Skip to main content

Influences of the Ionosphere, Thermosphere and Magnetosphere on Ion Outflows

  • Chapter
  • First Online:
The Dynamic Magnetosphere

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 3))

Abstract

Ion outflows from the auroral and polar cap ionosphere are highly variable in composition, energy, space and time, and constitute an important source of plasma in the magnetosphere. The variety of ion outflows fall into two categories: bulk ion flows, including the polar wind and auroral bulk ion up-flow; and suprathermal ion outflows, including ion beams, ion conics, transversely accelerated ions and upwelling ions. The bulk ion flows constitute an important source of low-energy plasma for suprathermal ion outflows above the topside ionosphere, where transverse ion acceleration results in the generation of ion conics, and parallel electric field and magnetic folding contribute to the formation of ion beams at high altitudes. Both ion outflow categories are strongly influenced by the solar EUV irradiance and solar wind energy input and the state of the magnetosphere-ionosphere-thermosphere. The acceleration of the polar wind and auroral up-flow is much larger and the ion flux of the up-flow is much lower at topside ionospheric altitudes at solar minimum than at solar maximum. Compared with H+ and He+, O+ ion beams and conics exhibit a much stronger dependence on magnetic and solar activity: the active-to-quiet time and solar maximum-to-minimum ratios of the O+ ion outflow rate being ∼20 and ∼5, respectively, compared with the ratios of 4 and 0.5 for H+, and resulting in a factor of 10 increase in O+/H+ ratio at solar maximum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abe T, Whalen BA, Yau AW, Horita RE, Watanabe S, Sagawa E (1993a) EXOS-D (Akebono) SMS observations of the polar wind. J Geophys Res 98:11191–11203

    Google Scholar 

  • Abe T, Whalen BA, Yau AW, Watanabe S, Sagawa E, Oyama KI (1993b) Altitude profile of the polar wind velocity and its relationship to ionospheric conditions. Geophys Res Lett 20:2825–2828

    Google Scholar 

  • Abe T, Watanabe S, Whalen BA, Yau AW, Sagawa E (1996) Observations of polar wind and thermal ion outflow by Akebono/SMS. J Geomagnetism Geoelectricity 48:319–325

    Google Scholar 

  • Abe T, Yau AW, Watanabe S, Yamada M, Sagawa E (2004) Long-term variation of the polar wind velocity and its implication for the ion acceleration process: Akebono suprathermal ion mass spectrometer observations. J Geophys Res 109. doi: A09305, 2003JA010223

    Google Scholar 

  • Andersson L, Peterson WK, McBryde KM (2005) Estimates of the suprathermal O+ outflow characteristics and relative location in the auroral oval. Geophys Res Lett 32:L09104. doi: 10.1029/2004GL021434

    Google Scholar 

  • Andre M (1997) Waves and wave-particle interactions in the auroral region. J Atmos Sol Terr Phys 59(14):1687

    Google Scholar 

  • Andre M, Chang T (1993) Ion heating perpendicular to the magnetic field. In: Andre M, Chang T (eds) Physics of space plasmas, SPI conference proceedings and reprint series, vol 15. Scientific Publishers, Cambridge, MA, pp 35–71

    Google Scholar 

  • Andre M, Yau A (1997) Theories and observations of ion energization and outflow in the high latitude magnetosphere. Space Sci Rev 80(1–2):27–48

    Google Scholar 

  • Andre M, Koskinen H, Matson H, Erlandson R (1988) Local transverse ion energization in and near the polar cusp. Geophys Res Lett 15:107–110

    Google Scholar 

  • Andre M, Crew GB, Peterson WK, Persoon AM, Pollock CJ, Engebretson MJ (1990) Ion heating by broadband low-frequency waves in the cusp/cleft. J Geophys Res 95:20809–20823

    Google Scholar 

  • Andre M, Norqvist P, Vaivads A, Eliasson L, Norberg O, Eriksson AI, Holback B (1994) Transverse ion energization and wave emissions observed by the Freja satellite. Geophys Res Lett 21:1915–1918

    Google Scholar 

  • Andre M, Norqvist P, Andersen L, Eliasson L, Eriksson AI, Blomberg L, Erlandson RE, Waldemark J (1998) Ion energization mechanisms at 1700 kilometer in the auroral region. J Geophys Res 103:4199–4222

