and Policy Working Group (2004) SER International Primer on Ecological Restoration Society for Ecological Restoration International, Version 2. Society for Ecological Restoration International, Tucson, Arozona. www.ser.org

  • Starr JR, Naczi RFC, Chouinard BN (2009) Plant DNA barcodes and species resolution in sedges (Carex, Cyperaceae). Mol Ecol Resour 9:151–163

    Article  PubMed  CAS  Google Scholar 

  • Sugita S (1994) Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J Ecol 82:881–897

    Article  Google Scholar 

  • Suyama Y, Gunnarsson U, Parducci L (2008) Analysis of short DNA fragments from Holocene peatmoss samples. Holocene 18:1003–1006

    Article  Google Scholar 

  • Swanson FJ, Jones JA, Wallin DO, Cissel JH (1994) Natural variability—implications for ecosystem management. Volume II: ecosystem management principles and applications. In: Jensen ME, Bourgeron PS (eds) Eastside forest. Ecosystem health assessment. United States Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland, pp 80–94

    Google Scholar 

  • ter Heerdt GNJ, Verwey GL, Bekker RM, Bakker JP (1996) An improved method for seed bank analysis: seedling-emergence after removing the soil by sieving. Funct Ecol 10:144–151

    Article  Google Scholar 

  • Tennessen D, Blanchette RA, Windes TC (2002) Differentiating aspen and cottonwood in prehistoric wood from the Chacoan great house ruins. J Archaeol Sci 29:521–527

    Article  Google Scholar 

  • Tiner RW, Swords JQ, McClain BJ (2002) Wetland status and trends for the Hackensack Meadowlands. An Assessment Report from the U.S. Fish and Wildlife Service’s National Wetlands Inventory Program. United States Fish and Wildlife Service, Northeast Region, Hadley, Massachusetts, p 29

    Google Scholar 

  • Ungar IA, Woodell SRJ (1996) Similarity of seed banks to aboveground vegetation in grazed and ungrazed salt marsh communities on the Gower Peninsula, South Wales. Int J Plant Sci 157:746–749

    Article  Google Scholar 

  • van der Putten N, Verbruggen C, Ochyra R, Spassov S, de Beaulieu J, De Dapper M, Hus J, Thouveny N (2009) Peat bank growth, Holocene palaeoecology and climate history of South Georgia (sub-Antarctica), based on a botanical macrofossil record. Quatern Sci Rev 28:65–79

    Article  Google Scholar 

  • van der Valk AG, Pederson RL, Davis CB (1992) Restoration and creation of freshwater wetlands using seed banks. Wetlands Ecol Manage 1:191–197

    Article  Google Scholar 

  • van der Valk AG, Bremholm TL, Gordon E (1999) The restoration of sedge meadows: seed viability, seed germination requirements, and seedling growth of Carex species. Wetlands 19:756–764

    Article  Google Scholar 

  • van Leeuwen JFN, Froyd CA, van der Knaap WO, Coffey EE, Tye A, Willis KJ (2008) Fossil pollen as a guide to conservation in the Galapagos. Science 322:1206

    Article  PubMed  CAS  Google Scholar 

  • Vécrin MP, Diggelen RV, Grevilliot F, Muller S (2002) Restoration of species-rich flood-plain meadows from abandoned arable fields in NE France. Appl Veg Sci 5:263–270

    Article  Google Scholar 

  • Voli M, Merritts D, Walter R, Ohlson E, Datin K, Rahnis M, Kratz L, Deng W, Hilgartner W, Hartranft J (2009) Preliminary reconstruction of a pre-European settlement valley bottom wetland, southeastern, Pennsylvania. Water Resour Impact 11:11–13

    Google Scholar 

  • Walker LR, Walker J, Moral RD (2007) Forging a new alliance between succession and restoration. In: Walker LR, Walker J, Hobbs RJ (eds) Linking restoration and ecological succession. Springer, New York, pp 1–18

