Skip to main content

Alzheimer’s Disease, Schizophrenia and Depression

  • Chapter
  • First Online:
Molecular Basis of Health and Disease

Abstract

Alzheimer’s disease (AD), the most common form of dementia, is named after German physician Alois Alzheimer, who first described it in 1906. AD is a progressive neurodegenerative disorder characterized by amyloid plaques composed of aggregated amyloid beta plaques, neurofibrillary tangles (NFT) that are composed of hyperphosphorylated tau and synaptic defects resulting in neuritic dystrophy and neuronal death [1]. It is now believed that AD is the most common form of dementia in the ageing population especially in the USA. AD produces loss of memory and problems with thinking and behavior severe enough to affect work, lifelong hobbies or social life. Alzheimer’s gets worse over time, and it is fatal. Today it is the seventh-leading cause of death in the United States. The severity of AD may be significant enough to eventually interfere with daily life and thus, these patients may need constant family support to survive. It is estimated that about 5.3 million Americans now have Alzheimer’s disease. It is important to note, however, that AD is not a normal part of aging. The duration of Alzheimer’s disease can vary from 3 to 20 years, but many die an average of 4–6 years after diagnosis. The disease initially presents with mild cognitive impairment such as memory lapses, especially in forgetting familiar words or names or the location of keys, eyeglasses or other everyday objects. As the disease progresses, they are unable to recognize and remember spouse and children, do not respond to the environment, and ultimately lose ability to speak and control movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Referencess

  1. Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    PubMed  CAS  Google Scholar 

  2. Rosenberg PB (2005) Clinical aspects of inflammation in Alzheimer’s disease. Int Rev Psychiatry 17:503–514

    PubMed  Google Scholar 

  3. McGeer PL, McGeer EG (2002) Local neuroinflammation and the progression of Alzheimer’s disease. J Neurovirol 8:529–538

    PubMed  CAS  Google Scholar 

  4. Mrak RE, Griffin WST (2005) Glia and their cytokines in progression of neurodegeneration. Neurobiol Aging 26:349–354

    PubMed  CAS  Google Scholar 

  5. Chao CC, Hu S, Ehrlich L, Peterson PK (1995) Interleukin-1 and tumor necrosis factor-alpha synergistically mediate neurotoxicity: involvement of nitric oxide and of N-methyl-D-aspartate receptors. Brain Behav Immun 9:355–365

    PubMed  CAS  Google Scholar 

  6. Bellinger FP, Madamba SG, Campbell IL, Siggins GR (1995) Reduced long-term potentiation in the dentate gyrus of transgenic mice with cerebral overexpression of interleukin-6. Neurosci Lett 198:95–98

    PubMed  CAS  Google Scholar 

  7. Tancredi V, D’Arcangelo G, Grassi F et al (1992) Tumor necrosis factor alters synaptic transmission in rat hippocampal slices. Neurosci Lett 146:176–178

    PubMed  CAS  Google Scholar 

  8. Vallieres L, Campbell IL, Gage FH et al (2002) Reduced hippocampal neurogenesis in adult transgenic mice with chronic astrocytic production of interleukin-6. J Neurosci 22:486–492

    PubMed  CAS  Google Scholar 

  9. Tarkowski E, Andreasen N, Tarkowski A et al (2003) Intrathecal inflammation precedes development of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 74:1200–1205

    PubMed  CAS  Google Scholar 

  10. Alvarez A, Cacabelos R, Sanpedro C, Garcia-Fantini M, Aleixandre M (2007) Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging 28:533–536

    PubMed  CAS  Google Scholar 

  11. Zuliani G, Ranzini M, Guerra G et al (2007) Plasma cytokines profile in older subjects with late onset Alzheimer’s disease or vascular dementia. J Psychiatr Res 22:305–311

    CAS  Google Scholar 

  12. Lio D, Annoni G, Licastro F, Crivello A, Forte GI, Scola L, Colonna-Romano G, Candore G, Arosio B, Galimberti L, Vergani C, Caruso C (2006) Tumor necrosis factor-alpha-308A/G polymorphism is associated with age at onset of Alzheimer’s disease. Mech Ageing Dev 127:567–571

    PubMed  CAS  Google Scholar 

  13. Poierier J, Minnich A, Davignon J (1995) Apolipoprotein E, synaptic plasticity and Alzheimer’s disease. Ann Med 27:663–670

    Google Scholar 

  14. Blacker D, Wilcox MA, Laird NM, Rodes L, Horvath SM, Go RC, Perry R, Watson B, Bassett SS, McInnis MG, Albert MS, Hyman BT, Tanzi RE (1998) Alpha-2 macroglobulin is genetically associated with Alzheimer disease. Nat Genet 19:357–360

    PubMed  CAS  Google Scholar 

  15. Sridhar GR, Thota H, Allam AA, Babu CS, Prasad AS, Divakar Ch (2006) Alzheimer’s disease and type 2 diabetes mellitus: the cholinesterase connection? Lipids Health Dis 5:28

    PubMed  Google Scholar 

  16. Law A, Gauthier S, Quirion R (2001) Say NO to Alzheimer’s disease: the putative links between nitric oxide and dementia of the Alzheimer’s type. Brain Res Brain Res Rev 35:73–96

    PubMed  CAS  Google Scholar 

  17. Iqbal K, Grundke-Iqbal I (2005) Metabolic/signal transduction hypothesis of Alzheimer’s disease and other tauopathies. Acta Neuropathol (Berl) 109:25–31

    CAS  Google Scholar 

  18. Wang R, Wang B, He W, Zheng H (2006) Wild-type presenilin 1 protects against Alzheimer disease mutation-induced amyloid pathology. J Biol Chem 281:15330–15336

    PubMed  CAS  Google Scholar 

  19. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(6738 Suppl):A23–A31

    PubMed  CAS  Google Scholar 

  20. Rojo L, Sjoberg MK, Hernandez P, Zambrano C, Maccioni RB (2006) Roles of cholesterol and lipids in the etiopathogenesis of Alzheimer’s disease. J Biomed Biotechnol 2006:73976

    Google Scholar 

  21. Edland SD (2004) Insulin-degrading enzyme, apolipoprotein E, and Alzheimer’s disease. J Mol Neurosci 23:213–217

    PubMed  CAS  Google Scholar 

  22. Avila J, Lucas JJ, Perez M, Hernandez F (2004) Role of tau protein in both physiological and pathological conditions. Physiol Rev 84:361–384

    PubMed  CAS  Google Scholar 

  23. Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW (2000) A beta peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 408:982–985

    PubMed  CAS  Google Scholar 

  24. Mattson MP, Lovell MA, Furukawa K, Markesbery WR (1995) Neurotrophic factors attenuate glutamate-induced accumulation of peroxides, elevation of intracellular calcium concentration and neurotoxicity and increase antioxidant enzyme activities in hippocampal neurons. J Neurochem 65:1740–1751

    PubMed  CAS  Google Scholar 

  25. Koppaka V, Axelsen PH (2000) Accelerated accumulation of amyloid beta proteins on oxidatively damaged lipid membranes. Biochemistry 39:10011–10016

    PubMed  CAS  Google Scholar 

  26. Toda T, Nakamura M, Morisawa H, Hirota M, Nishigaki R, Yoshimi Y (2010) Proteomic approaches to oxidative protein modifications implicated in the mechanism of aging. Geriatr Gerontol Int 10(Suppl 1):S25–S31

    PubMed  Google Scholar 

  27. Massaad CA, Amin SK, Hu L, Mei Y, Klann E, Pautler RG (2010) Mitochondrial superoxide contributes to blood flow and axonal transport deficits in the Tg2576 mouse model of Alzheimer’s disease. PLoS One 5:e10561

    PubMed  Google Scholar 

  28. Gupta A, Pansari K (2003) Inflammation and Alzheimer’s disease. Int J Clin Pract 57:36–39

    PubMed  CAS  Google Scholar 

  29. Sutton ET, Thomas T, Bryant MW, Landon CS, Newton CA, Rhodin JA (1999) Amyloid-beta peptide induced inflammatory reaction is mediated by the cytokines tumor necrosis factor and interleukin-1. J Submicrosc Cytol Pathol 31:313–323

    PubMed  CAS  Google Scholar 

  30. Lombardi VR, García M, Rey L, Cacabelos R (1999) Characterization of cytokine production, screening of lymphocyte subset patterns and in vitro apoptosis in healthy and Alzheimer’s Disease (AD) individuals. J Neuroimmunol 97:163–171

