Skip to main content

Rheumatological Conditions

  • Chapter
  • First Online:
Molecular Basis of Health and Disease
  • 1378 Accesses

Abstract

Rheumatological conditions (also termed as collagen vascular diseases) are a group of disorders that affect mainly the joints (small or large or both types). Though the terms rheumatological conditions and collagen vascular diseases are used interchangeably, it may be mentioned here that it is better to use the term rheumatological conditions or systemic autoimmune diseases for conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE or simply called as lupus), systemic sclerosis, and dermatomyositis The terms “collagen vascular disease” and “collagen-vascular disease,” has been in use since 1962 (and possibly earlier), are synonyms for systemic autoimmune disease. The term “collagen vascular disease” is a misnomer: these diseases affect many structures in addition to vascular structures, and they affect many molecules in addition to the collagen molecule. They are also referred to as connective tissue diseases. However, although the systemic autoimmune diseases affect connective tissue, they also affect many other tissue types, including muscle tissue and neural tissue. In addition, many connective tissue diseases (such as scurvy and Marfan’s syndrome) are not autoimmune in nature. Systemic lupus erythematosus and rheumatoid arthritis can cause vasculitis. However, these diseases affect many structures other than blood vessels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burnet FM (1957) A modification of Jerne’s theory of antibody production using the concept of Clonal selection. Aust J Sci 20:67–69

    Google Scholar 

  2. Pike B, Boyd A, Nossal G (1982) Clonal anergy: the universally anergic B lymphocyte. Proc Natl Acad Sci U S A 79:2013–2017

    PubMed  CAS  Google Scholar 

  3. Jerne N (1974) Towards a network theory of the immune system. Ann Immunol (Paris) 125C:373–389

    CAS  Google Scholar 

  4. Edwards JC, Cambridge G, Abrahams VM (1999) Do self perpetuating B lymphocytes drive human autoimmune disease? Immunology 97:1868–1876

    Google Scholar 

  5. Graham RR, Ortmann W, Rodine P, Espe K, Langefeld C, Lange E, Williams A, Beck S, Kyogoku C, Moser K, Gaffney P, Gregersen PK, Criswell LA, Harley JB, Behrens TW (2007) Specific combinations of HLA-DR2 and DR3 class II haplotypes contribute graded risk for disease susceptibility and autoantibodies in human SLE. Eur J Hum Genet 15:823–830

    PubMed  CAS  Google Scholar 

  6. Mulcahy B, Waldron-Lynch F, McDermott MF, Adams C, Amos CI, Zhu DK, Ward RH, Clegg DO, Shanahan F, Molloy MG, O’Gara F (1996) Genetic variability in the tumor necrosis factor-lymphotoxin region influences susceptibility to rheumatoid arthritis. Am J Hum Genet 59:676–683

    PubMed  CAS  Google Scholar 

  7. Newton J, Brown MA, Milicic A, Ackerman H, Darke C, Wilson JN, Wordsworth BP, Kwiatkowski D (2003) The effect of HLA-DR on susceptibility to rheumatoid arthritis is influenced by the associated lymphotoxin alpha-tumor necrosis factor haplotype. Arthritis Rheum 48:90–96

    PubMed  CAS  Google Scholar 

  8. Zhang X, Llamado L, Pillay I, Price P, Will R (2002) Interleukin-1 gene polymorphism disease activity and bone mineral metabolism in rheumatoid arthritis. Chin Med J (Engl) 115:46–49

    CAS  Google Scholar 

  9. Cantagrel A, Navaux F, Loubet-Lescoulié P, Nourhashemi F, Enault G, Abbal M, Constantin A, Laroche M, Mazières B (1999) Interleukin-1beta, interleukin-1 receptor antagonist, interleukin-4, and interleukin-10 gene polymorphisms: relationship to occurrence and severity of rheumatoid arthritis. Arthritis Rheum 42:1093–1100

    PubMed  CAS  Google Scholar 

  10. Paradowska-Gorycka A, Wojtecka-Lukasik E, Trefler J, Wojciechowska B, Lacki JK, Maslinski S (2010) Association between IL-17F gene polymorphisms and susceptibility to and severity of rheumatoid arthritis (RA). Scand J Immunol 72:134–141

    PubMed  CAS  Google Scholar 

  11. Paradowska-Gorycka A, Trefler J, Maciejewska-Stelmach J, Łacki JK (2010) Interleukin-10 gene promoter polymorphism in Polish rheumatoid arthritis patients. Int J Immunogenet 37:225–231

    PubMed  CAS  Google Scholar 

  12. Ying B, Shi Y, Pan X, Song X, Huang Z, Niu Q, Cai B, Wang L (2011) Association of polymorphisms in the human IL-10 and IL-18 genes with rheumatoid arthritis. Mol Biol Rep 38:379–385

    Google Scholar 

  13. Santos LL, Morand EF (2009) Macrophage migration inhibitory factor: a key cytokine in RA, SLE and atherosclerosis. Clin Chim Acta 399:1–7

    PubMed  CAS  Google Scholar 

  14. Zou YQ, Lu LJ, Li SJ, Zeng T, Wang XD, Bao CD, Chen SL, Yang CD (2008) The levels of macrophage migration inhibitory factor as an indicator of disease activity and severity in adult-onset Still’s disease. Clin Biochem 41:519–524

    PubMed  CAS  Google Scholar 

  15. Ayoub S, Hickey MJ, Morand EF (2008) Mechanisms of disease: macrophage migration inhibitory factor in SLE, RA and atherosclerosis. Nat Clin Pract Rheumatol 4:98–105

    PubMed  CAS  Google Scholar 

  16. Cutolo M, Brizzolara R, Atzeni F, Capellino S, Straub RH, Puttini PC (2010) The immunomodulatory effects of estrogens: clinical relevance in immune-mediated rheumatic diseases. Ann N Y Acad Sci 1193:36–42

    PubMed  CAS  Google Scholar 

  17. Stewart JJ (1999) Theory and treatment of the X-inactivation chimera in female-prevalent autoimmune disease. Arch Immunol Ther Exp (Warsz) 47:355–359

    CAS  Google Scholar 

  18. Brix TH, Knudsen GP, Kristiansen M, Kyvik KO, Orstavik KH, Hegedüs L (2005) High frequency of skewed X-chromosome inactivation in females with autoimmune thyroid disease: a possible explanation for the female predisposition to thyroid autoimmunity. J Clin Endocrinol Metab 90:5949–5953

    PubMed  CAS  Google Scholar 

  19. Selmi C, Invernizzi P, Gershwin ME (2006) The X chromosome and systemic sclerosis. Curr Opin Rheumatol 18:601–605

    PubMed  Google Scholar 

  20. Lu Q, Wu A, Tesmer L, Ray D, Yousif N, Richardson B (2007) Demethylation of CD40LG on the inactive X in T cells from women with lupus. J Immunol 179:6352–6358

    PubMed  CAS  Google Scholar 

  21. Uz E, Mustafa C, Topaloglu R, Bilginer Y, Dursun A, Kasapcopur O, Ozen S, Bakkaloglu A, Ozcelik T (2009) Increased frequency of extremely skewed X chromosome inactivation in juvenile idiopathic arthritis. Arthritis Rheum 60:3410–3412

    PubMed  Google Scholar 

  22. Saunders K, Raine T, Cooke A, Lawrence C (2007) Inhibition of autoimmune type 1 diabetes by gastrointestinal helminth infection. Infect Immun 75:397–407

    PubMed  CAS  Google Scholar 

  23. Wållberg M, Harris R (2005) Co-infection with Trypanosoma brucei brucei prevents experimental autoimmune encephalomyelitis in DBA/1 mice through induction of suppressor APCs. Int Immunol 17:721–728