    Google Scholar 

  • Arnoldy RL, Lynch KA, Kintner PM, Vago J, Chesney S, Moore TE, Pollock CJ (1992) Bursts of transverse ion acceleration at rocket altitudes. Geophys Res Lett 19:413–416

    Google Scholar 

  • Ashour-Abdalla M, Okuda H (1984) Turbulent heating of heavy ions on auroral field lines. J Geophys Res 89:2235–2238

    Google Scholar 

  • Axford WI (1968) The polar wind and the terrestrial helium budget. J Geophys Res 73:6855–6859

    Google Scholar 

  • Baker DN, Pulkkinen TI, Hesse M, McPherron RL (1997) A quantitative assessment of energy storage and release in the Earth’s magnetotail. J Geophys Res 102:7159–7168

    Google Scholar 

  • Ball L, Andre M (1991) Heating of H+ ions in the cusp/cleft: double-cyclotron absorption versus cyclotron resonance. J Geophys Res 96:1429–1437

    Google Scholar 

  • Bates HF (1974) Atmospheric expansion from Joule heating. Planet. Space Sci 22:925–937

    Google Scholar 

  • Borovsky JE (1984) The production of ion conics by oblique double layers. J Geophys Res 89:2251–2266

    Google Scholar 

  • Bouhram M, Klecker B, Miyake W, Reme H, Sauvaud JA, Malingre M, Kistler L, Blagau A (2004) On the altitude dependence of transversely heated O+ distributions in the cusp/cleft. Ann Geophys 22(380):1787–1798

    Google Scholar 

  • Chandler MO (1995) Observations of downward moving O+ in the polar topside ionosphere. J Geophys Res 100 (A4):5795–5800

    Google Scholar 

  • Chang T, Coppi B (1981) Lower hybrid acceleration and ion evolution in the suprauroral region. Geophys Res Lett 8:1253–1256

    Google Scholar 

  • Chang T, Crew GB, Hershkowitz N, Jasperse JR, Retterer JM, Winningham JD (1986) Transverse acceleration of oxygen ions by electromagnetic ion cyclotron resonance with broad band left-hand polarized waves. Geophys Res Lett 13:636–639

    Google Scholar 

  • Collin HL, Peterson WK, Drake JF, Yau AW (1988) The helium components of energetic terrestrial ion upflows: their occurrence, morphology, and intensity. J Geophys Res 93:7558–7564

    Google Scholar 

  • Collin HL, Peterson WK, Lennartsson OW, Drake JF (1998) The seasonal variation of auroral ion beams. Geophys Res Lett 25:4071–4074

    Google Scholar 

  • Cully CM, Donovan EF, Yau AW, Arkos GG (2003) Akebono/Suprathermal mass spectrometer observations of low energy ion outflow: dependence on magnetic activity and solar wind conditions. J Geophys Res 108(A2):1093. doi: 10.1029/2001JA009200

    Google Scholar 

  • Drakou E, Yau AW, Abe T (1997) Ion temperature measurements from the Akebono suprathermal mass spectrometer: application to the polar wind. J Geophys Res 102:17523–17539

    Google Scholar 

  • Elliott HA, Comfort RH, Craven PD, Chandler MO, Moore TE (2001) Solar wind influence on the oxygen content of ion outflow in the high-altitude polar cap during solar minimum conditions. J Geophys Res 106:6067–6084

    Google Scholar 

  • Engwall E, Eriksson AI, Cully CM, Andre M, Torbert R, Vaith H (2009) Earth’s ionospheric outflow dominated by hidden cold plasma. Nat Geosci. doi: 10.1038/NGEO387

    Google Scholar 

  • Foster C, Lester M, Davies JA (1998) A statistical study of diurnal, seasonal and solar cycle variations of F-region and topside auroral upflows observed by EISCAT between 1984 and 1996. Ann Geophys 16:1144–1158

    Google Scholar 

  • Foster JC, Coster AJ, Erickson PJ, Goldstein J, Rich FJ (2002) Ionospheric signatures of plasmaspheric tails. Geophys Res Lett 29:1623. doi:10.1029/2002GL015067

    Google Scholar 

  • Foster JC, Coster AJ, Erickson PJ, Rich FJ, Sandel BR (2004) Stormtime observations of the flux of plasmaspheric ions to the dayside cusp/magnetopause. Geophys Res Lett 31:L08809. doi:10.1029/2004GL020082

    Google Scholar 

  • Ganguli G, Keskinen MJ, Romero H, Heelis R, Moore T, Pollock C (1994) Coupling of microprocesses and macroprocesses due to velocity shear: an application to the low-altitude ionosphere. J Geophys Res 99(A5):8873