    PubMed  CAS  Google Scholar 

  31. Dumery L, Bourdel F, Soussan Y, Fialkowsky A, Viale S, Nicolas P, Reboud-Ravaux M (2001) Beta-Amyloid protein aggregation: its implication in the physiopathology of Alzheimer’s disease. Pathol Biol (Paris) 49:72–85

    CAS  Google Scholar 

  32. Calingasan NY, Erdely HA, Altar AC (2002) Identification of CD40 ligand in Alzheimer’s disease and in animal models of Alzheimer’s disease and brain injury. Neurobiol Aging 23:31–39

    PubMed  CAS  Google Scholar 

  33. McDonald DR, Bamberger ME, Combs CK, Landreth GE (1998) Beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci 18:4451–4460

    PubMed  CAS  Google Scholar 

  34. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel H, Murphy GM, Brachova L, Yan SD, Walker DG, Shen Y, Rogers J (2001) Inflammatory repertoire of Alzheimer’s disease and nondemented elderly microglia in vitro. Glia 35:72–79

    PubMed  CAS  Google Scholar 

  35. Lorton D, Kocsis JM, King L, Madden K, Brunden KR (1996) beta-Amyloid induces increased release of interleukin-1 beta from lipopolysaccharide-activated human monocytes. J Neuroimmunol 67:21–29

    PubMed  CAS  Google Scholar 

  36. Szczepanik AM, Funes S, Petko W, Ringheim GE (2001) IL-4, IL-10 and IL-13 modulate A beta(1–42)-induced cytokine and chemokine production in primary murine microglia and a human monocyte cell line. J Neuroimmunol 113:49–62

    PubMed  CAS  Google Scholar 

  37. Patel NS, Paris D, Mathura V, Quadros AN, Crawford FC, Mullan MJ (2005) Inflammatory cytokine levels correlate with amyloid load in transgenic mouse models of Alzheimer’s disease. J Neuroinflammation 2:9

    PubMed  Google Scholar 

  38. Rainero I, Bo M, Ferrero M, Valfre W, Vaula G, Pinessi L (2004) Association between the interleukin-1alpha gene and Alzheimer’s disease: a meta-analysis. Neurobiol Aging 25:1293–1298

    PubMed  CAS  Google Scholar 

  39. Grammas P, Ovase R (2001) Inflammatory factors are elevated in brain microvessels in Alzheimer’s disease. Neurobiol Aging 22:837–842

    PubMed  CAS  Google Scholar 

  40. Remarque EJ, Weverling-Rijnsburger AW, Laterveer JC, Blauw GJ, Westendorp RG (2001) Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Exp Gerontol 36:171–176

    PubMed  CAS  Google Scholar 

  41. Luterman JD, Haroutunian V, Yemul S, Ho L, Purohit D, Aisen PS, Mohs R, Pasinetti GM (2000) Cytokine gene expression as a function of the clinical progression of Alzheimer disease dementia. Arch Neurol 57:1153–1160

    PubMed  CAS  Google Scholar 

  42. Akama KT, Van Eldik LJ (2000) Beta-amyloid stimulation of inducible nitric-oxide synthase in astrocytes is interleukin-1beta- and tumor necrosis factor-alpha (TNFalpha)-dependent, and involves a TNFalpha receptor-associated factor- and NFkappaB-inducing kinase-dependent signaling mechanism. J Biol Chem 275:7918–7924

    PubMed  CAS  Google Scholar 

  43. Licastro F, Pedrini S, Caputo L, Annoni G, Davis LJ, Ferri C, Casadei V, Gimaldi LM (2000) Increased plasma levels of interleukin-1, interleukin-6 and alpha-1-antichymotrypsin in patients with Alzheimer’s disease: peripheral inflammation or signals from the brain? J Neuroimmunol 103:97–102

    PubMed  CAS  Google Scholar 

  44. Rosenberg PB (2006) Cytokine inhibition for treatment of Alzheimer’s disease. MedGenMed 8:24

    PubMed  Google Scholar 

  45. Nizri E, Hamra-Amitay Y, Sicsic C, Lavon I, Brenner T (2006) Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50:540–547

    PubMed  CAS  Google Scholar 

  46. Tabet N (2006) Acetylcholinesterase inhibitors for Alzheimer’s disease: anti-inflammatories in acetylcholine clothing! Age Ageing 35:336–338

    PubMed  CAS  Google Scholar 

  47. Cummings JL, Kaufer D (1996) Neuropsychiatric aspects of Alzheimer’s disease: the cholinergic hypothesis revisited. Neurology 47:876–883

    PubMed  CAS  Google Scholar 

  48. Giacobini E (2004) Cholinesterase inhibitors: new roles and therapeutic alternatives. Pharmacol Res 50:433–440

    PubMed  CAS  Google Scholar 

  49. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    PubMed  CAS  Google Scholar 

  50. Cacabelos R, Barquero M, Garcia P, Alvaez XA, Varela de Seijas E (1991) Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer’s disease and neurological disorders. Methods Find Exp Clin Pharmacol 13:455–458

    PubMed  CAS  Google Scholar 

  51. Fillit H, Ding WH, Buee L, Kalman J, Altstiel L, Lawlor B, Wolf-Klein G (1991) Elevated circulating tumor necrosis factor levels in Alzheimer’s disease. Neurosci Lett 129:318–320

    PubMed  CAS  Google Scholar 

  52. Donnelly RJ, Friedhoff AJ, Beer B, Blume AJ, Vitek MP (1990) Interleukin-1 stimulates the beta-amyloid precursor protein promoter. Cell Mol Neurobiol 10:485–495

    PubMed  CAS  Google Scholar 

  53. Tobinick E, Gross H, Weinberger A, Cohen H (2006) TNF-alpha modulation for treatment of Alzheimer’s disease: a 6-month pilot study. MedGenMed 8:25

    PubMed  Google Scholar 

  54. Berzaghi MP, Cooper J, Castren E, Zafra F, Sofroniew M, Thoenen H, Lindholm D (1993) Cholinergic regulation of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) but not neurotrophin-3 (NT-3) mRNA levels in the developing rat hippocampus. J Neurosci 13:3818–3826

    CAS  Google Scholar 

  55. Phillips HS, Hains JM, Armanini M, Laramee GR, Johnson SA, Winslow JW (1991) BDNF mRNA is decreased in the hippocampus of individuals with Alzheimer’s disease. Neuron 7:695–702

    PubMed  CAS  Google Scholar 

  56. Connor B, Young D, Yan Q, Faull RL, Synek B, Dragunow M (1997) Brain-derived neurotrophic factor is reduced in Alzheimer’s disease. Brain Res Mol Brain Res 49:71–81

    PubMed  CAS  Google Scholar 

  57. Soontornniyomkii V, Wang G, Pittman CA, Hamilton RL, Wiley CA, Achim CL (1999) Absence of brain-derived neurotrophic factor and trkB receptor immunoreactivity in glia of Alzheimer’s disease. Acta Neuropathol 98:345–348

    Google Scholar 

  58. Lapchak PA, Araujo DM, Hefti F (1993) Systemic interleukin-1 beta decreases brain-derived neurotrophic factor messenger RNA expression in the rat hippocampal formation. Neuroscience 53:297–301

    PubMed  CAS  Google Scholar 

  59. Tong L, Balazs R, Soiampornkul R, Thangnipon W, Cotman CW (2008) Interleukin-1 beta impairs brain derived neurotrophic factor-induced signal transduction. Neurobiol Aging 29:1380–1393

    PubMed  CAS  Google Scholar 

  60. Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacology 21:679–682

    PubMed  CAS  Google Scholar 

  61. Seifert T, Brassard P, Wissenberg M, Rasmussen P, Nordby P, Stallknecht B, Adser H, Jakobsen AH, Pilegaard H, Nielsen HB, Secher NH (2010) Endurance training enhances BDNF release from the human brain. Am J Physiol Regul Integr Comp Physiol 298:R372–R377

    PubMed  CAS  Google Scholar 

  62. Griffin EW, Bechara RG, Birch AM, Kelly AM (2009) Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19:973–980

    PubMed  CAS  Google Scholar 

  63. Gustad J, Benitez A, Smith J, Glickman E, Spitznagel MB, Alexander T, Juvancic-Heltzel J, Murray L (2008) Serum brain-derived neurotrophic factor is associated with cognitive function in healthy older adults. J Geriatr Psychiatry Neurol 21:166–170

    Google Scholar 

  64. Nagahara AH, Merrill DA, Coppola G, Tsukada S, Schroeder BE, Shaked GM, Wang L, Blesch A, Kim A, Conner JM, Rockenstein E, Chao MV, Koo EH, Geschwind D, Masliah E, Chiba AA, Tuszynski MH (2009) Neuroprotective effects of brain-derived neurotrophic factor in rodent and primate models of Alzheimer’s disease. Nat Med 15:331–337