    PubMed  Google Scholar 

  24. Walsh KP, Brady MT, Finlay CM, Boon L, Mills KH (2009) Infection with a helminth parasite attenuates autoimmunity through TGF-beta-mediated suppression of Th17 and Th1 responses. J Immunol 183:1577–1586

    PubMed  CAS  Google Scholar 

  25. Bang SY, Lee KH, Cho SK, Lee HS, Lee KW, Bae SC (2010) Smoking increases rheumatoid arthritis susceptibility in individuals carrying the HLA-DRB1 shared epitope, regardless of rheumatoid factor or anti-cyclic citrullinated peptide antibody status. Arthritis Rheum 62:369–377

    PubMed  CAS  Google Scholar 

  26. Linn-Rasker SP, van der Helm-van Mil AH, van Gaalen FA, Kloppenburg M, de Vries RR, le Cessie S, Breedveld FC, Toes RE, Huizinga TW (2006) Smoking is a risk factor for anti-CCP antibodies only in rheumatoid arthritis patients who carry HLA-DRB1 shared epitope alleles. Ann Rheum Dis 65:366–371

    PubMed  CAS  Google Scholar 

  27. Criswell LA, Merlino LA, Cerhan JR, Mikuls TR, Mudano AS, Burma M, Folsom AR, Saag KG (2002) Cigarette smoking and the risk of rheumatoid arthritis among postmenopausal women: results from the Iowa Women’s Health Study. Am J Med 112:465–471

    PubMed  Google Scholar 

  28. Weigle WO (1981) Self-nonself recognition by T and B lymphocytes and their roles in autoimmune phenomena. Arthritis Rheum 24:1044–1053

    PubMed  CAS  Google Scholar 

  29. Blossom S, Gilbert KM (1999) Antibody production in autoimmune BXSB mice. I. CD40L-expressing B cells need fewer signals for polyclonal antibody synthesis. Clin Exp Immunol 118:147–153

    PubMed  CAS  Google Scholar 

  30. Bouzahzah F, Jung S, Craft J (2003) CD4+ T cells from lupus-prone mice avoid antigen-specific tolerance induction in vivo. J Immunol 170:741–748

    PubMed  CAS  Google Scholar 

  31. Choe JY, Crain B, Wu SR, Corr M (2003) Interleukin 1 receptor dependence of serum transferred arthritis can be circumvented by toll-like receptor 4 signaling. J Exp Med 197:537–542

    PubMed  CAS  Google Scholar 

  32. Le Saout C, Mennechet S, Taylor N, Hernandez J (2008) Memory-like CD8+ and CD4+ T cells cooperate to break peripheral tolerance under lymphopenic conditions. Proc Natl Acad Sci U S A 105:19414–19419

    PubMed  CAS  Google Scholar 

  33. Green EA, Wong FS, Eshima K, Mora C, Flavell RA (2000) Neonatal tumor necrosis factor alpha promotes diabetes in nonobese diabetic mice by CD154-independent antigen presentation to CD8(+) T cells. J Exp Med 191:225–238

    PubMed  CAS  Google Scholar 

  34. Hillion S, Garaud S, Devauchelle V, Bordron A, Berthou C, Youinou P, Jamin C (2007) Interleukin-6 is responsible for aberrant B-cell receptor-mediated regulation of RAG expression in systemic lupus erythematosus. Immunology 122:371–380

    PubMed  CAS  Google Scholar 

  35. Daridon C, Devauchelle V, Hutin P, Le Berre R, Martins-Carvalho C, Bendaoud B, Dueymes M, Saraux A, Youinou P, Pers JO (2007) Aberrant expression of BAFF by B lymphocytes infiltrating the salivary glands of patients with primary Sjögren’s syndrome. Arthritis Rheum 56:1134–1144

    PubMed  CAS  Google Scholar 

  36. Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC (1996) B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest 98:2549–2557

    PubMed  CAS  Google Scholar 

  37. Guilherme L, Kalil J (2010) Rheumatic fever and rheumatic heart disease: cellular mechanisms leading autoimmune reactivity and disease. J Clin Immunol 30:17–23

    PubMed  Google Scholar 

  38. Root-Bernstein R, Vonck J, Podufaly A (2009) Antigenic complementarity between coxsackie virus and streptococcus in the induction of rheumatic heart disease and autoimmune myocarditis. Autoimmunity 42:1–16

    PubMed  CAS  Google Scholar 

  39. Faé KC, Diefenbach da Silva D, Bilate AM, Tanaka AC, Pomerantzeff PM, Kiss MH, Silva CA, Cunha-Neto E, Kalil J, Guilherme L (2008) PDIA3, HSPA5 and vimentin, proteins identified by 2-DE in the valvular tissue, are the target antigens of peripheral and heart infiltrating T cells from chronic rheumatic heart disease patients. J Autoimmun 31:136–141

    PubMed  Google Scholar 

  40. Chen QY, Rowley MJ, Mackay IR (1999) Anti-idiotypic antibodies to anti-PDC-E2 in primary biliary cirrhosis and normal subjects. Hepatology 29:624–631

    PubMed  CAS  Google Scholar 

  41. Stefanescu M, Onu A, Matache C, Ramos-Morales F, Fischer S, Szegli G (1995) Naturally occurring anti-idiotypic antibodies to anti-phosphotyrosine in systemic lupus erythematosus interact with SRC-homology 2 domains. Autoimmunity 22:81–86

    PubMed  CAS  Google Scholar 

  42. Nordling C, Kleinau S, Klareskog L (1992) Down-regulation of a spontaneous arthritis in male DBA/1 mice after administration of monoclonal anti-idiotypic antibodies to a cross-reactive idiotope on anti-collagen antibodies. Immunology 77:144–146

    PubMed  CAS  Google Scholar 

  43. Romagnani S (1991) Type 1 T helper and type 2 T helper cells: functions, regulation and role in protection and disease. Int J Clin Lab Res 21:152–158

    PubMed  CAS  Google Scholar 

  44. Dorshkind K, Klimpel GR, Rosse C (1980) Natural regulatory cells in murine bone marrow: inhibition of in vitro proliferative and cytotoxic responses to alloantigens. J Immunol 124:2584–2588

    PubMed  CAS  Google Scholar 

  45. Poojary KV, Kong YC, Farrar MA (2010) Control of th2-mediated inflammation by regulatory T cells. Am J Pathol 177:525–531

    PubMed  CAS  Google Scholar 

  46. Murai M, Krause P, Cheroutre H, Kronenberg M (2010) Regulatory T-cell stability and plasticity in mucosal and systemic immune systems. Mucosal Immunol 3:443–449

    Google Scholar 

  47. Shalaby KH, Martin JG (2010) Overview of asthma; the place of the T cell. Curr Opin Pharmacol 10:218–225

    PubMed  CAS  Google Scholar 

  48. Gandhi R, Farez MF, Wang Y, Kozoriz D, Quintana FJ, Weiner HL (2010) Cutting edge: human latency-associated peptide+ T cells: a novel regulatory T cell subset. J Immunol 184:4620–4624

    PubMed  CAS  Google Scholar 

  49. Carrier Y, Yuan J, Kuchroo VK, Weiner HL (2007) Th3 cells in peripheral tolerance. I. Induction of Foxp3-positive regulatory T cells by Th3 cells derived from TGF-beta T cell-transgenic mice. J Immunol 178:179–185