    Google Scholar 

  • Giles BL, Chappell CR, Moore TE, Comfort CR, Waite JH Jr (1994) Statistical survey of pitch angle distributions in core (0–50 eV) ions from Dynamics Explorer 1: outflow in the auroral zone, polar cap, and cusp. J Geophys Res 99:17483

    Google Scholar 

  • Goldstein J, Sandel BR, Forrester WT, Reiff PH (2003) IMF-driven plasmasphere erosion of 10 July 2000. Geophys Res Lett 30:1146. doi:10.1029/2002GL016478

    Google Scholar 

  • Hedin AE (1987) MSIS-86 thermospheric model. J Geophys Res 92:4649–4662

    Google Scholar 

  • Heelis RA, Winningham JD, Suguira M, Maynard NC (1984) Particle acceleration parallel and perpendicular to the magnetic field observed by DE-2. J Geophys Res 89:3893–3902

    Google Scholar 

  • Heppner JP, Maynard NC (1987) Empirical high-latitude electric field models. J Geophys Res 92(A5):4467–4489

    Google Scholar 

  • Hoffman JH, Dodson WH (1980) Light ion concentrations and fluxes in the polar regions during magnetically quiet times. J Geophys Res 85:626–632

    Google Scholar 

  • Horwitz JL (1986) The tail lobe ion spectrometer. J Geophys Res 91:5689–5699

    Google Scholar 

  • Horwitz JL, Lockwood M (1985) The cleft ion fountain: a two-dimensional kinetic model. J Geophys Res 90:9749

    Google Scholar 

  • Hultqvist B (1983) On the origin of the hot ions in the disturbed dayside magnetosphere. Planet. Space Sci 31:173–184

    Google Scholar 

  • Hultqvist B (1991) Extraction of ionospheric plasma by magnetospheric processes. J Atmos Sol Terr Phys 53:3–15

    Google Scholar 

  • Keating JG, Mulligan J, Doyle DB, Winser KJ, Lockwood M (1990) A statistical study of large field-aligned flows of thermal ions at high-latitudes. Planet Space Sci 38:1187–1201

    Google Scholar 

  • Keiling A, Wygant JR, Cattell CA, Mozer FS, Russell CT (2003) The global morphology of wave Poynting flux: powering the aurora. Science 299:383–386

    Google Scholar 

  • Kintner PM, Vago J, Chesney S, Arnoldy RL, Lynch KA, Pollock CJ, Moore TE (1992) Localized lower hybrid acceleration of ionospheric plasma. Phys Rev Lett 68:2448

    Google Scholar 

  • Kintner PM, Bonnell J, Arnoldy R, Lynch K, Pollock C, Moore T (1996) SCIFER – Ion acceleration and plasma waves. Geophys Res Lett 23:1873–1876

    Google Scholar 

  • Klumpar DM (1979) Transversely accelerated ions: an ionospheric source of hot magnetospheric ions. J Geophys Res 84:4229

    Google Scholar 

  • Klumpar DM, Peterson WK, Shelley EG (1984) Direct evidence for two-stage (bimodal) acceleration of ionospheric ions. J Geophys Res 89:10779–10787

    Google Scholar 

  • Knudsen DJ, Clemmons JH, Wahlund JE (1998) Correlation between core ion energization, suprathermal electron bursts, and broad-band ELF plasma waves. J Geophys Res 103:4171–4178

    Google Scholar 

  • Lennartsson OW (1995) Statistical investigation of IMF Bz effects on energetic (0.1–16 keV) magnetospheric O+ ions. J Geophys Res 100:23261–23635

    Google Scholar 

  • Lennartsson OW, Shelley EG (1986) Survey of 0.1-16 keV/e plasma sheet ion composition. J Geophys Res 91:3061–3076

    Google Scholar 

  • Lennartsson OW, Collin HL, Peterson WK (2004) Solar wind control of Earth’s H+ and O+ outflow rates in the 15-eV to 33-keV energy range. J Geophys Res 109:A12212. doi:10.1029/2004JA010690

    Google Scholar 

  • Liu HX, Ma SY, Schlegel K (2001) Diurnal, seasonal, and geomagnetic variations of large field-aligned ion upflows in the high-latitude ionospheric F-region. J Geophys Res 106:24651–24661