    PubMed  CAS  Google Scholar 

  65. Lindsay RM (1994) Neurotrophic growth factors and neurodegenerative diseases: therapeutic potential of the neurotrophins and ciliary neurotrophic factor. Neurobiol Aging 15:249–251

    PubMed  CAS  Google Scholar 

  66. Knusel B, Gao H (1996) Neurotrophins and Alzheimer’s disease: beyond the cholinergic neurons. Life Sci 58:2019–2027

    PubMed  CAS  Google Scholar 

  67. Yeh HL, Tsai SJ (2008) Lithium may be useful in the prevention of Alzheimer’s disease in individuals at risk of presenile familial Alzheimer’s disease. Med Hypotheses 71:948–951

    PubMed  CAS  Google Scholar 

  68. Leyhe T, Eschweiler GW, Stransky E, Gasser T, Annas P, Basun H, Laske C (2009) Increase of BDNF serum concentration in lithium treated patients with early Alzheimer’s disease. J Alzheimers Dis 16:649–656

    PubMed  CAS  Google Scholar 

  69. Gamoh S, Hashimoto M, Hossain S, Masumura S (2001) Chronic administration of docosahexaenoic acid improves the performance of radial arm maze task in aged rats. Clin Exp Pharmacol Physiol 28:266–270

    PubMed  CAS  Google Scholar 

  70. Lim GP, Calon F, Morihara T, Yang F, Teter B, Ubeda O, Salem N Jr, Frautschy SA, Cole GM (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25:3032–3040

    PubMed  CAS  Google Scholar 

  71. Das UN (2008) Folic acid and polyunsaturated fatty acids improve cognitive function and prevent depression, dementia, and Alzheimer’s disease – but how and why? Prostaglandins Leukot Essent Fatty Acids 78:11–19

    PubMed  CAS  Google Scholar 

  72. Cole GM, Frautschy SA (2010) DHA may prevent age-related dementia. J Nutr 140:869–874

    PubMed  CAS  Google Scholar 

  73. Hashimoto M, Hossain S, Shimada T, Shido O (2006) Docosahexaenoic acid-induced protective effect against impaired learning in amyloid beta-infused rats is associated with increased synaptosomal membrane fluidity. Clin Exp Pharmacol Physiol 33:934–939

    PubMed  CAS  Google Scholar 

  74. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    PubMed  CAS  Google Scholar 

  75. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronet K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    PubMed  CAS  Google Scholar 

  76. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    PubMed  CAS  Google Scholar 

  77. Cai D, Netzer WJ, Zhong M, Lin Y, Du G, Frohman M, Foster DA, Sisodia SS, Xu H, Gorelick FS, Greengard P (2006) Presenilin-1 uses phospholipase D1 as a negative regulator of beta-amyloid formation. Proc Natl Acad Sci U S A 103:1941–1946

    PubMed  CAS  Google Scholar 

  78. Kim SY, Ahn BH, Min KJ, Lee YH, Joe EH, Min DS (2004) Phospholipase D isozymes mediate epigallocatechin gallate-induced cyclooxygenase-2 expression in astrocyte cells. J Biol Chem 279:38125–38133

    PubMed  CAS  Google Scholar 

  79. Almeida T, Cunha RA, Ribeiro JA (1999) Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Res 826:104–111

    PubMed  CAS  Google Scholar 

  80. Aid S, Vancassel S, Linard A, Lavialle M, Guesnet P (2005) Dietary docosahexaenoic acid [22: 6(n-3)] as a phospholipid or a triglyceride enhances the potassium chloride-evoked release of acetylcholine in rat hippocampus. J Nutr 135:1008–1013

    PubMed  CAS  Google Scholar 

  81. Hossain S, Hashimoto M, Katakura M, Miwa K, Shimada T, Shido O (2009) Mechanism of docosahexaenoic acid-induced inhibition of in vitro Abeta1-42 fibrillation and Abeta1-42-induced toxicity in SH-S5Y5 cells. J Neurochem 111:568–579

    PubMed  CAS  Google Scholar 

  82. Hashimoto M, Shahdat HM, Katakura M, Tanabe Y, Gamoh S, Miwa K, Shimada T, Shido O (2009) Effects of docosahexaenoic acid on in vitro amyloid beta peptide 25–35 fibrillation. Biochim Biophys Acta 1791:289–296

    PubMed  CAS  Google Scholar 

  83. Johansson AS, Garlind A, Berglind-Dehlin F, Karlsson G, Edwards K, Gellerfors P, Ekholm-Pettersson F, Palmblad J, Lannfelt L (2007) Docosahexaenoic acid stabilizes soluble amyloid-beta protofibrils and sustains amyloid-beta-induced neurotoxicity in vitro. FEBS J 274:990–1000

    PubMed  CAS  Google Scholar 

  84. Lando M, Abemayor E, Verity MA, Sidell N (1990) Modulation of intracellular cyclic adenosine monophosphate levels and the differentiation response of human neuroblastoma cells. Cancer Res 50:722–727

    PubMed  CAS  Google Scholar 

  85. Williams EJ, Walsh FS, Doherty P (1994) The production of arachidonic acid can account for calcium channel activation in the second messenger pathway underlying neurite outgrowth stimulated by NCAM, N-cadherin, and L1. J Neurochem 62:1231–1234

    PubMed  CAS  Google Scholar 

  86. Wada K, Arita M, Nakajima A, Katayama K, Kudo C, Kamisaki Y, Serhan CN (2006) Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J 20:1785–1792

    PubMed  CAS  Google Scholar 

  87. Uz T, Manev R, Manev H (2001) 5-Lipoxygenase is required for proliferation of immature cerebellar granule neurons in vitro. Eur J Pharmacol 418:15–22

    PubMed  CAS  Google Scholar 

  88. Watanabe A, Toyota T, Owada Y, Hayashi T, Iwayama Y, Matsumata M, Ishitsuka Y, Nakaya A, Maekawa M, Ohnishi T, Arai R, Sakurai K, Yamada K, Kondo H, Hashimoto K, Osumi N, Yoshikawa T (2007) Fabp7 maps to a quantitative trait locus for a schizophrenia endophenotype. PLoS Biol 5:e297

    PubMed  Google Scholar 

  89. Maekawa M, Takashima N, Matsumata M, Ikegami S, Kontani M, Hara Y, Kawashima H, Owada Y, Kiso Y, Yoshikawa T, Inokuchi K, Osumi N (2009) Arachidonic acid drives postnatal neurogenesis and elicits a beneficial effect on prepulse inhibition, a biological trait of psychiatric illnesses. PLoS One 4:e5085

    PubMed  Google Scholar 

  90. Schaeffer EL, Forlenza OV, Gattaz WF (2009) Phospholipase A2 activation as a therapeutic approach for cognitive enhancement in early-stage Alzheimer disease. Psychopharmacology (Berl) 202:37–51

    CAS  Google Scholar 

  91. Darios F, Davletov B (2006) Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature 440:813–817

    PubMed  CAS  Google Scholar 

  92. Pongrac JL, Slack PJ, Innis SM (2007) Dietary polyunsaturated fat that is low in (n-3) and high in (n-6) fatty acids alters the SNARE protein complex and nitrosylation in rat hippocampus. J Nutr 137:1852–1856

    PubMed  CAS  Google Scholar 

  93. Wurtman RJ, Cansev M, Ulus IH (2009) Synapse formation is enhanced by oral administration of uridine and DHA, the circulating precursors of brain phosphatides. J Nutr Health Aging 13:189–197

    PubMed  CAS  Google Scholar 

  94. Akbar M, Calderon F, Wen Z, Kim HY (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci U S A 102:10858–10863

    PubMed  CAS  Google Scholar 

  95. Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K, Serhan CN, Bazan NG (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783

    PubMed  CAS  Google Scholar 

  96. Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronet K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    PubMed  CAS  Google Scholar 

  97. Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    PubMed  CAS  Google Scholar 

  98. Almeida T, Cunha RA, Ribeiro JA (1999) Facilitation by arachidonic acid of acetylcholine release from the rat hippocampus. Brain Res 826:104–111

    PubMed  CAS  Google Scholar 

  99. Aid S, Vancassel S, Linard A, Lavialle M, Guesnet P (2005) Dietary docosahexaenoic acid [22: 6(n-3)] as a phospholipid or a triglyceride enhances the potassium chloride-evoked release of acetylcholine in rat hippocampus. J Nutr 135:1008–1013