    PubMed  CAS  Google Scholar 

  50. Carrier Y, Yuan J, Kuchroo VK, Weiner HL (2007) Th3 cells in peripheral tolerance. II. TGF-beta-transgenic Th3 cells rescue IL-2-deficient mice from autoimmunity. J Immunol 178:172–178

    PubMed  CAS  Google Scholar 

  51. Weiner HL (2001) Oral tolerance: immune mechanisms and the generation of Th3-type TGF-beta-secreting regulatory cells. Microbes Infect 3:947–954

    PubMed  CAS  Google Scholar 

  52. Korn T, Bettelli E, Oukka M, Kuchroo VK (2009) IL-17 and Th17 cells. Annu Rev Immunol 27:485–517

    PubMed  CAS  Google Scholar 

  53. Ghilardi N, Ouyang W (2007) Targeting the development and effector functions of TH17 cells. Semin Immunol 19:383–393

    PubMed  CAS  Google Scholar 

  54. Bettelli E, Korn T, Kuchroo VK (2007) Th17: the third member of the effector T cell trilogy. Curr Opin Immunol 19:652–657

    PubMed  CAS  Google Scholar 

  55. Korn T, Oukka M, Kuchroo V, Bettelli E (2007) Th17 cells: effector T cells with inflammatory properties. Semin Immunol 19:362–371

    PubMed  CAS  Google Scholar 

  56. Toh ML, Kawashima M, Hot A, Miossec P, Miossec P (2010) Role of IL-17 in the Th1 systemic defects in rheumatoid arthritis through selective IL-12Rbeta2 inhibition. Ann Rheum Dis 69:1562–1567

    PubMed  CAS  Google Scholar 

  57. Shen H, Goodall JC, Hill Gaston JS (2009) Frequency and phenotype of peripheral blood Th17 cells in ankylosing spondylitis and rheumatoid arthritis. Arthritis Rheum 60:1647–1656

    PubMed  CAS  Google Scholar 

  58. Li X, Yuan FL, Lu WG, Zhao YQ, Li CW, Li JP, Xu RS (2010) The role of interleukin-17 in mediating joint destruction in rheumatoid arthritis. Biochem Biophys Res Commun 397:131–135

    PubMed  CAS  Google Scholar 

  59. Paradowska-Gorycka A, Grzybowska-Kowalczyk A, Wojtecka-Lukasik E, Maslinski S (2010) IL-23 in the pathogenesis of rheumatoid arthritis. Scand J Immunol 71:134–145

    PubMed  CAS  Google Scholar 

  60. Li Q, Cong B, Shan B, Zhang J, Chen H, Wang T, Ma C, Qin J, Wen D, Yu F (in press) Cholecystokinin octapeptide exerts its therapeutic effects on collagen-induced arthritis by suppressing both inflammatory and Th17 responses. Rheumatol Int

    Google Scholar 

  61. Wei B, Pei G (2010) microRNAs: critical regulators in Th17 cells and players in diseases. Cell Mol Immunol 7:175–181

    PubMed  CAS  Google Scholar 

  62. Crispín JC, Tsokos GC (2010) Interleukin-17-producing T cells in lupus. Curr Opin Rheumatol 22:499–503

    PubMed  Google Scholar 

  63. Ma J, Yu J, Tao X, Cai L, Wang J, Zheng SG (2010) The imbalance between regulatory and IL-17-secreting CD4(+) T cells in iupus patients. Clin Rheumatol 29:1251–1258

    Google Scholar 

  64. Henriques A, Inês L, Couto M, Pedreiro S, Santos C, Magalhães M, Santos P, Velada I, Almeida A, Carvalheiro T, Laranjeira P, Morgado JM, Pais ML, da Silva JA, Paiva A (2010) Frequency and functional activity of Th17, Tc17 and other T-cell subsets in systemic lupus erythematosus. Cell Immunol 264:97–103

    PubMed  CAS  Google Scholar 

  65. Staudt V, Bothur E, Klein M, Lingnau K, Reuter S, Grebe N, Gerlitzki B, Hoffmann M, Ulges A, Taube C, Dehzad N, Becker M, Stassen M, Steinborn A, Lohoff M, Schild H, Schmitt E, Bopp T (2010) Interferon-regulatory factor 4 is essential for the developmental program of T helper 9 cells. Immunity 33:192–202

    Google Scholar 

  66. Nowak EC, Noelle RJ (2010) Interleukin-9 as a T helper type 17 cytokine. Immunology 131:169–173

    Google Scholar 

  67. Beriou G, Bradshaw EM, Lozano E, Costantino CM, Hastings WD, Orban T, Elyaman W, Khoury SJ, Kuchroo VK, Baecher-Allan C, Hafler DA (2010) TGF-beta induces IL-9 production from human Th17 cells. J Immunol 185:46–54

    PubMed  CAS  Google Scholar 

  68. Ozaki Y, Ito T, Son Y, Amuro H, Shimamoto K, Sugimoto H, Katashiba Y, Ogata M, Miyamoto R, Murakami N, Amakawa R, Fukuhara S (2010) Decrease of blood dendritic cells and increase of tissue-infiltrating dendritic cells are involved in the induction of Sjögren’s syndrome but not in the maintenance. Clin Exp Immunol 159:315–326

    PubMed  CAS  Google Scholar 

  69. Khan S, Greenberg JD, Bhardwaj N (2009) Dendritic cells as targets for therapy in rheumatoid arthritis. Nat Rev Rheumatol 5:566–571

    PubMed  CAS  Google Scholar 

  70. Baldwin HM, Ito-Ihara T, Isaacs JD, Hilkens CM (2010) Tumour necrosis factor alpha blockade impairs dendritic cell survival and function in rheumatoid arthritis. Ann Rheum Dis 69:1200–1207

    PubMed  CAS  Google Scholar 

  71. Marti L, Golmia R, Golmia AP, Paes AT, Guilhen DD, Moreira-Filho CA, Scheinberg M (2009) Alterations in cytokine profile and dendritic cells subsets in peripheral blood of rheumatoid arthritis patients before and after biologic therapy. Ann N Y Acad Sci 1173:334–342

    PubMed  CAS  Google Scholar 

  72. Voynova E, Tchorbanov A, Prechl J, Nikolova M, Baleva M, Erdei A, Vassilev T (2008) An antibody-based construct carrying DNA-mimotope and targeting CR1(CD35) selectively suppresses human autoreactive B-lymphocytes. Immunol Lett 116:168–173

    PubMed  CAS  Google Scholar 

  73. Singh RR, Hahn BH (1998) Reciprocal T-B determinant spreading develops spontaneously in murine lupus: implications for pathogenesis. Immunol Rev 164:201–208

    PubMed  CAS  Google Scholar 

  74. Das UN (1991) Interaction(s) between essential fatty acids, eicosanoids, cytokines, growth factors and free radicals: relevance to new therapeutic strategies in rheumatoid arthritis and other collagen vascular diseases. Prostaglandins Leukot Essent Fatty Acids 44:201–210

    PubMed  CAS  Google Scholar 

  75. Mageed RA, Isenberg DA (2002) Tumour necrosis factor alpha in systemic lupus erythematosus and anti-DNA autoantibody production. Lupus 11:850–855

    PubMed  CAS  Google Scholar 

  76. Mok MY (2010) The immunological basis of B-cell therapy in systemic lupus erythematosus. Int J Rheum Dis 13:3–11

    PubMed  Google Scholar 

  77. Shah D, Kiran R, Wanchu A, Bhatnagar A (2010) Oxidative stress in systemic lupus erythematosus: relationship to Th1 cytokine and disease activity. Immunol Lett 129:7–12