    Google Scholar 

  • Lockwood M, Titheridge JE (1981) Ionospheric origin of magnetospheric O+ ions. Geophys Res Lett 8:381–384

    Google Scholar 

  • Loranc M, Hanson WB, Heelis RA, St-Maurice JP (1991) A morphological study of vertical ionospheric flows in the high-latitude F region. J Geophys Res 96:3627–3646

    Google Scholar 

  • Lundin R, Haerendel G, Boehm M, Holback B (1994) Large-scale auroral plasma density cavities observed by Freja. Geophys Res Lett 21:1903

    Google Scholar 

  • Lynch KA, Arnoldy RL, Kintner PM, Bonnell J (1996) The AMICIST auroral sounding rocket: a comparison of transverse ion acceleration mechanisms. Geophys Res Lett 23:3293–3296

    Google Scholar 

  • Lysak RL (1986) Ion acceleration by wave-particle interaction. In: Chang T (ed) Ion acceleration in the magnetosphere and ionosphere. Geophysical monograph, vol 38. American Geophysical Union, Washington, DC, pp 261–270

    Google Scholar 

  • McCrea IW, Lockwood M, Moen J, Pitout F, Eglitis P, Aylward AD, Cerisier JC, Thorolfssen A, Milan SE (2000) ESR and EISCAT observations of the response of the cusp and cleft to IMF orientation changes. Ann Geophys 18:1009–1026. doi: 10.1007/s00585-000-1009-7

    Google Scholar 

  • Miyake W, Mukai T, Kaya N (1993) On the evolution of ion conics along the field line from EXOS-D observations. J Geophys Res 98:11127–11134

    Google Scholar 

  • Miyake W, Mukai T, Kaya N (1996) On the origins of the upward shift of elevated (bi-modal) ion conics in velocity space. J Geophys Res 101:26961–26969

    Google Scholar 

  • Miyake W, Mukai T, Kaya N (2000) Interplanetary magnetic field control of dayside ion conics. J Geophys Res 105:23,339–23,344. doi: 10.1029/2000JA900082

    Google Scholar 

  • Moore TE (1980) Modulation of terrestrial escape flux composition (by low-altitude acceleration and charge exchange chemistry). J Geophys Res 85:2011–2016

    Google Scholar 

  • Moore TE, Lundin R, Alcayde D, Andre A, Ganguli SB, Temerin M, Yau AW (1999a) Source processes in the high-latitude ionosphere. Space Sci Rev 88:7–84

    Google Scholar 

  • Moore TE, Peterson WK, Russell CT, Chandler MO, Collier MR, Collin HL, Craven PD, Fitzenreiter R, Giles BL, Pollock CJ (1999b) Ionospheric mass ejection in response to a CME. Geophys Res Lett 26:2339–2342

    Google Scholar 

  • Nagai T, Waite JH Jr., Green JL, Chappell CR (1984) First measurements of supersonic polar wind in the polar magnetosphere. Geophys Res Lett 11:669–672

    Google Scholar 

  • Newell PT, Meng CI, Lyons KM (1996) Suppression of discrete aurora by sunlight. Nature 381:766

    Google Scholar 

  • Norqvist P, Andre M Eliasson L, Erikson AI, Blomberg L, Luhr H, Clemmons JH (1996) Ion cyclotron heating in the dayside magnetosphere. J Geophys Res 101:13179

    Google Scholar 

  • Ogawa Y, Buchert SC, Fujii R, Nozawa S, van Eyken AP (2009) Characteristics of ion upflow and downflow observed with the European Incoherent Scatter Svalbard radar. J Geophys Res 114:A05305. doi:10.1029/2008JA013817

    Google Scholar 

  • Ogawa Y, Buchert SC, Sakurai A, Nozawa S, Fujii R (2010) Solar cycle dependence of ion upflow in the polar ionosphere observed with the EISCAT Tromso UHF radar. J Geophys Res 115:A07310. doi:10.1029/2009JA014766

    Google Scholar 

  • Oieroset M, Yamauchi M, Liszka L, Hultqvist B (1999) Energetic ion outflow from the dayside ionosphere: categorization, classification, and statistical study. J Geophys Res 104:24915–24927

    Google Scholar 

  • Persoon AM, Gurnett DA, Shawhan SD (1983) Polar cap electron densities from DE-1 plasma wave observations. J Geophys Res 88:10123–10136