    PubMed  CAS  Google Scholar 

  100. de La Presa Owens S, Innis SM (1999) Docosahexaenoic and arachidonic acid prevent a decrease in dopaminergic and serotoninergic neurotransmitters in frontal cortex caused by a linoleic and alpha-linolenic acid deficient diet in formula-fed piglets. J Nutr 129:2088–2093

    Google Scholar 

  101. Bernal-Mizrachi C, Gates AC, Weng S et al (2005) Vascular respiratory uncoupling increases blood pressure and atherosclerosis. Nature 435:502–506

    PubMed  CAS  Google Scholar 

  102. Cha SH, Fukushima A, Sakuma K, Kagawa Y (2001) Chronic docosahexaenoic acid intake enhances expression of the gene for uncoupling protein 3 and affects pleiotropic mRNA levels in skeletal muscle aged C57BL/6NJcl mice. J Nutr 131:2636–2642

    PubMed  CAS  Google Scholar 

  103. Klein PD, Johnson RM (1954) Phosphorous metabolism in unsaturated fatty acid-deficient rats. J Biol Chem 211:103–110

    PubMed  CAS  Google Scholar 

  104. Hayashida T, Portman OW (1960) Swelling of liver mitochondria from rats fed diets deficient in essential fatty acids. Proc Soc Exp Biol Med 103:656–659

    PubMed  CAS  Google Scholar 

  105. Shaw KN, Commins S, O’Mara SM (2003) Deficits in spatial learning and synaptic plasticity induced by the rapid and competitive broad-spectrum cyclooxygenase inhibitor ibuprofen are reversed by increasing endogenous brain-derived neurotrophic factor. Eur J Neurosci 17:2438–2446

    PubMed  Google Scholar 

  106. Hein AM, Stutzman DL, Bland ST, Barrientos RM, Watkins LR, Rudy JW, Maier SF (2007) Prostaglandins are necessary and sufficient to induce contextual fear learning impairments after interleukin-1 beta injections into the dorsal hippocampus. Neuroscience 150:754–763

    PubMed  CAS  Google Scholar 

  107. Wu A, Ying Z, Gomez-Pinilla F (2008) Docosahexaenoic acid dietary supplementation enhances the effects of exercise on synaptic plasticity and cognition. Neuroscience 155:751–759

    PubMed  CAS  Google Scholar 

  108. Wu A, Ying Z, Gomez-Pinilla F (2004) Dietary omega-3 fatty acids normalize BDNF levels, reduce oxidative damage, and counteract learning disability after traumatic brain injury in rats. J Neurotrauma 21:1457–1467

    PubMed  Google Scholar 

  109. Inestrosa NC, Godoy JA, Quintanilla RA, Koenig CS, Bronfman M (2005) Peroxisome proliferator-activated receptor gamma is expressed in hippocampal neurons and its activation prevents beta-amyloid neurodegeneration: role of Wnt signaling. Exp Cell Res 304:91–104

    PubMed  CAS  Google Scholar 

  110. Rosa AO, Kaster MP, Binfaré RW, Morales S, Martín-Aparicio E, Navarro-Rico ML, Martinez A, Medina M, García AG, López MG, Rodrigues AL (2008) Antidepressant-like effect of the novel thiadiazolidinone NP031115 in mice. Prog Neuropsychopharmacol Biol Psychiatry 32:1549–1556

    PubMed  CAS  Google Scholar 

  111. Yaffe K, Kanaya AM, Lindquist K, Hsueh WC, Cummings SR, Beamer B, Newman A, Rosano C, Li R, Harris T, Health ABC Study (2008) PPAR-gamma Pro12Ala genotype and risk of cognitive decline in elders. Neurobiol Aging 29:78–83

    PubMed  CAS  Google Scholar 

  112. d’Abramo C, Ricciarelli R, Pronzato MA, Davies P (2006) Troglitazone, a peroxisome proliferator-activated receptor-gamma agonist, decreases tau phosphorylation in CHOtau4R cells. J Neurochem 98:1068–1077

    PubMed  Google Scholar 

  113. Allen NB, Lewinsphn PM, Seeley JR (1998) Prenatal and perinatal influences on risk for psychopathology in childhood and adolescence. Dev Psychopathol 10:513–529

    PubMed  CAS  Google Scholar 

  114. McCreadie RG (1997) The Nothsdale Schizophrenia Surveys. 16. Breast-feeding and schizophrenia: preliminary results and hypotheses. Br J Psychiatry 170:334–337

    PubMed  CAS  Google Scholar 

  115. Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302

    PubMed  Google Scholar 

  116. Harley M, Kelleher I, Clarke M, Lynch F, Arseneault L, Connor D, Fitzpatrick C, Cannon M (2010) Cannabis use and childhood trauma interact additively to increase the risk of psychotic symptoms in adolescence. Psychol Med 40(10):1627–1634

    PubMed  CAS  Google Scholar 

  117. Lucas A, Morley R, Cole TJ et al (1992) Breast milk and subsequent intelligence quotient in children born pre-term. Lancet 239:261–264

    Google Scholar 

  118. Gale CR, Martyn CN (1996) Breast feeding, dummy use, and adult intelligence. Lancet 347:1057

    Google Scholar 

  119. Malloy MH, Berendes H (1998) Does breast feeding influence intelligence quotients at 9 and 10 years of age. Early Hum Dev 50:209–217

    PubMed  CAS  Google Scholar 

  120. Jones P, Rodgers B, Murray R et al (1994) Child developmental risk factors for schizophrenia in the 1946 birth cohort. Lancet 344:1398–1402

    PubMed  CAS  Google Scholar 

  121. Crow TJ, Done DJ, Sacker A (1995) Childhood precursors of psychosis as clues to its evolutionary origins. Eur Arch Psychiatry Clin Neurosci 245:61–69

    PubMed  CAS  Google Scholar 

  122. Peet M, Poole J, Laugharne J (1997) Infant feeding and the development of schizophrenia. Schizophr Res 24:255–256

    Google Scholar 

  123. Das UN (2002) The lipids that matter from infant nutrition to insulin resistance. Prostaglandins Leukot Essent Fatty Acids 67:1–12

    PubMed  CAS  Google Scholar 

  124. Das UN (2003) Long-chain polyunsaturated fatty acids in the growth and development of the brain and memory. Nutrition 19:62–65

    PubMed  CAS  Google Scholar 

  125. Das UN (2003) Can memory be improved? A discussion on the role of ras, GABA, acetylcholine, NO, insulin, TNF-a, and long-chain polyunsaturated fatty acids in memory formation and consolidation. Brain Dev 25:251–261

    PubMed  Google Scholar 

  126. Makrides M, Neumann M, Simmer K, Pater J, Gibson R (1995) Are long-chain polyunsaturated fatty acids essential nutrients in infancy? Lancet 345:1463–1468

    PubMed  CAS  Google Scholar 

  127. Hedelin M, Löf M, Olsson M, Lewander T, Nilsson B, Hultman CM, Weiderpass E (2010) Dietary intake of fish, omega-3, omega-6 polyunsaturated fatty acids and vitamin D and the prevalence of psychotic-like symptoms in a cohort of 33,000 women from the general population. BMC Psychiatry 10:38

    PubMed  Google Scholar 

  128. Watari M, Hamazaki K, Hirata T, Hamazaki T, Okubo Y (2010) Hostility of drug-free patients with schizophrenia and n-3 polyunsaturated fatty acid levels in red blood cells. Psychiatry Res 177:22–26

    PubMed  CAS  Google Scholar 

  129. Amminger GP, Schäfer MR, Papageorgiou K, Klier CM, Cotton SM, Harrigan SM, Mackinnon A, McGorry PD, Berger GE (2010) Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Arch Gen Psychiatry 67:146–154

    PubMed  CAS  Google Scholar 

  130. Ohara K (2007) The n-3 polyunsaturated fatty acid/dopamine hypothesis of schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 31:469–474

    PubMed  CAS  Google Scholar 

  131. Leask SJ, Done DJ, Crow TJ, Richards M, Jones PB (2000) No association between breast-feeding and adult psychosis in two national birth cohorts. Br J Psychiatry 177:218–221

    PubMed  CAS  Google Scholar 

  132. Sasaki T, Okazaki Y, Akaho R et al (2000) Type of feeding during infancy and later development of schizophrenia. Schizophr Res 42:79–82

    PubMed  CAS  Google Scholar 

  133. Amore M, Balista C, McCreadie RG, Cimmino C, Pisani F, Bevilacqua G, Ferrari G (2003) Can breast-feeding protect against schizophrenia? Case-control study. Biol Neonate 83:97–101