    PubMed  CAS  Google Scholar 

  78. Pan HF, Tao JH, Ye DQ (2010) Therapeutic potential of IL-27 in systemic lupus erythematosus. Expert Opin Ther Targets 14:479–484

    PubMed  CAS  Google Scholar 

  79. Wozniacka A, Lesiak A, Boncela J, Smolarczyk K, McCauliffe DP, Sysa-Jedrzejowska A (2008) The influence of antimalarial treatment on IL-1beta, IL-6 and TNF-alpha mRNA expression on UVB-irradiated skin in systemic lupus erythematosus. Br J Dermatol 159:1124–1130

    PubMed  CAS  Google Scholar 

  80. Hoi AY, Iskander MN, Morand EF (2007) Macrophage migration inhibitory factor: a therapeutic target across inflammatory diseases. Inflamm Allergy Drug Targets 6:183–190

    PubMed  CAS  Google Scholar 

  81. Graham KL, Lee LY, Higgins JP, Steinman L, Utz PJ, Ho PP (2010) Treatment with a toll-like receptor inhibitory GpG oligonucleotide delays and attenuates lupus nephritis in NZB/W mice. Autoimmunity 43:140–155

    PubMed  CAS  Google Scholar 

  82. Visentini M, Conti V, Cagliuso M, Tinti F, Siciliano G, Trombetta AC, Mitterhofer AP, Fiorilli M, Quinti I (2009) Regression of systemic lupus erythematosus after development of an acquired toll-like receptor signaling defect and antibody deficiency. Arthritis Rheum 60:2767–2771

    PubMed  CAS  Google Scholar 

  83. Wong CK, Wong PT, Tam LS, Li EK, Chen DP, Lam CW (2010) Elevated production of B cell chemokine CXCL13 is correlated with systemic lupus erythematosus disease activity. J Clin Immunol 30:45–52

    PubMed  CAS  Google Scholar 

  84. Das UN (2006) Clinical laboratory tools to diagnose inflammation. Adv Clin Chem 41:189–229

    CAS  Google Scholar 

  85. Padma M, Das UN (1996) Effect of cis-unsaturated fatty acids on cellular oxidant stress in macrophage tumor (AK-5) cells in vitro. Cancer Lett 109:63–75

    PubMed  CAS  Google Scholar 

  86. Das UN (1991) Arachidonic acid as a mediator of some of the actions of phorbolmyristate acetate, a tumor promotor and inducer of differentiation. Prostaglandins Leukot Essent Fatty Acids 42:241–244

    PubMed  CAS  Google Scholar 

  87. Das UN, Padma M, Sangeetha P et al (1990) Stimulation of free radical generation in human leukocytes by various stimulants including tumor necrosis factor is a calmodulin dependent process. Biochem Biophys Res Commun 167:1030–1036

    PubMed  CAS  Google Scholar 

  88. Serhan CN (2005) Lipoxins and aspirin-triggered 15-epi-lipoxins are the first lipid mediators of endogenous anti-inflammation and resolution. Prostaglandins Leukot Essent Fatty Acids 73:141–162

    PubMed  CAS  Google Scholar 

  89. Claria J, Serhan CN (1995) Aspirin triggers previously undescribed bioactive eicosanoids by human endothelial cell-leukocyte interactions. Proc Natl Acad Sci U S A 92:9475–9479

    PubMed  CAS  Google Scholar 

  90. Das UN (2005) COX-2 inhibitors and metabolism of essential fatty acids. Med Sci Monit 11:RA233–RA237

    PubMed  CAS  Google Scholar 

  91. Leng RX, Pan HF, Chen GM, Wang C, Qin WZ, Chen LL, Tao JH, Ye DQ (2010) IL-23: a promising therapeutic target for systemic lupus erythematosus. Arch Med Res 41:221–225

    PubMed  CAS  Google Scholar 

  92. Mantovani A, Sozzani S, Introna M (1997) Endothelial activation by cytokines. Ann N Y Acad Sci 832:93–116

    PubMed  CAS  Google Scholar 

  93. Robak E, Sysa-Jeorzejewska A, Dziankowska B, Torzecka D, Chojnowski K, Robak T (1998)Association of interferon gamma, tumor necrosis factor alpha and interleukin-6 serum levels with systemic lupus erythematosus activity. Arch Immunol Ther Exp (Warsz) 46:375–380

    CAS  Google Scholar 

  94. Tucci M, Calvani N, Richards HB, Aro CQ, Silvestris F (2005) The interplay of chemokines and dendritic cells in the pathogenesis of lupus nephritis. Ann N Y Acad Sci 1051:421–432

    PubMed  CAS  Google Scholar 

  95. Falk RJ, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318:1651–1657

    PubMed  CAS  Google Scholar 

  96. Shen JY, Chen SL, Wu YX, Tao RQ, Gu YY, Bao CD, Wang Q (1999) Pulmonary hypertension in systemic lupus erythematosus. Rheumatol Int 18:147–151

    PubMed  CAS  Google Scholar 

  97. Willeke P, Schluter B, Schotte H, Erren M, Mickholz E, Domschke W, Gaubitz M (2004) Increased frequency of GM-CSF secreting PBMC in patients with active systemic lupus erythematosus can be reduced by immunoadsorption. Lupus 13:57–62

    Google Scholar 

  98. Williams RC Jr, Harmon ME, Burlingame R, Du Clos TW (2005) Studies of serum C-reactive protein in systemic lupus erythematosus. J Rheumatol 32:454–461

    PubMed  CAS  Google Scholar 

  99. Lindsey NJ, Henderson FI, Malia R, Milford-Ward MA, Graves M, Hughes P (1994) Inhibition of prostacyclin release by endothelial binding anticardiolipin antibodies in thrombosis-prone patients with systemic lupus erythematosus and the antiphospholipid syndrome. Br J Rheumatol 33:20–26

    PubMed  CAS  Google Scholar 

  100. Das UN (1995) Beneficial action(s) of eicosapentaenoic acid/docosahexaenoic acid and nitric oxide in systemic lupus erythematosus. Med Sci Res 23:723–726

    CAS  Google Scholar 

  101. Mohan IK, Das UN (1997) Oxidant stress, anti-oxidants and essential fatty acids in systemic lupus erythematosus. Prostaglandins Leukot Essent Fatty Acids 56:193–198

    PubMed  CAS  Google Scholar 

  102. Zamora MR, O’Brien RF, Rutherford RF, Weil JV (1990) Serum endothelin-1 concentrations and cold provocation in primary Raynaud’s phenomenon. Lancet 336:1144–1147

    PubMed  CAS  Google Scholar 

  103. Reimann J, Diamantstein T (1981) Interleukin-2 allows in vivo induction of anti-erythrocyte autoantibody production in nude mice associated with the injection of rat erythrocytes. Clin Exp Immunol 43:641–644

    PubMed  CAS  Google Scholar 

  104. Schleusner HJ, Lassmann H (1986) Recombinant interleukin 2 (IL-2) promotes T cell line-mediated neuroautoimmune disease. J Neuroimmunol 11:87–91

    Google Scholar 

  105. Kolb H, Zielasek J, Treichel U, Freytag G, Wrann M, Kiesel U (1986) Recombinant interleukin 2 enhances spontaneous insulin-dependent diabetes in BB rats. Eur J Immunol 16:209–212

    PubMed  CAS  Google Scholar 

  106. Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–449

    PubMed  CAS  Google Scholar 

  107. Redini R, Galera A, Mauriel A, Layan G, Pujol J-P (1988) Transforming growth factor-beta stimulates collagen and glycosaminoglycan biosynthesis in cultured rabbit articular chondrocytes. FEBS Lett 234:172–176