    Google Scholar 

  • Peterson WK, Collin HL, Doherty MF, Bjorklund CM (1992) O+ and H+ restricted and extended (bi-modal) ion conics distributions. Geophys Res Lett 14:1439–1442

    Google Scholar 

  • Peterson WK, Collin HL, Doherty MF, Bjorklund CM (1995) Extended (bi-modal) ion conics at high altitudes. In: Ashour-Abdalla M, Chang T, Duesenbery P (eds) Space plasmas: coupling between small and medium scale processes. geophysical monograph, vol. 86. American Geophysical Union, Washington, DC, p 105

    Google Scholar 

  • Peterson WK, Collin HL, Lennartsson OW, Yau AW (2006) Quiet time solar illumination effects on the fluxes and characteristic energies of ionospheric outflow. J Geophys Res 111:A11S05. doi:10.1029/2005JA011596

    Google Scholar 

  • Peterson WK, Andersson L, Callahan BC, Collin HL, Scudder JD, Yau AW (2008) Solar-minimum quiet time ion energization and outflow in dynamic boundary related coordinates. J Geophys Res 113:A07222. doi: 10.1029/2008JA013059

    Google Scholar 

  • Pollock CJ, Chandler MO, Moore TE, Waite JH Jr, Chappell CR, Gurnett DA (1990) A survey of upwelling ion event characteristics. J Geophys Res 95:18969–18980

    Google Scholar 

  • Raitt WJ, Schunk RW (1983) Composition and characteristics of the polar wind. In: Johnson RG (eds) Energetic ion composition in the earth’s magnetosphere. Terra Scientific Publishing, Tokyo, pp 99–141

    Google Scholar 

  • Retterer JM, Chang T, Crew GB, Jasperse JR, Winningham JD (1987) Monte Carlo modeling of ionospheric oxygen acceleration by cyclotron resonance with broadband electromagnetic turbulence. Phys Rev Lett 59:148–151

    Google Scholar 

  • Robinson RM, Tsunoda RT, Vickery JF, Guerin L (1985) Sources of F-region ionization mechanisms in the nightside auroral zone. J Geophys Res 90:7533–7546

    Google Scholar 

  • Schunk RW (2007) Time-dependent simulations of the global polar wind. J Atmos Sol Terr Phys 69:2028–2047

    Google Scholar 

  • Semeter J, Heinselman CJ, Thayer JP, Doe RA (2003) Ion upflow enhanced by drifting F-region plasma structure along the nightside polar cap boundary. Geophys Res Lett 30:2139. doi:10.1029/2003GL017747

    Google Scholar 

  • Seo Y, Caton R, Horwitz JL (1997) Statistical relationship between high-latitude ionospheric F-region/topside upflows and their drivers: DE-2 observations. J Geophys Res 102(A4):7493–7500

    Google Scholar 

  • Shelley EG, Johnson RG, Sharp RD (1972) Satellite observations of energetic heavy ions during a geomagnetic storm. J Geophys Res 77:6104–6110

    Google Scholar 

  • Strangeway RJ, Russell CT, Carlson CW, McFadden JP, Ergun RE, Temerin M, Klumpar DM, Peterson WK, Moore TE (2000) Cusp field-aligned currents and ion outflows. J Geophys Res 105:21,129–21,142

    Google Scholar 

  • Strangeway RJ, Ergun RE, Su YJ, Carlson CW, Elphic RC (2005) Factors controlling ionospheric outflows as observed at intermediate altitudes. J Geophys Res 110:A03221. doi:10.1029/ 2004JA010829

    Google Scholar 

  • Su YJ, Horwitz JL, Moore TE, Giles BL, Chandler MO, Craven PD, Hirahara M, Pollock CJ (1998) Polar wind survey with the thermal ion dynamics experiment/plasma source instrument suite aboard polar. J Geophys Res 103:29305–29337

    Google Scholar 

  • Tam SWY, Chang T, Pierrard V (2007) Kinetic modeling of the polar wind. J Atmos Sol Terr Phys 69:1984–2027

    Google Scholar 

  • Temerin M, Roth I (1986) Ion heating by waves with frequencies below the ion gyrofrequency. Geophys Res Lett 13:1109–1112

    Google Scholar 

  • Tsyganenko NA (2002) A model of the near magnetosphere with a dawn-dusk asymmetry: 1 Mathematical structure. J Geophys Res 107:1179. doi:10.1029/2001JA000219

    Google Scholar 

  • Vago JL, Kintner PM, Chesney SW, Arnoldy RL, Lynch KA, Moore TE, Pollock CJ (1992) Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere. J Geophys Res 97:16935–16957