    PubMed  CAS  Google Scholar 

  134. Bateson P, Barker D, Clutton-Brock T, Deb D, D’Udine B, Foley RA, Cluckman P, Godfrey K, Kirkwood T, Lahr MM, McNamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE (2004) Developmental plasticity and human health. Nature 430:419–421

    PubMed  CAS  Google Scholar 

  135. Waterland RA, Garza C (1999) Potential mechanisms of metabolic imprinting that lead to chronic disease. Am J Clin Nutr 69:179–197

    PubMed  CAS  Google Scholar 

  136. Fricchione GL, Bilfinger TV, Stefano GB (1996) The macrophage and neuropsychiatric disorders. Neurobiology 9:16–29

    Google Scholar 

  137. Salk L, Lipsitt LP, Sturner WQ, Reilly BM, Levat RH (1985) Relationship of maternal and perinatal conditions to eventual adolescent suicide. Lancet 1:624–627

    PubMed  CAS  Google Scholar 

  138. Neugebauer R, Reuss ML (1998) Association of maternal, antenatal and perinatal complications with suicide in adolescence and young adulthood. Acta Psychiatr Scand 97:412–418

    PubMed  CAS  Google Scholar 

  139. Barker DJP, Osmond C, Rodin J, Fall CHD, Winter PD (1995) Low weight gain in infancy and suicide in adult life. BMJ 311:1203

    PubMed  CAS  Google Scholar 

  140. Mittendorfer-Rutz E, Rasmussen F, Wasserman D (2004) Restricted fetal growth and adverse maternal psychosocial and socioeconomic conditions as risk factors for suicidal behaviour of offspring: a cohort study. Lancet 364:1135–1140

    PubMed  CAS  Google Scholar 

  141. Allebeck P, Allgulander C, Henninggsohn I, Jakobsson SW (1991) Causes of death in a cohort of 50465 young men-validity of recorded suicide as underlying cause of death. Scand J Soc Med 19:242–247

    PubMed  CAS  Google Scholar 

  142. Nilsson PM, Nyberg P, Ostergren PO (2001) Increased susceptibility to stress at a psychological assessment of stress tolerance is associated with impaired fetal growth. Int J Epidemiol 30:75–80

    PubMed  CAS  Google Scholar 

  143. Ansorge MS, Zhou M, Lira A, Hen R, Gingrich JA (2004) Early-life blockade of the 5-HT transporter alters emotional behavior in adult mice. Science 306:879–881

    PubMed  CAS  Google Scholar 

  144. Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HT gene. Science 301:386–390

    PubMed  CAS  Google Scholar 

  145. Rumajogee P, Verge D, Hanoun N, Brisorgueil MJ, Hen R, Lesch KP, Hamon M, Miquel MC (2004) Phenotype in the absence of 5-HT autoreceptors or the 5-HT transporter: involvement of BDNF and camp. Eur J Neurosci 19:937–944

    PubMed  Google Scholar 

  146. Liu D, Diorio J, Tannenbaum B, Caldji C, Francis D, Freedman A, Sharma A, Pearson D, Plotsky PM, Meaney MJ (1997) Maternal care, hippocampal glucocorticoid receptors, and hypothalamic-pituitary-adrenal responses to stress. Science 277:1659–1662

    PubMed  CAS  Google Scholar 

  147. Gross C, Zhuang X, Stark K, Ramboz S, Oosting R, Kirby L, Santarelli L, Beck S, Hen R (2002) Serotonin A1 receptor acts during development to establish normal anxiety-like behavior in the adult. Nature 416:396–400

    PubMed  CAS  Google Scholar 

  148. Hariri AR, Mattay VS, Tessitore A, Kolachana B, Fera F, Goldman D, Egan MF, Weinberger DR (2002) Serotonin transporter genetic variation and the response of the human amygdala. Science 297:400–403

    PubMed  CAS  Google Scholar 

  149. Smythe JW, Rowe WB, Meaney MJ (1994) Neonatal handling alters serotonin (5-HT) turnover and 5-HT2 receptor binding in selected brain regions: relationship to the handling effect on glucocorticoid receptor expression. Brain Res Dev Brain Res 80:183–189

    PubMed  CAS  Google Scholar 

  150. Oquendo MA, Baca-Garcia E (2004) Nurture versus nature: evidence of intrauterine effects on suicidal behaviour. Lancet 364:1102–1104

    PubMed  Google Scholar 

  151. Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23:297–302

    PubMed  Google Scholar 

  152. Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C (2002) Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 26:204–211

    PubMed  CAS  Google Scholar 

  153. Editorial (2003) Of mice and mental illness. Nat Neurosci 6:323

    Google Scholar 

  154. Zhang XY, Zhou DF, Zhang PY, Wu GY, Cao LY, Shen YC (2002) Elevated interleukins-2, interleukins-6 and interleukins-8 serum levels in neuroleptic-free schizophrenia: association with psychopathology. Schizophr Res 57:247–258

    PubMed  Google Scholar 

  155. Ebrinc S, Top C, Oncul O, Basoglu C, Cavuslu S, Cetin M (2002) Serum interlukin 1 alpha and interleukins 2 levels in patients with schizophrenia. J Int Med Res 30:314–317

    PubMed  CAS  Google Scholar 

  156. McAllister CG, van Kammen DP, Rehn TJ, Miller AL, Gurklis J, Kelley ME, Yao J, Peters JL (1995) Increases in CSF levels of interleukins-2 in schizophrenia: effects of recurrence of psychosis and medication status. Am J Psychiatry 152:1291–1297

    PubMed  CAS  Google Scholar 

  157. Kowalski J, Blada P, Kucia K, Madej A, Herman ZS (2001) Neuroleptics normalize increased release of interleukins-1 beta and tumor necrosis factor-alpha from monocytes in schizophrenia. Schizophr Res 50:169–175

    PubMed  CAS  Google Scholar 

  158. Maes M, Bocchio Chiavetto L, Bignotti S, Battisa Tura GJ, Pioli R, Boin F, Kenis G, Bosmans E, de Jongh R, Altamura CA (2002) Increased serum interleukins-8 and interleukins-10 in schizophrenic patients resistant to treatment with neuroleptics and the stimulatory effects of clozapine on serum leukemia inhibitory factor receptor. Schizophr Res 54:281–291

    PubMed  Google Scholar 

  159. Cazzullo CL, Sacchetti E, Galluzzo A, Adorni A, Pegoraro M, Bosis S, Colombo F, Trabattoni D, Zagliani A, Clerici M (2002) Cytokine profiles in schizophrenic patients treated with risperidone: a 3-month follow-up study. Prog Neuropsychopharmacol Biol Psychiatry 26:33–39

    PubMed  CAS  Google Scholar 

  160. Zalcman SS (2002) Interleukin-2-induced increases in climbing behavior: inhibition by dopamine D-1 and D-2 receptor antagonists. Brain Res 944:157–164

    PubMed  CAS  Google Scholar 

  161. Marx CE, Jarskog LF, Lauder JM, Lieberman JA, Gilmore JH (2001) Cytokine effects on cortical neuron MAP-2 immunoreactivity: implications for schizophrenia. Biol Psychiatry 50:743–749

    PubMed  CAS  Google Scholar 

  162. Kim YK, Kim L, Lee MS (2000) Relationships between interleukins, neurotransmitters and psychopathology in drug-free male schizophrenics. Schizophr Res 44:165–175

    PubMed  CAS  Google Scholar 

  163. Carlson SE, Werkman SH, Peeples JM, Cooke RJ, Tolley EA (1993) Arachidonic acid status correlates with first year growth in preterm infants. Proc Natl Acad Sci U S A 90:1073–1077

    PubMed  CAS  Google Scholar 

  164. Olsen SF, Olsen J, Frische G (1990) Does fish consumption during pregnancy increase fetal growth? A study of the size of the newborn, placental weight and gestational age in relation to fish consumption during pregnancy. Int J Epidemiol 19:971–977

    PubMed  CAS  Google Scholar 

  165. Baguma-Nibasheka M, Brenna JT, Nathaniesz PW (1999) Delay of preterm delivery in sheep by omega-3 long-chain polyunsaturates. Biol Reprod 60:698–701

    PubMed  CAS  Google Scholar 

  166. Das UN (2001) Essential fatty acids as possible mediators of the actions of statins. Prostaglandins Leukot Essent Fatty Acids 65:37–40

    PubMed  CAS  Google Scholar 

  167. Kumar KV, Das UN (1997) Effect of cis-unsaturated fatty acids, prostaglandins, and free radicals on angiotensin-converting enzyme activity in vitro. Proc Soc Exp Biol Med 214:374–379