    PubMed  CAS  Google Scholar 

  108. Falanga V, Julien JM (1990) In: Piez KA, Sporn MB (eds) Observations in the potential role of transforming growth factor-beta in cutaneous fibrosis. Ann N Y Acad Sci 593:161–171

    PubMed  CAS  Google Scholar 

  109. Letterio JJ, Roberts AB (1998) Regulation of immune responses by TGF-beta. Annu Rev Immunol 16:137–161

    PubMed  CAS  Google Scholar 

  110. Geiser AG, Letterio JJ, Kulkarni AB, Karlsson S, Roberts AB, Sporn MB (1993) Transforming growth factor-beta1 (TGF-beta1) controls expression of major histocompatibility genes in the postnatal mouse-aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta1 null mouse phenotype. Proc Natl Acad Sci U S A 90:9944–9948

    PubMed  CAS  Google Scholar 

  111. Dang H, Geiser AG, Letterio JJ, Nakabayashi T, Kong L, Fernandes G, Talal N (1995) SLE-like autoantibodies and Sjogren’s syndrome-like lymphoproliferation in TGF-beta knockout mice. J Immunol 155:3205–3212

    PubMed  CAS  Google Scholar 

  112. Ohtsuka K, Gray JD, Stimmler MM, Toro B, Horwitz DA (1998) Decreased production of TGF-beta by lymphocytes from patients with systemic lupus erythematosus. J Immunol 160:2539–2545

    PubMed  CAS  Google Scholar 

  113. Ohtsuka K, Gray JD, Quismorio FP Jr, Lee W, Horwitz DA (1999) Cytokine-mediated down-regulation of B cell activity in SLE: effects of interleukin-2 and transforming growth factor-beta. Lupus 8:95–102

    PubMed  CAS  Google Scholar 

  114. Jackson M, Ahmad Y, Bruce IN, Coupes B, Brenchley PEC (2006) Activation of transforming growth factor-β1 and early atherosclerosis in systemic lupus erythematosus. Arthritis Res Ther 8:R81

    PubMed  Google Scholar 

  115. Foster MH, Kelley VR (1999) Lupus nephritis: update on pathogenesis and disease mechanisms. Semin Nephrol 19:173–181

    PubMed  CAS  Google Scholar 

  116. Wong CK, Ho CY, Li EK, Lam CW (2000) Elevation of proinflammatory cytokine (IL-18, IL-17, IL-12) and Th2 cytokine (IL-4) concentrations in patients with systemic lupus erythematosus. Lupus 9:589–593

    PubMed  CAS  Google Scholar 

  117. Horwitz DA, Gray JD, Behrendsen SC et al (1998) Decreased production of interleukin-12 and other Th1 type cytokines in patients with recent onset systemic lupus erythematosus. Arthritis Rheum 41:838–844

    PubMed  CAS  Google Scholar 

  118. Takahashi S, Fossati L, Iwamoto M et al (1996) Imbalance towards Th1 predominance is associated with acceleration of lupus-like autoimmune syndrome in MRL mice. J Clin Invest 97:1597–1604

    PubMed  CAS  Google Scholar 

  119. Peng SL, Szabo SJ, Glimcher LH (2002) T-bet regulates IgG class switching and pathogenic autoantibody production. Proc Natl Acad Sci U S A 99:5545–5550

    PubMed  CAS  Google Scholar 

  120. Akahoshi M, Nakashima H, Tanaka Y et al (1999) Th1/Th2 balance of peripheral T helper cells in systemic lupus erythematosus. Arthritis Rheum 42:1644–1648

    PubMed  CAS  Google Scholar 

  121. Chan RW, Tam LS, Li EK et al (2003) Inflammatory cytokine gene expression in the urinary sediment of lupus nephritis patients. Arthritis Rheum 48:1326–1331

    PubMed  CAS  Google Scholar 

  122. Lighvani AA, Frucht DM, Jankovic D et al (2001) T-bet rapidly induced by interferon-gamma in lymphoid and myeloid cells. Proc Natl Acad Sci U S A 98:15137–15142

    PubMed  CAS  Google Scholar 

  123. Lantelme E, Mantovani S, Palermo B, Campanelli R, Sallusto F, Giachino C (2001) Kinetics of GATA-3 gene expression in early polarizing and committed human T cells. Immunology 102:123–130

    PubMed  CAS  Google Scholar 

  124. Lee HJ, Takemoto N, Kurata H et al (2000) GATA-3 induces T helper cell type 2 (Th2) cytokine expression and chromatin remodeling in committed Th1 cells. J Exp Med 192:105–115

    PubMed  CAS  Google Scholar 

  125. Arbuckle MR, McClain MT, Rubertone MV, Scofield RH, Dennis GJ, James JA, Harley JB (2003) Development of autoantibodies before the clinical onset of systemic lupus erythematosus. N Engl J Med 349:1526–1533

    PubMed  CAS  Google Scholar 

  126. Thompson C, Powrie F (2004) Regulatory T cells. Curr Opin Pharmacol 4:408–414

    PubMed  CAS  Google Scholar 

  127. Kammer GM, Perl A, Richardson BC, Tsokos GC (2002) Abnormal T cell signal transduction in systemic lupus erythematosus. Arthritis Rheum 46:1139–1154

    PubMed  CAS  Google Scholar 

  128. Jiang H, Chess L (2004) An integrated view of suppressor T cell subsets in immuno-regulation. J Clin Invest 114:1198–1208

    PubMed  CAS  Google Scholar 

  129. Nelson BH (2004) IL-2, regulatory T cells, and tolerance. J Immunol 172:3983–3988

    PubMed  CAS  Google Scholar 

  130. Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4:665–674

    PubMed  CAS  Google Scholar 

  131. Lee JH, Wang LC, Lin YT, Yang YH, Lin DT, Chiang BL (2006) Inverse correlation between CD4+ regulatory T-cell population and autoantibody levels in paediatric patients with systemic lupus erythematosus. Immunology 117:280–286

    PubMed  CAS  Google Scholar 

  132. Valencia X, Yarboro C, Illei G, Lipsky PE (2007) Deficient CD4+CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol 178:2579–2588

    PubMed  CAS  Google Scholar 

  133. Lyssuk EY, Torgashina AV, Soloviev SK, Nassaonov EL, Bykovskaia SN (2007) Reduced number and function of CD4+CD25highFoxP3+ regulatory T cells in patients with systemic lupus erythematosus. Adv Exp Med Biol 601:113–119

    PubMed  Google Scholar 

  134. Lin SC, Chen KH, Lin CH, Kuo CC, Ling OD, Chan CH (2007) The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients. Eur J Clin Invest 37:987–996

    PubMed  CAS  Google Scholar 

  135. Shi YX, Zhang XS, Liu DG, Li YQ, Guan ZZ, Jiang WQ (2004) CD4+CD25+T regulatory cells in peripheral blood of B-NHL patients with or without chemotherapy. Ai Zheng 23:597–601

    PubMed  Google Scholar 

  136. Zhang Q, Qian FH, Liu H, Huang M, Zhang XL, Yin KS (2008) Expression of surface markers on peripheral CD4+CD25high T cells in patients with atopic asthma: role of inhaled corticosteroid. Chin Med J (Engl) 121:205–212

    Google Scholar 

  137. Kawai M, Kitade H, Mathieu C, Waer M, Pirenne J (2005) Inhibitory and stimulatory effects of cyclosporine A on the development of regulatory T cells in vivo. Transplantation 79:1073–1077