    Chapter  Google Scholar 

  • Walker S, Lee WG, Rogers GM (2003) The woody vegetation of central Otago, New Zealand: its present and past distribution and future restoration needs. Sci Conserv 226:5–82

    Google Scholar 

  • Walter RC, Merritts DJ (2008) Natural streams and the legacy of water-powered mills. Science 319:299–304

    Article  PubMed  CAS  Google Scholar 

  • Wanner H, Beer J, Bütikofer J, Crowley TJ, Cubasch U, Flückiger J, Goosse H, Grosjean M, Joos F, Kaplan JO, Küttel M, Müller SA, Prentice IC, Solomina O, Stocker TF, Tarasov P, Wagner M, Widmann M (2008) Mid- to late Holocene climate change: an overview. Quatern Sci Rev 27:1791–1828

    Article  Google Scholar 

  • White PS, Walker JL (1997) Approximating nature’s variation: selecting and using reference information in restoration ecology. Restor Ecol 5:338–349

    Article  Google Scholar 

  • Willerslev E, Hansen AJ, Binladen J, Brand TB, Gilbert MTP, Shapiro B, Bunce M, Wiuf C, Gilichinsky DA, Cooper A (2003) Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300:791–795

    Article  PubMed  CAS  Google Scholar 

  • Willerslev E, Cappellini E, Boomsma W, Nielsen R, Hebsgaard MB, Brand TB, Hofreiter M, Bunce M, Poinar HN, Dahl-Jensen D, Johnsen S, Steffensen JP, Bennike O, Schwenninger J, Nathan R, Armitage S, de Hoog C, Alfimov V, Christl M, Beer J, Muscheler R, Barker J, Sharp M, Penkman KEH, Haile J, Taberlet P, Gilbert MTP, Casoli A, Campani E, Collins MJ (2007) Ancient biomolecules from deep ice cores reveal a forested southern Greenland. Science 317:111–114

    Article  PubMed  CAS  Google Scholar 

  • Williams CJ (2007) High-latitude forest structure: methodological considerations and insights on reconstructing high-latitude fossil forests. Bull Peabody Mus Nat Hist 48:339–357

    Article  Google Scholar 

  • Williams CJ, Johnson AH, LePage BA, Vann DR, Sweda T (2003) Reconstruction of Tertiary Metasequoia forests II. Structure, biomass and productivity of Eocene floodplain forests in the Canadian Arctic. Paleobiology 29:271–292

    Article  Google Scholar 

  • Williams CJ, Mendell EK, Murphy J, Court WM, Johnson AH, Richter SL (2008) Paleoenvironmental reconstruction of a middle Miocene forest from the western Canadian Arctic. Palaeogeogr Palaeoclimatol Palaeoecol 261:160–176

    Article  Google Scholar 

  • Wing SL, DiMichele WA, Phillips TL, Taggart R, Tiffney BH, Mazer SJ (1992) Ecological characterization of fossil plants. In: Behrensmeyer AK, Damuth JD, DiMichele WA, Potts R, Sues HD, Wing SL (eds) Terrestrial ecosystems through time: evolutionary paleoecology of terrestrial plants and animals. University of Chicago Press, Chicago, pp 139–180

    Google Scholar 

  • Yamakawa C, Momohara A, Nunotani T, Matsumoto M, Watano Y (2008) Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the late Pliocene Kobiwako Group, central Japan. Paleontol Res 12:167–180

    Article  Google Scholar 

  • Yu ZC (2006) Holocene carbon accumulation of fen peatlands in boreal western Canada: complex ecosystem response to climate variation and disturbance. Ecosystems 9:1278–1288

    Article  CAS  Google Scholar 

  • Yu ZC, McAndrews JH, Siddiqi D (1996) Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetland. Can J Bot 74:1602–1615

    Article  Google Scholar 

  • Zedler JB (2000) Progress in wetland restoration ecology. Trends Ecol Evol 15:402–407

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Williams .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Williams, C.J. (2011). A Paleoecological Perspective on Wetland Restoration. In: LePage, B. (eds) Wetlands. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0551-7_4

Download citation

Publish with us

Policies and ethics