    PubMed  CAS  Google Scholar 

  168. Reseland JE, Haugen F, Hollung K, Solvoll K, Halvorsen B, Brude I R, Nenseter MS, Christiansen EN, Drevon CA (2001) Reduction of leptin gene expression by dietary polyunsaturated fatty acids. J Lipid Res 42:743–750

    PubMed  CAS  Google Scholar 

  169. Das UN (2002) A perinatal strategy for preventing adult disease. Kluwer Academic, Norwell, MA

    Google Scholar 

  170. Das UN (2010) Metabolic syndrome pathophysiology: the role of essential fatty acids. Wiley-Blackwell, Ames, IA

    Google Scholar 

  171. Hibbeln JR, Makino KK, Martin CE, Dickerson F, Boronow J, Fenton WS (2003) Smoking, gender, and dietary influences on erythrocyte essential fatty acid composition among patients with schizophrenia or schizoaffective disorder. Biol Psychiatry 53:431–441

    PubMed  CAS  Google Scholar 

  172. Aravindakshan M, Sitasawad S, Debsikdar V, Ghate M, Evans D, Horrobin DF, Bennett C, Ranjekar PK, Mahadik SP (2003) Essential polyunsaturated fatty acid and lipid peroxide levels in never-medicated and medicated schizophrenia patients. Biol Psychiatry 53:56–64

    Google Scholar 

  173. Assies J, Lieverse R, Vreken P, Wanders RJ, Dinhemans PM, Linszen DH (2001) Significantly reduced docosahexaenoic and docosapentaenoic acid concentrations in erythrocyte membranes from schizophrenic patients compared with a carefully matched control group. Biol Psychiatry 49:510–522

    PubMed  CAS  Google Scholar 

  174. Khan MM, Evans DR, Gunna V, Scheffer RE, Parikh VV, Mahadik SP (2002) Reduced erythrocyte membrane essential fatty acids and increased lipid peroxides in schizophrenia at the never-medicated first-episode of psychosis and after years of treatment with antipsychotics. Schizophr Res 58:1–10

    PubMed  Google Scholar 

  175. Chang MC, Contreras MA, Rosenberger TA, Rintala JJ, Bell JM, Rapoport SI (2001) Chronic valproate treatment decreases the in vivo turnover of arachidonic acid in brain phospholipids: a possible common effect of mood stabilizers. J Neurochem 77:796–803

    PubMed  CAS  Google Scholar 

  176. Chang MC, Bell JM, Purdon AD, Chikhale EG, Grange E (1999) Dynamics of docosahexaenoic acid metabolism in the central nervous system: lack of effect of chronic lithium treatment. Neurochem Res 24:399–406

    PubMed  CAS  Google Scholar 

  177. Chang MC, Grange E, Rabin O, Bell JM, Allen DD, Rapoport SI (1996) Lithium decreases turnover of arachidonate in several brain phospholipids. Neurosci Lett 220:171–174

    PubMed  CAS  Google Scholar 

  178. Kim SHF, Weeber EJ, Sweatt JD, Stoll AL, Marangell LB (2001) Inhibitory effects of omega-3 fatty acids on protein kinase C activity in vitro. Mol Psychiatry 6:246–248

    CAS  Google Scholar 

  179. Chaudhry A, Laychock SG, Rubin RP (1987) The effects of fatty acids on phosphoinositide synthesis and myo-inositol accumulation in exocrine pancreas. J Biol Chem 262:17426–17431

    PubMed  CAS  Google Scholar 

  180. Sperling RI, Benincaso AI, Knoell CT, Larkin JK, Austen KF, Robinson DR (1993) Dietary omega-3 polyunsaturated fatty acids inhibit phosphoinositide formation and chemotaxis in neutrophils. J Clin Invest 91:651–660

    PubMed  CAS  Google Scholar 

  181. Williams RSB, Cheng L, Mudge AW, Harwood AJ (2002) A common mechanism of action for three mood-stabilizing drugs. Nature 417:292–295

    PubMed  CAS  Google Scholar 

  182. Kumar SG, Das UN, Kumar KV, Madhavi N, Das NP, Tan BKH (1992) Effect of n-6 and n-3 fatty acids on the proliferation and secretion of TNF and IL-2 by human lymphocytes in vitro. Nutr Res 12:815–823

    CAS  Google Scholar 

  183. Kumar SG, Das UN (1994) Effect of prostaglandins and their precursors on the proliferation of human lymphocytes and their secretion of tumor necrosis factor and various interleukins. Prostaglandins Leukot Essent Fatty Acids 50:331–334

    PubMed  CAS  Google Scholar 

  184. Das UN (1994) Beneficial effect of eicosapentaenoic acid and docosahexaenoic acid in the management of systemic lupus erythematosus and its relationship to the cytokine network. Prostaglandins Leukot Essent Fatty Acids 51:207–213

    PubMed  CAS  Google Scholar 

  185. Endres S, Ghorbani R, Kelley VE et al (1989) The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukins-1 and tumor necrosis factor by mononuclear cells. N Engl J Med 320:265–271

    Google Scholar 

  186. Peet M, Horrobin DF, E-E Multicentre Study Group (2002) A dose-ranging exploratory study of the effects of ethyl-eicosapentaenoate in patients with persistent schizophrenic symptoms. J Psychiatr Res 36:7–18

    PubMed  Google Scholar 

  187. Peet M, Brind J, Ramchand CN, Shah S, Vankar GK (2001) Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophr Res 49:243–251

    PubMed  CAS  Google Scholar 

  188. Puri BK, Richardson AJ, Horrobin DF, Easton T, Saeed N, Oatridge A, Hajnal JV, Bydder GM (2000) Eicosapentaenoic acid treatment in schizophrenia associated with symptom remission, normalization of blood fatty acids, reduced neuronal membrane phospholipid turnover and structural brain changes. Int J Clin Pract 54:57–63

    PubMed  CAS  Google Scholar 

  189. Lonergan PE, Martin DSD, Horrobin DF, Lynch MA (2002) Neuroprotective effect of eicosapentaenoic acid in hippocampus of rats exposed to g-radiation. J Biol Chem 277:20804–20811

    PubMed  CAS  Google Scholar 

  190. Martin DSD, Lonergan PE, Boland B, Fogarty MP, Brady M, Horrobin DF, Campbell VA, Lynch MA (2002) Apoptotic changes in the aged brain are triggered by interleukin-1b-induced activation of p38 and reversed by treatment with eicosapentaenoic acid. J Biol Chem 277:34239–34246

    PubMed  CAS  Google Scholar 

  191. Kim H-Y, Akbar M, Lau A, Edsall L (2000) Inhibition of neuronal apoptosis by docosahexaenoic acid (22:6n-3). Role of phosphatidylserine in antiapoptotic effect. J Biol Chem 275:35215–35223

    PubMed  CAS  Google Scholar 

  192. Kim H-Y, Akbar M, Kim K-Y (2001) Inhibition of neuronal apoptosis by polyunsaturated fatty acids. J Mol Neurosci 16:223–227

    PubMed  Google Scholar 

  193. Das UN, Devi GR, Rao KP, Rao MS (1985) Prostaglandins and their precursors can modify genetic damage induced by benzo (a) pyrene and gamma-radiation. Prostaglandins 29:911–920

    PubMed  CAS  Google Scholar 

  194. Das UN, Devi GR, Rao KP, Rao MS (1989) Prostaglandins can modify gamma-radiation and chemical-induced cytotoxicity and genetic damage both in vitro and in vivo. Prostaglandins 38:689–699

    PubMed  CAS  Google Scholar 

  195. Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW (1996) Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci U S A 93:3908–3913

    PubMed  CAS  Google Scholar 

  196. Sheline YI, Sanghavi M, Mintun MA, Gado MH (1999) Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci 19:5034–5043

    PubMed  CAS  Google Scholar 

  197. Lange C, Irle E (2004) Enlarged amygdala volume and reduced hippocampal volume in young women with major depression. Psychol Med 34:1059–1064

    PubMed  CAS  Google Scholar 

  198. Koolschijn PC, van Haren NE, Lensvelt-Mulders GJ, Hulshoff Pol HE, Kahn RS (2009) Brain volume abnormalities in major depressive disorder: a meta-analysis of magnetic resonance imaging studies. Hum Brain Mapp 30:3719–3735

    PubMed  Google Scholar 

  199. Kim MJ, Hamilton JP, Gotlib IH (2008) Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Res 164:114–122

    PubMed  Google Scholar 

  200. Chen MC, Hamilton JP, Gotlib IH (2010) Decreased hippocampal volume in healthy girls at risk of depression. Arch Gen Psychiatry 67:270–276