    PubMed  CAS  Google Scholar 

  138. Schwarz T (2008) 25 years of UV-induced immunosuppression mediated by T cells-from disregarded T suppressor cells to highly respected regulatory T cells. Photochem Photobiol 84:10–18

    PubMed  CAS  Google Scholar 

  139. Kuhn A, Krammer PH, Kolb-Bachofen V (2006) Pathophysiology of cutaneous lupus erythematosus-novel aspects. Rheumatology 45:iii14–iii16

    PubMed  Google Scholar 

  140. Kuhn A, Beissert S (2005) Photosensitivity in lupus erythematosus. Autoimmun 38:519–529

    CAS  Google Scholar 

  141. Miyara M, Amoura Z, Parizot C et al (2005) Global natural regulatory T cell depletion in active systemic lupus erythematosus. J Immunol 175:8392–8400

    PubMed  CAS  Google Scholar 

  142. Hart PH, Townley SL, Grimbaldeston MA, Khalil Z, Finlay-Jones JJ (2002) Mast cells, neuropeptides, histamine, and prostaglandins in UV-induced systemic immunosuppression. Methods 28:79–89

    PubMed  CAS  Google Scholar 

  143. Zhang Y, Ramos BF, Jakschik BA (1991) Augmentation of reverse arthus reaction by mast cells in mice. J Clin Invest 88:841–846

    PubMed  CAS  Google Scholar 

  144. Danilewicz M, Wagrrowska-Danilewicz M (2001) Quantitative analysis of interstitial mast cells in lupus and non-lupus membranous glomerulopathy. Pol J Pathol 52:211–217

    PubMed  CAS  Google Scholar 

  145. Eklund KK (2007) Mast cells in the pathogenesis of rheumatic diseases and as potential targets for anti-rheumatic therapy. Immunol Rev 217:38–52

    PubMed  CAS  Google Scholar 

  146. Woolley DE, Tetlow LC (2000) Mast cell activation and its relation to proinflammatory cytokine production in the rheumatoid lesion. Arthritis Res 2:65–74

    PubMed  CAS  Google Scholar 

  147. Shin K, Nigrovic PA, Crish J, Boilard E, McNeil HP, Larabee KS, Adachi R, Gurish MF, Gobezie R, Stevens RL, Lee DM (2009) Mast cells contribute to autoimmune inflammatory arthritis via their tryptase/heparin complexes. J Immunol 182:647–656

    PubMed  CAS  Google Scholar 

  148. Bonventre JV (1992) Phospholipase A2 and signal transduction. J Am Soc Nephrol 3:128–150

    PubMed  CAS  Google Scholar 

  149. Levy BD, Clish CB, Schmidt B, Gronert K, Serhan CN (2001) Lipid mediator class switching during acute inflammation: signals in resolution. Nat Immunol 2:612–619

    PubMed  CAS  Google Scholar 

  150. Godson C, Mitchell S, Harvey K, Petasis NA, Hogg N, Brady HR (2000) Cutting edge: lipoxins rapidly stimulate nonphlogistic phagocytosis of apoptotic neutrophils by monocyte-derived macrophages. J Immunol 164:1663–1667

    PubMed  CAS  Google Scholar 

  151. Gilroy DW Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5:698–701

    PubMed  CAS  Google Scholar 

  152. Gilroy DW, Newson J, Sawmynaden P, Willoughby DA, Croxtall JD (2004) A novel role for phospholipase A2 isoforms in the checkpoint control of acute inflammation. FASEB J 18:489–498

    PubMed  CAS  Google Scholar 

  153. Serhan CN, Hong S, Gronert K, Colgan SP, Devchand PR, Mirick G, Moussignac R-L (2002) Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J Exp Med 196:1025–1037

    PubMed  CAS  Google Scholar 

  154. Croxtall JD, Choudhury Q, Tokumoto H, Flower RJ (1995) Lipocortin-1 and the control of arachidonic acid release in cell signalling. Glucocorticoids inhibit G protein-dependent activation of cPLA2 activity. Biochem Pharmacol 50:465–474

    PubMed  CAS  Google Scholar 

  155. Nakano T, Ohara O, Teraoka H, Arira H (1990) Glucocorticoids suppress group II phospholipase A2 production by blocking mRNA synthesis and post-transcriptional expression. J Biol Chem 205:12745–12748

    Google Scholar 

  156. Cominelli F, Nast CC, Llerena R, Dinarello CA, Zipser RD (1990) Interleukin 1 suppresses inflammation in rabbit colitis. Mediation by endogenous prostaglandins. J Clin Invest 85:582–586

    PubMed  CAS  Google Scholar 

  157. Schwab JH, Anderle SK, Brown RR, Dalldorf FG, Thompson RC (1991) Pro- and anti-inflammatory roles of interleukin-1 in recurrence of bacterial cell wall-induced arthritis in rats. Infect Immun 59:4436–4442

    PubMed  CAS  Google Scholar 

  158. Ichinose M, Hara N, Sawada M, Maeno T (1991) A flow cytometric assay reveals an enhancement of phagocytosis by platelet activating factor in murine peritoneal macrophages. Cell Immunol 156:508–518

    Google Scholar 

  159. Takano T, Panesar M, Papillon J, Cybulsky AV (2000) Cyclooxygenases-1 and 2 couple to cytosolic but not group IIA phospholipase A2 in COS-1 cells. Prostaglandins Other Lipid Mediat 60:15–26

    PubMed  CAS  Google Scholar 

  160. Reddy ST, Herschman HR (1997) Prostaglandin synthase-1 and prostaglandin synthase-2 are coupled to distinct phospholipases for the generation of prostaglandin D2 in activated mast cells. J Biol Chem 272:3231–3237

    PubMed  CAS  Google Scholar 

  161. Munck A, Guyre PM, Holbrook NJ (1984) Physiological function of glucocorticoids in stress and their relation to pharmacological actions. Endocr Rev 5:25–44

    PubMed  CAS  Google Scholar 

  162. Walev I, Klein J, Husmann M, Valeva A, Strauch S, Wirtz H, Weichel O, Bhakdi S (2000) Potassium regulates IL-1 beta processing via calcium-independent phospholipase A2. J Immunol 164:5120–5124

    PubMed  CAS  Google Scholar 

  163. Serhan CN, Clish CB, Brannon J, Colgan SP, Chiang N, Gronert K (2000) Novel functional sets of lipid-derived mediators with antiinflammatory actions generated from omega-3 fatty acids via cyclooxygenase 2-nonsteroidal antiinflammatory drugs and transcellular processing. J Exp Med 192:1197–1204

    PubMed  CAS  Google Scholar 

  164. Wu C-C, Croxtall JD, Perretti M, Bryant CE, Thiemermann C, Flower RJ, Vane JR (1995) Lipocortin 1 mediates the inhibition by dexamethasone of the induction by endotoxin of nitric oxide synthase in the rat. Proc Natl Acad Sci U S A 92:3473–3477

    PubMed  CAS  Google Scholar 

  165. Lasa M, Abraham SM, Boucheron C, Saklatvala J, Clark AR (2002) Dexamethasone causes sustained expression of mitogen-activated protein kinase (MAPK) phosphatase 1 and phosphatase-mediated inhibition of MAPK p38. Mol Cell Biol 22:7802–7811

    PubMed  CAS  Google Scholar 

  166. Crafford LJ, Wilder RL, Ristimaki AP, Sano M, Remmers EF, Epps HR, Hla T (1994) Cyclooxygenase-1 and –2 expression in rheumatoid arthritis synovial tissues. J Clin Invest 93:109–1101

    Google Scholar 

  167. Radomski MW, Palmer RMJ, Moncada S (1990) Glucocorticoids inhibit the expression of an inducible, but not the constitutive, nitric oxide synthase in vascular endothelial cells. Proc Natl Acad Sci U S A 87:10043–10047