    Google Scholar 

  • Wahlund JE, Opgenoorth HJ (1989) EISCAT observations of strong ion outflows from the F-region ionosphere during auroral activity – preliminary results. Geophys Res Lett 16:727–730

    Google Scholar 

  • Wahlund JE, Opgenoorth HJ, Haggstrom I, Winser KJ, Jones GOL (1992) EISCAT observations of topside ionospheric ion outflows during auroral activity: revisited. J Geophys Res 97:3019–3037

    Google Scholar 

  • Whalen BA, Watanabe S, Yau AW (1991) Thermal and suprathermal ion observations in the low altitude transverse ion energization region. Geophys Res Lett 18:725–728

    Google Scholar 

  • Wu XY, Horwitz JL, Seo Y (2000) Statistical analysis of F region and topside ionospheric ion field-aligned flows at high latitudes. J Geophys Res 105:2477–2494

    Google Scholar 

  • Wygant J, Keiling A, Cattell CA et al (2000) Polar spacecraft based comparisons of intense electric fields and Poynting flux near and within the plasma sheet‐tail lobe boundary to UVI images: an energy source for the aurora. J Geophys Res 105:18675–18692

    Google Scholar 

  • Yau AW, Andre M (1997) Sources of Ion Outflow in the High Latitude Ionosphere. Space Sci Rev 80(1–2):1–26

    Google Scholar 

  • Yau AW, Whalen BA, McNamara AG, Kellogg PG, Bernstein W (1983) Particle and wave observations of low-altitude ionospheric ion acceleration events. J Geophys Res 88:341–355

    Google Scholar 

  • Yau AW, Whalen BA, Peterson WK, Shelley EG (1984) Distribution of upflowing ionospheric ions in the high-altitude polar cap and auroral ionosphere. J Geophys Res 89:5507–5522

    Google Scholar 

  • Yau AW, Beckwith BH, Peterson WK, Shelley EG (1985a) Long-term (solar-cycle) and seasonal variations of upflowing ionospheric ion events at DE-1 altitudes. J Geophys Res 90:6395–6407

    Google Scholar 

  • Yau AW, Shelley EG, Peterson WK, Lenchyshyn L (1985b) Energetic auroral and polar ion outflow at DE-1 altitudes: magnitude, composition, magnetic activity dependence and long-term variations. J Geophys Res 90:8417–8432

    Google Scholar 

  • Yau AW, Peterson WK, Shelley EG (1988) Quantitative parametrization of energetic ionospheric ion outflow. In: Moore TE, Waite JH Jr (eds) Modeling magnetospheric plasma. Geophysical monograph, vol 44. American Geophysical Union, Washington, DC, pp 211–217

    Google Scholar 

  • Yau AW, Whalen BA, Sagawa E (1991) Minor ion composition in the polar ionosphere. Geophys Res Lett 18:345–348

    Google Scholar 

  • Yau AW, Whalen BA, Goodenough C, Sagawa E, Mukai T (1993) EXOSD (Akebono) observations of molecular NO+ and N2 + upflowing ions in the high-altitude auroral ionosphere. J Geophys Res 98:11205–11224

    Google Scholar 

  • Yau AW, Whalen BA, Abe T, Mukai T, Oyama KI, Chang T (1995) Akebono observations of electron temperature anisotropy in the polar wind. J Geophys Res 100:17451–17463

    Google Scholar 

  • Yau AW, Abe T, Peterson WK (2007) The polar wind: recent observations. J Atmos Sol Terr Phys 69:1936–1983

    Google Scholar 

  • Zheng Y, Moore TE, Mozer FS, Russell CT, Strangeway RJ (2005) Polar study of ionospheric ion outflow versus energy input. J Geophys Res 110:A07210. doi:10.1029/2004JA010995

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the funding support for this research from the Canadian Space Agency (CSA) and the Natural Science and Engineering Research Council of Canada (NSERC) Industrial Research Chair Program. We would also like to thank the NASA Heliophysics Program for support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew W. Yau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Yau, A.W., Peterson, W., Abe, T. (2011). Influences of the Ionosphere, Thermosphere and Magnetosphere on Ion Outflows. In: Liu, W., Fujimoto, M. (eds) The Dynamic Magnetosphere. IAGA Special Sopron Book Series, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0501-2_16

Download citation

Publish with us

Policies and ethics