    PubMed  Google Scholar 

  201. Murata T, Kimura H, Omori M, Kado H, Kosaka H, Iidaka T, Itoh H, Wada Y (2001) MRI white matter hyperintensities, (1)H-MR spectroscopy and cognitive function in geriatric depression: a comparison of early- and late-onset cases. Int J Geriatr Psychiatry 16:1129–1135

    PubMed  CAS  Google Scholar 

  202. Sassi RB, Brambilla P, Nicoletti M, Mallinger AG, Frank E, Kupfer DJ, Keshavan MS, Soares JC (2003) White matter hyperintensities in bipolar and unipolar patients with relatively mild-to-moderate illness severity. J Affect Disord 77:237–245

    PubMed  Google Scholar 

  203. Taylor WD, MacFall JR, Payne ME, McQuoid DR, Steffens DC, Provenzale JM, Krishnan RR (2005) Greater MRI lesion volumes in elderly depressed subjects than in control subjects. Psychiatry Res 139:1–7

    PubMed  Google Scholar 

  204. Karege F, Perret G, Bondolfi G, Schwald M, Bertschy G, Aubry JM (2002) Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res 109:143–148

    PubMed  CAS  Google Scholar 

  205. Shimizu E, Hashimoto K, Okamura N, Koike K, Komatsu N, Kumakiri C, Nakazato M, Watanabe H, Shinoda N, Okada S, Iyo M (2003) Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry 54:70–75

    PubMed  CAS  Google Scholar 

  206. Lang UE, Hellweg R, Gallinat J (2004) BDNF serum concentrations in healthy volunteers are associated with depression-related personality traits. Neuropsychopharmacology 29:795–798

    PubMed  CAS  Google Scholar 

  207. Karege F, Bondolfi G, Gervasoni N, Schwald M, Aubry JM, Bertschy G (2005) Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry 57:1068–1072

    PubMed  CAS  Google Scholar 

  208. Sen S, Duman R, Sanacora G (2008) Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry 64:527–532

    PubMed  CAS  Google Scholar 

  209. Piccinni A, Marazziti D, Catena M, Domenici L, Del Debbio A, Bianchi C, Mannari C, Martini C, Da Pozzo E, Schiavi E, Mariotti A, Roncaglia I, Palla A, Consoli G, Giovannini L, Massimetti G, Dell’Osso L (2008) Plasma and serum brain-derived neurotrophic factor (BDNF) in depressed patients during 1 year of antidepressant treatments. J Affect Disord 105:279–283

    PubMed  CAS  Google Scholar 

  210. Huang TL, Lee CT, Liu YL (2008) Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J Psychiatr Res 42:521–525

    PubMed  Google Scholar 

  211. Onen Sertoz O, Tolga Binbay I, Koylu E, Noyan A, Yildirim E, Elbi Mete H (2008) The role of BDNF and HPA axis in the neurobiology of burnout syndrome. Prog Neuropsychopharmacol Biol Psychiatry 32:1459–1465

    PubMed  CAS  Google Scholar 

  212. Knapman A, Heinzmann JM, Hellweg R, Holsboer F, Landgraf R, Touma C (2010) Increased stress reactivity is associated with cognitive deficits and decreased hippocampal brain-derived neurotrophic factor in a mouse model of affective disorders. J Psychiatr Res 44:566–575

    PubMed  CAS  Google Scholar 

  213. Kenis G, Prickaerts J, van Os J, Koek GH, Robaeys G, Steinbusch HW, Wichers M (2010) Depressive symptoms following interferon-alpha therapy: mediated by immune-induced reductions in brain-derived neurotrophic factor? Int J Neuropsychopharmacol 29:1–7

    Google Scholar 

  214. Koizumi H, Hashimoto K, Iyo M (2006) Dietary restriction changes behaviours in brain-derived neurotrophic factor heterozygous mice: role of serotonergic system. Eur J Neurosci 24:2335–2344

    PubMed  Google Scholar 

  215. Jacobsen JP, Mørk A (2006) Chronic corticosterone decreases brain-derived neurotrophic factor (BDNF) mRNA and protein in the hippocampus, but not in the frontal cortex, of the rat. Brain Res 1110:221–225

    PubMed  CAS  Google Scholar 

  216. de Foubert G, O’Neill MJ, Zetterström TS (2007) Acute onset by 5-HT(6)-receptor activation on rat brain brain-derived neurotrophic factor and activity-regulated cytoskeletal-associated protein mRNA expression. Neuroscience 147:778–785

    PubMed  Google Scholar 

  217. Cho HJ, Kim JK, Zhou XF, Rush RA (1997) Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res 764:269–272

    PubMed  CAS  Google Scholar 

  218. Oddiah D, Anand P, McMahon SB, Rattray M (1998) Rapid increase of NGF, BDNF and NT-3 mRNAs in inflamed bladder. Neuroreport 9:1455–1458

    PubMed  CAS  Google Scholar 

  219. Virchow JC, Julius P, Lommatzsch M, Luttmann W, Renz H, Braun A (1998) Neurotrophins are increased in bronchoalveolar lavage fluid after segmental allergen provocation. Am J Respir Crit Care Med 158:2002–2005

    PubMed  CAS  Google Scholar 

  220. Kerschensteiner M, Gallmeier E, Behrens L, Leal VV, Misgeld T, Klinkert WE, Kolbeck R, Hoppe E, Oropeza-Wekerle RL, Bartke I, Stadelmann C, Lassmann H, Wekerle H, Hohlfeld R (1999) Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med 189:865–870

    PubMed  CAS  Google Scholar 

  221. Tabakman R, Lecht S, Sephanova S, Arien-Zakay H, Lazarovici P (2004) Interactions between the cells of the immune and nervous system: neurotrophins as neuroprotection mediators in CNS injury. Prog Brain Res 146:387–401

    PubMed  CAS  Google Scholar 

  222. Makar TK, Trisler D, Sura KT, Sultana S, Patel N, Bever CT (2008) Brain derived neurotrophic factor treatment reduces inflammation and apoptosis in experimental allergic encephalomyelitis. J Neurol Sci 270:70–76

    PubMed  CAS  Google Scholar 

  223. Ricci A, Mariotta S, Saltini C, Falasca C, Giovagnoli MR, Mannino F, Graziano P, Sciacchitano S, Amenta F (2005) Neurotrophin system activation in bronchoalveolar lavage fluid immune cells in pulmonary sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis 22:186–194

    PubMed  Google Scholar 

  224. Hahn C, Islamian AP, Renz H, Nockher WA (2006) Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation. J Allergy Clin Immunol 117:787–794

    PubMed  CAS  Google Scholar 

  225. Bennedich Kahn L, Gustafsson LE, Olgart Hoglund C (2008) Brain-derived neurotrophic factor enhances histamine-induced airway responses and changes levels of exhaled nitric oxide in guinea pigs in vivo. Eur J Pharmacol 595:78–83

    Google Scholar 

  226. Lommatzsch M, Braun A, Mannsfeldt A, Botchkarev VA, Botchkarev NV, Paus R, Fischer A, Lewin GR, Renz H (1999) Abundant production of brain-derived neurotrophic factor by adult visceral epithelia. Am J Pathol 155:1183–1193

    PubMed  CAS  Google Scholar 

  227. Rost B, Hanf G, Ohnemus U, Otto-Knapp R, Groneberg DA, Kunkel G, Noga O (2005) Monocytes of allergics and non-allergics produce, store and release the neurotrophins NGF, BDNF and NT-3. Regul Pept 124:19–25

    PubMed  CAS  Google Scholar 

  228. Noga O, Englmann C, Hanf G, Grutzkau A, Kunkel G (2003) The production, storage and release of the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 by human peripheral eosinophils in allergics and non-allergics. Clin Exp Allergy 33:649–654

    PubMed  CAS  Google Scholar 

  229. Rihl M, Kruithof E, Barthel C, De Keyser F, Veys EM, Zeidler H, Yu DT, Kuipers JG, Baeten D (2005) Involvement of neurotrophins and their receptors in spondyloarthritis synovitis: relation to inflammation and response to treatment. Ann Rheum Dis 64:1542–1549

    PubMed  CAS  Google Scholar 

  230. del Porto F, Aloe L, Lagana B, Triaca V, Nofroni I, D’Amelio R (2006) Nerve growth factor and brain-derived neurotrophic factor levels in patients with rheumatoid arthritis treated with TNF-alpha blockers. Ann N Y Acad Sci 1069:438–443