    PubMed  CAS  Google Scholar 

  168. Hoeck WG, Ramesha CS, Chang DJ, Fan N, Heller RA (1993) Cytoplasmic phospholipase A2 activity and gene expression are stimulated by tumor necrosis factor: dexamethasone blocks the inducible synthesis. Proc Natl Acad Sci U S A 90:4475–4479

    PubMed  CAS  Google Scholar 

  169. Kunicka JE, Talle MA, Denhardt GH, Brown M, Prince LA, Goldstein G (1993) Immunosuppression by glucocorticoids: inhibition of production of multiple lymphokines by in vivo administration of dexamethasone. Cell Immunol 149:39–49

    PubMed  CAS  Google Scholar 

  170. Calandra T, Bernhagen J, Metz CN, Spiegel LA, Bacher M, Donnelly T, Cerami A, Bucala R (1995) MIF as a glucocorticoid-induced modulator of cytokine production. Nature 377:68–71

    PubMed  CAS  Google Scholar 

  171. Salvemini D, Seibert K, Masferrer JL, Misko TP, Currie MG, Needleman P (1994) Endogenous nitric oxide enhances prostaglandin production in a model of renal inflammation. J Clin Invest 93:1940–1947

    PubMed  CAS  Google Scholar 

  172. Zaitsu M, Hamasaki Y, Tsuji K, Matsuo M, Fujita I, Aoki Y, Ishii E, Kohashi O (2003) Dexamethasone accelerates catabolism of leukotriene C4 in bronchial epithelial cells. Eur Respir J 22:35–42

    PubMed  CAS  Google Scholar 

  173. Dworski R, Fitzgerald GA, Oates JA, Sheller JR (1994) Effect of oral prednisone on airway inflammatory mediators in atopic asthma. Am J Respir Crit Care Med 149(4 Pt 1):953–959

    PubMed  CAS  Google Scholar 

  174. Ferrante JV, Ferrante A (2005) Novel role of lipoxygenases in the inflammatory response: promotion of TNF mRNA decay by 15-hydroperoxyeicosatetraenoic acid in a monocytic cell line. J Immunol 174:3169–3172

    PubMed  CAS  Google Scholar 

  175. Ariel A, Chiang N, Arita M, Petasis NA, Serhan CN (2003) Aspirin-triggered lipoxin A4 and B4 analogs block extracellular signal-regulated kinase-dependent TNF-alpha secretion from human T cells. J Immunol 170:6266–6272

    PubMed  CAS  Google Scholar 

  176. Wu SH, Lu C, Dong L, Zhou GP, He ZG, Chen ZQ (2005) Lipoxin A4 inhibits TNF-alpha-induced production of interleukins and proliferation of rat mesangial cells. Kidney Int 68:35–46

    PubMed  CAS  Google Scholar 

  177. Hayakawa M, Ishida N, Takeuchi K, Shibamoto S, Hori T, Oku N, Ito F, Tsujimoto M (1993) Arachidonic acid-selective cytosolic phospholipase A2 is crucial in the cytotoxic action of tumor necrosis factor. J Biol Chem 268:11290–11295

    PubMed  CAS  Google Scholar 

  178. Das UN (2002) A perinatal strategy for preventing adult disease: the role of long-chain polyunsaturated fatty acids. Kluwer Academic, Boston, MA

    Google Scholar 

  179. Huang YS, Drummond R, Horrobin DF (1987) Protective effect of gamma-linolenic acid on aspirin induced gastric hemorrhage in rats. Digestion 36:36–41

    PubMed  CAS  Google Scholar 

  180. Manjari V, Das UN (2000) Effect of polyunsaturated fatty acids on dexamethasone-induced gastric mucosal damage. Prostaglandins Leukot Essent Fatty Acids 62:85–96

    PubMed  CAS  Google Scholar 

  181. Das UN (2008) Essential fatty acids and their metabolites could function as endogenous HMG-CoA reductase and ACE enzyme inhibitors, anti-arrhythmic, anti-hypertensive, anti-atherosclerotic, anti-inflammatory, cytoprotective, and cardioprotective molecules. Lipids Health Dis 7:37

    PubMed  Google Scholar 

  182. Das UN (2008) Can essential fatty acids reduce the burden of disease(s)? Lipids Health Dis 7:9

    PubMed  Google Scholar 

  183. Das UN (2006) Essential fatty acids – a review. Curr Pharm Biotechnol 7:467–482

    PubMed  CAS  Google Scholar 

  184. Mohan IK, Das UN (2001) Prevention of chemically induced diabetes mellitus in experimental animals by polyunsaturated fatty acids. Nutrition 17:126–151

    Google Scholar 

  185. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-6 fatty acids. Nutrition 19:93–114

    PubMed  CAS  Google Scholar 

  186. Suresh Y, Das UN (2003) Long-chain polyunsaturated fatty acids and chemically-induced diabetes mellitus: effect of ω-3 fatty acids. Nutrition 19:213–228

    PubMed  CAS  Google Scholar 

  187. Suresh Y, Das UN (2006) Differential effect of saturated, monounsaturated, and polyunsaturated fatty acids on alloxan-induced diabetes mellitus. Prostaglandins Leukot Essent Fatty Acids 74:199–213

    PubMed  CAS  Google Scholar 

  188. Das UN, Mohan IK, Raju TR (2001) Effect of corticosteroids and eicosapentaenoic acid/docosahexaenoic acid on pro-oxidant and anti-oxidant status and metabolism of essential fatty acids in patients with glomerular disorders. Prostaglandins Leukot Essent Fatty Acids 65:197–203

    PubMed  CAS  Google Scholar 

  189. Das UN (2006) Essential fatty acids: biochemistry, physiology, and pathology. Biotechnology J 1:420–439

    CAS  Google Scholar 

  190. Kambe T, Murakami M, Kudo I (1999) Polyunsaturated fatty acids potentiate interleukin-1-stimulated arachidonic acid release by cells overexpressing type IIA secretory phospholipase A2. FEBS Lett 453:81–84

    PubMed  CAS  Google Scholar 

  191. Das UN (2006) Can perinatal supplementation of long-chain polyunsaturated fatty acids prevent atopy, bronchial asthma and other inflammatory conditions? Med Sci Monit 12:RA99–RA111

    PubMed  CAS  Google Scholar 

  192. Belmont HM, Levartovsky D, Goel A, Amin A, Giorno R, Rediske J, Skovron ML, Abramson SB (1997) Increased nitric oxide production accompanied by the up-regulation of inducible nitric oxide synthase in vascular endothelium from patients with systemic lupus erythematosus. Arthritis Rheum 40:1810–1816

    PubMed  CAS  Google Scholar 

  193. Wanchu A, Khuller M, Deodhar SD, Bambery P, Sud A (1998) Nitric oxide synthesis is increased in patients with systemic lupus erythematosus. Rheumatol Int 18:41–43

    PubMed  CAS  Google Scholar 

  194. Oates JC, Christensen EF, Reilly CM, Self SE, Gilkenson GS (1999) Prospective measure of serum 3-nitrotyrosine levels in systemic lupus erythematosus: correlation with disease activity. Proc Assoc Am Physicians 111:611–621

    PubMed  CAS  Google Scholar 

  195. Svollenhoven R, Khademi M, Tarkowski A, Greitz D, Dahlstrom M, Lundberg I, Klareskog L, Olsson T (2001) Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann Rheum Dis 60:372–379