    PubMed  CAS  Google Scholar 

  231. Grimsholm O, Guo Y, Ny T, Forsgren S (2008) Expression patterns of neurotrophins and neurotrophin receptors in articular chondrocytes and inflammatory infiltrates in knee joint arthritis. Cells Tissues Organs 188:299–309

    PubMed  CAS  Google Scholar 

  232. Cai D, Holm JM, Duignan IJ, Zheng J, Xaymardan M, Chin A, Ballard VL, Bella JN, Edelberg JM (2006) BDNF-mediated enhancement of inflammation and injury in the aging heart. Physiol Genomics 24:191–197

    PubMed  CAS  Google Scholar 

  233. Johansson M, Norrgard O, Forsgren S (2007) Study of expression patterns and levels of neurotrophins and neurotrophin receptors in ulcerative colitis. Inflamm Bowel Dis 13:398–409

    PubMed  Google Scholar 

  234. di Mola FF, Friess H, Zhu ZW, Koliopanos A, Bley T, Di Sebastiano P, Innocenti P, Zimmermann A, Buchler MW (2000) Nerve growth factor and Trk high affinity receptor (TrkA) gene expression in inflammatory bowel disease. Gut 46:670–679

    PubMed  CAS  Google Scholar 

  235. Raap U, Werfel T, Goltz C, Deneka N, Langer K, Bruder M, Kapp A, Schmid-Ott, Wedi B (2006) Circulating levels of brain-derived neurotrophic factor correlate with disease severity in the intrinsic type of atopic dermatitis. Allergy 61:1416–1418

    PubMed  CAS  Google Scholar 

  236. Das UN (2010) Obesity: genes, brain, gut, and environment. Nutrition 26:459–473

    PubMed  CAS  Google Scholar 

  237. Ciz M, Komrskova D, Pracharova L, Okenkova K, Cizova H, Moravcova A, Jancinova V, Petrikova M, Lojek A, Nosal R (2007) Serotonin modulates the oxidative burst of human phagocytes via various mechanisms. Platelets 18:583–590

    PubMed  CAS  Google Scholar 

  238. Menard G, Turmel V, Bissonnette EY (2007) Serotonin modulates the cytokine network in the lung: involvement of prostaglandin E2. Clin Exp Immunol 150:340–348

    PubMed  CAS  Google Scholar 

  239. Muller T, Durk T, Blumental B, Grimm M, Cicko S, Panther E, Sorichter S, Herouy Y, Di Virgilio F, Ferrari D, Norgauer J, Idzko M (2009) 5-hydroxytryptamine modulates migration, cytokine and chemokine release and T-cell priming capacity of dendritic cells in vitro and in vivo. PLoS One 4:e6453

    PubMed  Google Scholar 

  240. Das UN (2010) Metabolic syndrome is a low-grade systemic inflammatory condition. Expert Rev Endocrinol Metab 5:577–592

    CAS  Google Scholar 

  241. Aso Y, Wakabayashi S, Nakano T, Yamamoto R, Takebayashi K, Inukai T (2006) High serum high-sensitivity C-reactive protein concentrations are associated with relative cardiac sympathetic overactivity during the early morning period in type 2 diabetic patients with metabolic syndrome. Metabolism 55:1014–1021

    PubMed  CAS  Google Scholar 

  242. Maestroni GJ (2000) Dendritic cell migration controlled by alpha 1b-adrenergic receptors. J Immunol 165:6743–6747

    PubMed  CAS  Google Scholar 

  243. Rassler B (2007) The role of catecholamines in formation and resolution of pulmonary oedema. Cardiovasc Hematol Disord Drug Targets 7:27–35

    PubMed  CAS  Google Scholar 

  244. Flierl MA, Rittirsch D, Nadeau BA, Chen AJ, Sarma JV, Zetoune FS, McGuire SR, List RP, Day DE, Hoesel LM, Gao H, Van Rooijen N, Huber-Lang MS, Neubig RR, Ward PA (2007) Phagocyte-derived catecholamines enhance acute inflammatory injury. Nature 449:721–725

    PubMed  CAS  Google Scholar 

  245. Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217

    PubMed  CAS  Google Scholar 

  246. Das UN (2007) Is depression a low-grade systemic inflammatory condition? Am J Clin Nutr 85:1665–1666

    PubMed  CAS  Google Scholar 

  247. O’Brien SM, Scott LV, Dinan TG (2004) Cytokines: abnormalities in major depression and implications for pharmacological treatment. Hum Psychopharmacol 19:397–403

    PubMed  Google Scholar 

  248. Dunn AJ, Swiergiel AH, de Beaurepaire R (2005) Cytokines as mediators of depression: what can we learn from animal studies? Neurosci Biobehav Rev 29:891–909

    PubMed  CAS  Google Scholar 

  249. Castanon N, Leonard BE, Neveu PJ, Yirmiya R (2002) Effects of antidepressants on cytokine production and actions. Brain Behav Immun 16:569–574

    PubMed  CAS  Google Scholar 

  250. Sluzewska A, Rybakowski J, Bosmans E, Sobieska M, Berghmans R, Maes M, Wiktorowicz K (1996) Indicators of immune activation in major depression. Psychiatry Res 64:161–167

    PubMed  CAS  Google Scholar 

  251. Basterzi AD, Aydemir C, Kisa C, Aksaray S, Tuzer V, Yazici K, Goka E (2005) IL-6 levels decrease with SSRI treatment in patients with major depression. Hum Psychopharmacol 20:473–476

    PubMed  CAS  Google Scholar 

  252. Borovikova LV, Ivanova S, Zhang M, Yang H, Botchkina GI, Watkins LR, Wang H, Abumrad N, Eaton JW, Tracey KJ (2000) Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405:458–462

    PubMed  CAS  Google Scholar 

  253. Ulloa L (2005) The vagus nerve and the nicotinic anti-inflammatory pathway. Nat Rev Drug Discov 4:673–683

    PubMed  CAS  Google Scholar 

  254. Das UN (2007) Vagus nerve stimulation, depression and inflammation. Pscychoneuropharmacology 32:2053–2054

    Google Scholar 

  255. Colin A, Reggers J, Castronovo V, Anssean M (2003) Lipids, depression, and suicide. Encephale 29:49–58

    PubMed  CAS  Google Scholar 

  256. Su KP, Huang SY, Chiu CC, Shen WW (2003) Omega-3 fatty acids in major depressive disorder: a preliminary double-blind, placebo-controlled trial. Eur Neuropscychopharmacol 13:267–271

    CAS  Google Scholar 

  257. Ranjekar PK, Hinge A, Hegde MV et al (2003) Decreased antioxidant enzymes and membrane essential polyunsaturated fatty acids in schizophrenia and bipolar mood disorder patients. Psychiatry Res 121:109–122

    PubMed  CAS  Google Scholar 

  258. Denkins Y, Kempf D, Ferniz M, Nileshwar S, Marchetti D (2005) Role of omega-3 polyunsaturated fatty acids on cyclooxygenase-2 metabolism in brain-metastatic melanoma. J Lipid Res 46:1278–1284

    PubMed  CAS  Google Scholar 

  259. Parker G, Gibson NA, Brotchie H, Heruc G, Rees AM, Hadzi-Pavlovic D (2006) Omega-3 fatty acids and mood disorders. Am J Psychiatry 163:969–978

    PubMed  Google Scholar 

  260. De Vriese SR, Christophe AB, Maes M (2004) In humans, the seasonal variation in poly-unsaturated fatty acids is related to the seasonal variation in violent suicide and serotonergic markers of violent suicide. Prostaglandins Leukot Essent Fatty Acids 71:13–18

    PubMed  Google Scholar 

  261. Arvindakshan M, Ghate M, Ranjekar PK, Evans DR, Mahadik SP (2003) Supplementation with a combination of omega-3 fatty acids and antioxidants (vitamins E and C) improves the outcome of schizophrenia. Schizophr Res 62:195–204

    PubMed  Google Scholar 

  262. Aliberti J, Hieny S, Reis e Sousa C, Serhan CN, Sher A (2002) Lipoxin-mediated inhibition of IL-12 production by DCs: a mechanism for regulation of microbial immunity. Nat Immunol 3:76–82

    PubMed  CAS  Google Scholar 

  263. Das UN (2011) Influence of polyunsaturated fatty acids and their metabolites on stem cell biology. Nutrition 27:21–25

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Undurti N. Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Netherlands

About this chapter

Cite this chapter

Das, U.N. (2011). Alzheimer’s Disease, Schizophrenia and Depression. In: Molecular Basis of Health and Disease. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0495-4_12

Download citation

Publish with us

Policies and ethics