    Google Scholar 

  196. Gilkeson G, Cannon C, Oates J, Reilly C, Goldman D, Petri M (1999) Correlation of serum measures of nitric oxide production with lupus disease activity. J Rheumatol 26:318–324

    PubMed  CAS  Google Scholar 

  197. Yu CC, Yang CW, Wu MS, Ko YC, Huang CT, Hong JJ, Huang CC (2001) Mycophenolate mofetil reduces renal cortical inducible nitric oxide synthase mRNA expression and diminishes glomerulosclerosis in MRL/lpr mice. J Lab Clin Med 138:69–77

    PubMed  Google Scholar 

  198. Reilly CM, Oates JC, Sudian J, Crosby MB, Halushka PV, Gilkeson GS (2001) Prostaglandin J(2) inhibition of mesangial cell iNOS expression. Clin Immunol 98:337–345

    PubMed  CAS  Google Scholar 

  199. Habib S, Moinuddin, Ali R (2006) Peroxynitrite-modified DNA: a better antigen for systemic lupus erythematosus anti-DNA autoantibodies. Biotechnol Appl Biochem 43(Pt 2):65–70

    PubMed  CAS  Google Scholar 

  200. Robak E, Sysa-Jeorzejewska A, Dziankowska B, Torzecka D, Chojnowski K, Robak T (1998) Association of interferon gamma, tumor necrosis factor alpha and interleukin-6 serum levels with systemic lupus erythematosus activity. Arch Immunol Ther Exp (Warsz) 46:375–380

    CAS  Google Scholar 

  201. Yoshizumi M, Kunihara H, Morita T et al (1990) Interleukin-1 increases the production of endothelin-1 by cultured endothelial cells. Biochem Biophys Res Commun 166:324–329

    PubMed  CAS  Google Scholar 

  202. Das UN (1993) Beneficial effect of L-arginine in collagen vascular diseases: a role for nitric oxide. Nutrition 9:277–278

    PubMed  CAS  Google Scholar 

  203. Fries R, Shariat K, von Wilmowsky H, Böhm M (2005) Sildenafil in the treatment of Raynaud’s phenomenon resistant to vasodilatory therapy. Circulation 112:2980–2985

    PubMed  CAS  Google Scholar 

  204. Mahler F, Baumgartner I (2005) More potential for sildenafil than potency. Circulation 112:2894–2895

    PubMed  Google Scholar 

  205. Tsoukas CD, Watry D, Escobar SS, Provvedini DM, Dinarello CA, Hustmyer FG, Manolagas SC (1989) Inhibition of interleukin-1 production by 1,25-dihydroxyvitamin D3. J Clin Endocrinol Metab 127–133

    Google Scholar 

  206. Lemire JM, Adams JS, Kermani-Arab V, Bakke AC, Sakai R, Jordan SC (1985) 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro. J Immunol 134:3032–3035

    PubMed  CAS  Google Scholar 

  207. Haq AU (1986) 1,25-Dihydroxyvitamin D3 (calcitriol) suppresses IL-2 induced murine thymocyte proliferation. Thymus 8:295–306

    PubMed  CAS  Google Scholar 

  208. Merino F, Alvarez-Mon M, de la Hera A, Alés JE, Bonilla F, Durantez A (1989) Regulation of natural killer cytotoxicity by 1,25-dihydroxyvitamin D3. Cell Immunol 118:328–336

    PubMed  CAS  Google Scholar 

  209. Pichler J, Gerstmayr M, Szépfalusi Z, Urbanek R, Peterlik M, Willheim M (2002) 1 alpha,25(OH)2D3 inhibits not only Th1 but also Th2 differentiation in human cord blood T cells. Pediatr Res 52:12–18

    PubMed  CAS  Google Scholar 

  210. Tang J, Zhou R, Luger D, Zhu W, Silver PB, Grajewski RS, Su SB, Chan CC, Adorini L, Caspi RR (2009) Calcitriol suppresses antiretinal autoimmunity through inhibitory effects on the Th17 effector response. J Immunol 182:4624–4632

    PubMed  CAS  Google Scholar 

  211. Huang LW, Chang KL, Chen CJ, Liu HW (2001) Arginase levels are increased in patients with rheumatoid arthritis. Kaohsiung J Med Sci 17:358–363

    PubMed  CAS  Google Scholar 

  212. Bultink IE, Teerlink T, Heijst JA, Dijkmans BA, Voskuyl AE (2005) Raised plasma levels of asymmetric dimethylarginine are associated with cardiovascular events, disease activity, and organ damage in patients with systemic lupus erythematosus. Ann Rheum Dis 64:1362–1365

    PubMed  CAS  Google Scholar 

  213. Kiani AN, Mahoney JA, Petri M (2007) Asymmetric dimethylarginine is a marker of poor prognosis and coronary calcium in systemic lupus erythematosus. J Rheumatol 34:1502–1505

    PubMed  CAS  Google Scholar 

  214. Maas R, Dentz L, Schwedhelm E, Thoms W, Kuss O, Hiltmeyer N, Haddad M, Klöss T, Standl T, Böger RH (2007) Elevated plasma concentrations of the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine predict adverse events in patients undergoing noncardiac surgery. Crit Care Med 35:1876–1881

    PubMed  CAS  Google Scholar 

  215. Svenungsson E, Cederholm A, Jensen-Urstad K, Fei GZ, de Faire U, Frostegård J (2008) Endothelial function and markers of endothelial activation in relation to cardiovascular disease in systemic lupus erythematosus. Scand J Rheumatol 37:352–359

    PubMed  CAS  Google Scholar 

  216. Gustafsson J, Gunnarsson I, Börjesson O, Pettersson S, Möller S, Fei GZ, Elvin K, Simard JF, Hansson LO, Lundberg IE, Larsson A, Svenungsson E (2009) Predictors of the first cardiovascular event in patients with systemic lupus erythematosus-a prospective cohort study. Arthritis Res Ther 11:R186

    PubMed  Google Scholar 

  217. Das UN (2008) Albumin infusion therapy in stroke, sepsis and the critically ill. Curr Nutr Food Sci 4:217–226

    CAS  Google Scholar 

  218. Das UN (2006) Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit 12:RA79–RA84

    PubMed  CAS  Google Scholar 

  219. Das UN (2006) Is pyruvate an endogenous anti-inflammatory molecule? Nutrition 22:965–972

    PubMed  CAS  Google Scholar 

  220. Das UN (2007) Ethyl pyruvate in sepsis. Adv Sepsis 6:10–15

    CAS  Google Scholar 

  221. Das UN (2006) Glucose, insulin, and coronary heart disease. Eur Heart J 27:2141–2142

    PubMed  Google Scholar 

  222. Das UN (2000) Possible beneficial action(s) of glucose-insulin-potassium regimen in acute myocardial infarction and inflammatory conditions: a hypothesis. Diabetologia 43:1081–1082

    PubMed  CAS  Google Scholar 

  223. Das UN (2001) Can glucose-insulin-potassium regimen suppress inflammatory bowel disease? Med Hypotheses 57:183–185

    PubMed  CAS  Google Scholar 

  224. Das UN (2001) Hypothesis: can glucose-insulin-potassium regimen in combination with polyunsaturated fatty acids suppress lupus and other inflammatory diseases? Prostaglandins Leukot Essent Fatty Acids 65:109–113

    PubMed  CAS  Google Scholar 

  225. Das UN (2010) Metabolic syndrome is a low-grade systemic inflammatory condition. Expert Rev Endocrinol Metab 4:577–592

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Das, U.N. (2011). Rheumatological Conditions. In: Molecular Basis of Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0495-4_13

Download citation

Publish with us

Policies and ethics